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After this lecture you will be knowing following things:

● Introduction to Edge Computing

● Edge Computing Architecture & building blocks

● Edge Computing for IOT

● Advantages of Edge Computing NPTEL



Cloud

Virtual machines running in 
a remote data center or 

storage that was offered in a 
remote data center

IoT

VMs getting replaced by 
containers and workloads are 

moving towards containers

Edge

Data processed locally and 
compute comes much 

closer to the devices or the 
sources of data

Edge 
ML

Training the models 
on edge also called 

inferencing

Recapitulate:Evolution of Cloud
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Introduction to Edge Computing
Edge computing allows the cloud to be genuinely distributed.
Don't need to rely on the cloud for all the processing and data 
aggregation collection processing and querying.
Mimics the public cloud platform capabilities.
Reduces the latency by avoiding the round-trip and brings in the 
data sovereignty by keeping data where it actually belongs.

Delivers local storage, compute, and network services.NPTEL



Edge Computing: makes distributed cloud

●Edge computing makes the cloud truly distributed. The 
current cloud or rather the previous generation of cloud 
was almost like a mainframe or like a client-server 
architecture where  very little processing was done on 
the client side but all the heavy lifting was done by the 
cloud.
●With all the innovations in the hardware chips and with 
the affordable electronics and  silicon it makes more 
sense to bring compute down to the last mile and actually 
keep the compute closer to the devices.
●So that's when edge computing becomes more and 
more viable where you don't need to rely on the cloud for 
all the processing and data aggregation, collection, 
processing and querying instead you could actually run a 
computing layer that is very close to  the devices.
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Edge Computing: Mimics the public cloud platform capabilities 
and Move cloud service closer to data-source

●The edge computing mimics the public cloud platform 
capabilities
●For example when you dissect an edge computing 
platform you would notice that it almost has all the 
capabilities of a typical public cloud
●IOT pass: it has device management, it has data 
ingestion, it has stream analytics and it can run 
machine learning models and it can run server less 
functions so all of those are capabilities that are 
predominantly available on the public cloud
●But with edge computing they all come to the last mile 
delivery point and run very close to the source of the 
data which is sensors actuators and devicesNPTEL



Edge Computing: Reduces the latency by avoiding the round-trip 
and brings in the data sovereignty 

●The biggest advantage of deploying an edge computing 
layer is that it reduces the latency by avoiding the round-
trip.
●It also brings in the data sovereignty by keeping data 
where it actually belongs to.
●For example in a healthcare scenario it may not be viable 
or it may not be compliant to actually stream sensitive 
patient data to the cloud where it is getting stored and 
processed instead the patient data should remain on-Prem 
within the hospital premises but it still needs to go through 
lot of processing and  find out very useful insights so in that 
case the edge computing layer is going  to stay close to the 
healthcare equipment with connectivity back to the cloud 
and the architects and the customer engineers will decide 
what data  will stay within the edge boundary and what will 
actually cross that and move to the cloud may be 
anonymized data.
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Edge Computing Building Blocks
Data Ingestion

M2M Brokers

Object Storage

Function as a Service

NoSQL/Time-Series Database

Streem Processing

ML Models NPTEL



Edge Computing Building Blocks: Data 
Ingestion
Data Ingestion:

This is the high velocity, high throughput 
data endpoint like the Kafka endpoint that 
is going to ingest the data.

It is the process of obtaining and 
importing data for immediate use or 
storage in a database. To ingest 
something is to take something in or 
absorb something. Data can be streamed 
in real time or ingested in batches. In 
real-time data ingestion, each data item 
is imported as the source emits it.
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Edge Computing Building Blocks: M2M 
Brokers
M2M Brokers:

Edge will also run message 
brokers that will orchestrate 
machine to machine 
communication. 

For example device one talks 
to device two via the M2M 
broker.
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Edge Computing Building Blocks: Storage
Object Storage:

there may be unstructured storage 
particularly to store the feed from 
video cameras and mics and 
anything that is unstructured will go 
into object storage.

NoSQL/Time-Series Database:

More structured data goes into time 
series data base and no sequel 
database 
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Edge Computing Building Blocks: Stream 
Processing
Stream Processing:

It is a complex event processing 
engine that is enabling you to 
perform real-time queries and 
process the data as it comes.

For example for every data point 
you want to convert Fahrenheit to 
Celsius or you want to convert the 
timestamp from one format to 
another, you could do it either in 
stream processing.
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Edge Computing Building Blocks: Function 
as a Sevice
Function as a service:
To add additional business 
logic there is a functions as a 
service which is actually 
responsible for running 
lightweight compute.

If you need to do more 
sophisticated code you could 
actually move that to functions 
as a service.
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Edge Computing Building Blocks: ML 
Models
Machine Learning models:

Lastely, there is an ML runtime for 
example most of the computing 
platforms are capable of running 
tensorflow light, cafe models and 
pitorch models, so you can actually 
process the data that comes in 
more intelligently and take 
preventive measures and perform 
predictive analytics.
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Edge Computing Architecture
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Edge Computing: Three-tier Architecture
Now let's look at this from a different dimension.

There are data sources and by the way edge computing is 
not confined just to IOT, it could be even for non IOT use 
cases. Anything that generates data can be fed into an IOT 
like cameras, clickstream analysis, gaming, etc.

A lot of use cases are relevant for the edge deployments so 
it's basically like a three-tier architecture.

But this three-tier architecture is not the traditional three-tier 
that we are familiar of.

There is no app server, no database, no middle layer, and 
there is no front end, so this is not a traditional three tier 
architecture. NPTEL



Edge Computing Architecture: Data Source Tier

The first tier is the Data Source Tier:

In industrial IOT environment, this 
could be a set of devices that are 
generating the data.

These are nothing but original 
endpoint, from where the data is 
acquired or the origin of the data.NPTEL



Edge Computing Architecture: Intelligence Tier

Then there is an intelligent tier: 

Responsible for running the machine 
learning models.

This intelligent tier cuts across the 
cloud and the edge so there is a very 
well-defined boundary between edge 
and cloud where the training takes 
place on the cloud and the inferencing 
is run on the edge. But collectively, 
this overlap between the cloud and 
the edge is this intelligence layer.

NPTEL



Edge Computing Architecture: Actionable Insight Tier

Then there is an actionable insight 
layer:

Responsible for sending an alert to the 
relevant stakeholders or populating the 
dashboards and showing some 
visualizations or even the edge taking 
an action to immediately shut down a 
faulty machine or controlling an 
actuator and again the actionable 
insight takes place on the edge so this 
is not the physical boundary.
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Edge Computing Architecture: Summary
In Summary, you logically look at the whole 
architecture so there is a data source which is 
the original endpoint from where the data is 
acquired or the origin of the data.

Then there is an intelligence layer where the 
constant training and inferencing takes place.

Then there is an insight layer where you actually 
visualize the outcome from the intelligence and 
also perform actions based on those insights so 
that is one way of visualizing edge computing.
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Lecture Summary

● In depth concepts of Edge Computing
○ Edge makes distributed cloud
○ Edge mimics the public cloud platform capabilities and Move cloud service closer to data-source
○ Edge reduces the latency by avoiding the round-trip and brings in the data sovereignty

● Building Blocks of Edge Computing

● Three tier architecture of Edge Computing
○ Data Source
○ Intelligence

○ Actionalble Insight NPTEL



NPTEL



Introduction to Cloud

Dr. Rajiv Misra
Professor, Dept. of Computer 
Science & Engg.  Indian Institute of 
Technology Patna  rajivm@iitp.ac.in

NPTEL

mailto:rajivm@iitp.ac.in


On completion of this Lecture you will get to know about the following:

● Understanding of today’s cloud scenario

● Different objectives of cloud

● Current limitations of traditional cloud

● Why there is a need of Edge Computing?
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● Highly centralised set of resources
● Compute is going beyond VMs
● Storage is complemented by CDN
● Network stack is programmable
● The Web and Software-as-a-Service
● Infrastructure-as-a-Service
● High-Availability cloud

Current State of Today’s Cloud
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Current State of Today’s Cloud: Highly 
Centralized in Client-Server Architecture

● Cloud computing started as all about 
virtual machines that were running in a 
remote data center (or storage).

● Highly centralized architecture closely 
resembles 90s client-server computing.

● For example cloud (the remote data 
center or the remote infrastructure) 
exposed by Amazon, Microsoft, Google, 
IBM and others is the server and the 
machine from which you are connecting 
to it and consuming the cloud resources 
is the client.
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Current State of Today’s Cloud: Compute is 
going beyond VMs
● Although cloud resembles the 90s client-server 

computing but at the same time compute has 
gone beyond VMs the first generation of cloud 
was all about VM virtual machines.

● Where you could programmatically launch a VM 
and you could SSH into it and take control of  the 
Virtual Machine and install the software.

● But there is a dramatic shift in the compute 
where VMs are slowly getting replaced by 
containers.

● More and more workloads are moving towards 
containers.
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Current State of Today’s Cloud: Storage is 
complemented by CDN
● Another important trend almost all the public 

cloud are in storage offerings.
● Object storage is complemented by a content 

delivery network today.
● Whenever you put an object in a bucket or a 

container of the public cloud storage you can 
click a check box to basically replicate and 
cache the data across multiple edge locations 
but this edge is not the edge that we are talking 
about this is the content delivery network where 
it caches the frequently accessed content in a 
set of pop or edge locations. 
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Current State of Today’s Cloud: Network 
stack is programmable
● Finally network has become extremely programmable today.
● If you look at the hybrid cloud, multi-cloud scenarios and how 

network traffic is getting routed and how load balancers firewalls 
and a variety of network components are configured it is through 
api's and  programmability. 

● The same capability of SDN is enabling hybrid scenarios 
particularly when we look at the combination of software-defined 
network with some of the emerging networking technologies.● These mesh they are opening up additional avenues some of the 
very recent trends like Google’s Anthos, IBM cloud private and 
some of the other container based hybrid cloud platforms are 
heavily relying on the programmable Network stack and also a 
combination of SDN with service mesh.● This is the current state of the cloud and these trends represent 
how the cloud is currently being consumed or how it is delivered to 
customers but cloud is going through a huge transformation. 
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Multiple waves of innovation in Cloud: Pass 
to IOT

● Initially cloud was all about compute storage and network resources globally 
available highly centralized set of resources because cloud made compute and 
storage extremely cheap and affordable lot of industrial customers and 
enterprises started connecting devices to the cloud.

● The data that was not persisted or aggregated or acquired is now streamed to 
the cloud because it is extremely cheap to store data in the cloud.

● So a lot of companies and lot of industrial environments started to take 
advantage of the cloud by streaming the data coming from a variety of sensors 
and devices.

● Also use the cheaper compute power to process those data streams and make 
sense out of the raw data generated these sensors and devices and that was 
the next big shift in the cloud this was IOT pass.NPTEL



Challenges for IOT-Pass

● If you look at azure IOT, Google Cloud IOT, AWS IOT core all of  them 
essentially give you a mechanism a platform to connect devices and store data 
and process it in the cloud but it was not sufficient or it was not enough to 
address a lot of scenarios while cloud enabled capabilities like Big Data and 
IOT.

● Lot of customers were not ready to move the data to the cloud  that is one 
challenge. 

● The second one is the round trip from the devices to the cloud and back to the 
devices was too long and it was increasing the latency in a lot of mission-critical 
industrial IOT scenarios. 

● Sending the data to the cloud and waiting for the cloud to process it and send 
the results back was just not feasible so there had to be a mechanism where 
data could be processed locally and compute comes much closer to the devices 
or the sources of data so that's how IOT led to edge computing and today 
almost every mainstream enterprise IOT platform has a complimentary edge 
offering and associated edge offering and more recently there has been a lot of 
focus on artificial intelligence.
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Cloud for AI-ML
● Today’s cloud has become the logical destination for training and running artificial intelligence 

and machine learning models.● Due to accelerators like GPUs GPUs FPGAs it has become extremely cheap and also 
powerful to train very complex very sophisticated ML models and AI models ● But in most of the scenarios a model that is restrained in the cloud is going to be run in an 
offline environment.● For example, you might have trained an artificial intelligence model that can identify the make 
and model of a car and automatically charge the tall fee for that vehicle when it passes through 
the toll gate now since the toll gates are on highways and freeways with very little connectivity 
and almost with no network access you need to run this model in offline scenario.● So edge  computing became the boundary for running these cloud trained AI models but 
running in an offline mode within the edge so that is how we are basically looking at the 
evolution of cloud and on the waves of innovation. ● So cloud are distributed or rather decentralized platform for aggregating storing and processing 
data with high performance computing IOT brought in all the devices to the cloud with IOT data 
at edge made cloud decentralized by bringing compute closer to the data source and now it is 
AI that is actually driving the next wave where cloud is becoming the de facto platform for 
training the models and edge is becoming the de facto platform for running the models so one 
is called the training the other one is called inferencing.
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Limitations of current cloud system
● AI use cases need real-time responses from the devices they are 

monitoring.

● Cloud-based inference cannot provide this real-time response due to 
inherent issues with latency.

● If edge devices have connectivity issues or no internet connection it 
can not perform well.

● Sufficient bandwidth required to transfer the relevant amount of data in 
a proper time frame can also be an issue.NPTEL



Cloud

Virtual machines running in 
a remote data center or 

storage that was offered in a 
remote data center

IoT

VMs getting replaced by 
containers and workloads are 

moving towards containers

Edge

Data processed locally and 
compute comes much 

closer to the devices or the 
sources of data

Edge 
ML

Training the models 
on edge also called 

inferencing

Evolution of Cloud
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Summary of this lecture
● Today’s cloud is highly Centralized in Client-Server 

Architecture
● Compute is going beyond VMs
● Storage is complemented by CDN
● Network stack is programmable
● Multiple waves of innovation in Cloud
● Challenges for IOT-Pass
● Evolution of Cloud towards Edge ComputingNPTEL
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After completion of this lecture you will knowing the following:

● Different components of IoT platforms
● IoT platforms building blocks which are provided by different 

cloud providers such as microsoft, amazon, google, etc
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Architectural approach for IoT platform 
IoT applications have three components. Things or devices send data or events 
that are used to generate insights. Insights are used to generate actions to help 
improve a business or process.

The equipment or things in a manufacturing plant send various types of data as 
they operate. An example is a milling machine sending feed rate and temperature 
data. This data is used to evaluate whether the machine is running or not, an 
insight. The insight is used to optimize the plant, an action.
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Introduction to IoT platform
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Introduction to IoT platform: Things
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Introduction to IoT platform: Things
Everything in the iot space starts with the things side of the internet of things.

When you talk to people about iot, people probably think about nest doorbells, 
simplisafe appliances, different kinds of things that you can use in your house that 
make your house smart.

All of these things are part of an IoT network so that's very familiar to most people 
and that is true, it is the sensors that goes into making a device work. 

On azure there's a couple of things that you can use to create these things.

One is azure sphere which is like a lightweight operating system that you can put on 
a device and you can use this as an embedded system that will allow you to create 
devices and also have the connected back up to azure and also secure the device 
using that particular specialized operating system.

There's also the azure IoT SDK which is a specialized sdk for interacting with some 
of these other services. But it can be embedded on many different systems and 
supports a lot of different kinds of languages as well.
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Introduction to IoT platform: Cloud IoT
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Introduction to IoT platform: Cloud IoT
Internet of things you also have the iot stack that typically exists on many  
different iot deployments. 

Basically with the iot stack you're going to be managing devices and also 
brokering messages between devices and the cloud. 

This is a management suite that allows you to  scale devices and it provides a 
lot of services for that so you can provision devices you can take devices 
offline to provide security for devices it also  provides a messaging 
infrastructure so  that you can send commands to devices and also receive 
telemetry back from devices.

All of these endpoints and all of this management infrastructure is 
encapsulated in a couple of different  services.
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IoT Central
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Introduction to IoT platform: Cloud IoT
On azure iot central which is  more a software–as-a-service offering that 
encapsulates a lot of the  functionality for ability to create applications in the 
context of an iot central and that allows to have multi-tenancy with different  
devices  to scale not only the devices but also the downstream components of 
things integrating with those devices are serving up.

IOT hub is ageneral purpose tool on azure for managing devices so it has 
device provisioning services that need for scaling up devices, for  putting 
certificates on devices, generating those certificates for messaging from device 
for messaging to a device ie low level and more  functionally oriented.

Azure digital twins, digital twinning is the ability to manage device configuration 
in a suite of software to integrate with azure IOT hub maintains some kind of 
state information about devices in the cloud. 
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Introduction to IoT platform: Hot Path
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Introduction to IoT platform: Hot Path
The data is routed to one of the three different paths. 
ie the hot path or the cold path or the warm path 

Hot path data is data that is processed in real time so as it comes off of the iot 
hub It gets processed within seconds of that happening so the message hits 
the hot path it's processed and then it's presented to something in the 
consumption layer.

The consumption layer is able to consume tt data immediately once it's been 
processed in the hot path. 

You could write the output from a hotpath to a cold storage system that is 
consumed by something like an api. The data is written in real time but the api 
might be querying that data that was written an hour ago.

Processing data in real time such as a dashboard that is constantly monitoring 
things in their present state as comes off of the hot path and into the 
consumption layer.
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Introduction to IoT platform: Hot Path
There are several offerings on azure for hotpath data is going to be event hubs the messaging 
platform

Event hubs can also write messages to a cold storage that can be consumed by cold pass or warm 
path but whatever you get  out of event hubs can be wired up to all these other other kinds of 
processors such as stream analytics which is a platform as a service offering that uses sql to 
transform data aggregate data enrich it 

Then you have functions which can be triggered by event hubs . Then there's azure synapse which 
as synapse allows you to have a full suite of tools at your disposal that do all kinds of things related 
to data processing that is streams.

You can also use kafka which is out of the apache space which is similar to stream analytics in that 
you do real-time data processing but it's more specific in its implementation but it wires up directly 
to event hubs.

Databricks is typically used for more batch style oriented workloads but you can use it for 
streaming 

Combining any number of these can do a lot of different kinds of hotpath aggregations 
transformations queries filters whatever it might be they're all different tools that all do it very 
similar functionality within the azure context.
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Introduction to IoT platform: Cold Path
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Introduction to IoT platform: Cold Path
Coldpath is more batch-oriented, hotpath will process the message as it hits the system 
while coldpath really processes the messages as they accumulate on the system and 
rather being triggered by the message itself what it allows for is data to be accumulated 
over a period of time and then typically on a trigger that is timer based it will then take 
whatever data has been accumulated and process that data in batch.

Then it will write the data back to some kind of cold storage whatever the processing on 
that data might look like 

This typically works as opposed to hot path where you have something like event hubs 
that deliver a message to a processor what you typically do in this case is you land the 
message that as it comes off of iot hub into some kind of what we call cold storage so 
that's typically some kind of database or some kind of data retention system.

Now that could be something like a data lake which would be basically built on top of 
blob storage, you can also do it with blob storage as well but fundamentally data lake is 
built on top of blob  storage in any case.
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Introduction to IoT platform: Cold Path
Azure database as a service offering, use sql databases, use cosmos databases, use 
postgres or mysql putting into some kind of data storage platform. 

Then from there once it's accumulated in that cold storage then the trigger fires and it's 
going to launch whatever processing capability is going to be a part of that and that's 
where something like data data factory or azure synapse or or databricks 

Data factory is software as a service or platform as a service gives the ability to visually 
build workflows inside of data factory that can then take data out of a data  lake or 
database and process it in batches and then write the results back to some kind of 
output.

Now synapse has similar functionality but it is  integrated with the synapse suite on  
azure 

so databricks has the ability to scale and it also integrates with a lot of other different 
offerings on azure including the databases data lakes and many of these other similar 
things  is more of a visual designer for building those kind of workflows.
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Introduction to IoT platform: Warm Path
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Introduction to IoT platform: Warm Path
Between the hot path and the cold path is warm path. It has some kind of 
functionality that might seem similar to hot path and something that might 
seem to similar to cold path.

Tools that are more in line with warmpath such as data lake, factory data, 
factory synapse, databricks use azure functions. 

Even use something  like stream analytics or kafka for some smaller workloads 

The distinction between hot path, warm path and cold path really isn't clear. 

The takeaway from this is that hot path is real-time warm path is going to be 
more often smaller workloads that are going to be rating on smaller time scales 
like 5 minutes, 10 minutes, 15 minutes or an hour and cold path is going to be 
larger workloads that are going to be operating over long periods of time. It 
might be five minutes if there's a lot of data it could be an hour it could be a day 
could be a week.
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Introduction to IoT platform: Presentation
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Introduction to IoT platform: Presentation
The data that was collected by way of things that originated in the iot layer i's 
going to be an aggregated plus some enhancement of that data and some 
filtering of that data. This is going to be things like api’s that are going to be 
consumed by applications, it's going to be reports that people are going to be 
looking at.

That could be some kind of dashboard like report where you're looking at 
telemetry in real time or a query telemetry out of a data set or it could just be 
the raw data itself that you're going to be providing by way of some kind of data 
integration where you're taking some kind of export of the data and then taking 
that into another data system for consumption in that system.

Regardless of whatever is the presentation of that data it's basically the output 
of the data pipelines that  you're employing either as hotpath warm path or cold 
path and the presentation then can take that data and then just make it 
available.
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Introduction to IoT platform: Presentation
So this is going to imply things like security, access controls and those kinds of things, 
also a database as a service offering, so anything that would store the data, that would 
be sql server, cosmos db, maria, azure data explorer there's a lot of different ways to 
present data.

Then you have the reporting services such as power guide, which is kind of the one 
tool that a lot of folks love to use for building dashboards in the microsoft context and it 
can hook up to all kinds of data sources and then it can import those and then use data 
sets that are manipulated inside of the rbi context itself. 

You can use azure functions and azure app services for serving up api’s, so azure 
functions gives you the ability to create http endpoints that can then query back into 
whatever database a source that you want to use or other data sources.

Then azure app services if you want to just write something like an mpd application 
that's going to be exposing some kind of data api that external applications then can 
consume from that data source.

Presentation

Reporting,
Dataset, APIs 
Applications

Azure DBaas,
Power BI,
Synapse,
Azure App 
servicesNPTEL



Introduction to IoT platform: Consumers
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Introduction to IoT platform: Consumers
Now we have consumers, this is not so much an explicit part of the system as 
it is a more implicit part of the system.

Ultimately what ends up in the presentation layer is going to be determined by 
what the external consumers of this data are going to want to be in that 
presentation layer.

So whenever you're designing a system that is going to be presenting data, 
you start with the api in mind and you kind of work back from that to the source 
data and that's really why we have set it up this way.

The reason we included it is because you need to be cognizantly aware of how 
you want this data to show up in whatever is going to be integrated with it 
whether it be a report, whether it be an api or some kind of external data 
integration.
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Introduction to IoT platform: Edge
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Introduction to IoT platform: Edge
On the edge of a network,a local area network a bunch of devices that are emitting elemetry and events and 
doing all those kinds of things that they do and those are ultimately sent back to the cloud.

However, in some cases you might want to put some kind of preprocessor in place that will do some filtering 
and aggregation and some other enhancements on the data closer to where the devices are.

So in a sense the edge is almost a microcosm of everything that happens in the cloud.

You will have things like message buses, data pipelines and other kinds of data enhancement tools that exist 
in that context for the purpose of pre-processing that data before it goes over to the cloud side.

There are two services that are in this space on the edge, the first one is the iot edge.

IoT edge is a platform that is more of an operating system that you can install on an appliance and it's based 
around docker containers. You can do things like stream analytics in that context, it also gives you the ability to 
do message filtering and a number of other things that are a part of that ecosystem. Also the code that you 
want to make and install it by way of a docker container on the iot edge.
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Introduction to IoT platform: Edge
It also offers a message proxy for sending messages from devices to the cloud so that you can basically 
queue those messages up on the IoT edge.

In the event of an internet outage, you can then queue those messages up there and then when the internet is 
restored, it will then forward those onto the cloud so it mitigates against things like losses of message. 

There is local response to events in that particular context as well, so you can build an ML and other kind of 
event management into the iot edge. It can quickly respond to something like a fire, for instance if a device 
reports that there's a fire, you can have a command issued by the iot edge to put that fire out for instance. 

Databox is a similar service but it's not as purpose-built as iot edge and it's basically bringing a lot more the 
ML type workloads that you get in something like ML workspaces.

These kind of things are bringing to the edge as well, so it can do data ingestion and apply ML models. 

In the context of an edge installation rather than having to ship all that data back up to the cloud you can do it 
more intelligently on the edge and do it more quickly, so that you don't have to rely on an internet connection 
and the latency that the cloud introduces.
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Summary: IoT platform
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IoT platform: Things
On one end of the platform we have devices and these 
devices are either sensors or actuators.

Sensors generate data, for example a temperature 
sensor, a humidity sensor, pressure sensor and so on. 
The generated data is going to be acquired and ingested 
into the cloud.

Then there are actuators like switches and bulbs. These 
are the things that you could switch on and switch off that 
have electromechanical interface.

The devices are further connected to the edge and and 
the edge acts as a gateway abstracting the devices that 
are at the lowest level of the spectrum and that actually 
connects to the public cloud.
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IoT platform: Insight
Now on the cloud side we have two touch points for the edge or the devices.

One is the device registry that is primarily used for onboarding the devices and it is the 
repository of devices. 

Every device that is connected to the IOT platform has an identity within the device registry. 

The authentication authorization and the metadata of the devices is stored in the device 
registry. 

Consider an enterprise corporate directory scenario where the device registry like an LDAP 
of devices, you can query to get a lot of metadata and useful information about every device 
connected to the platform.

The public cloud pass also called IOT pass exposes a data ingestion endpoint. This is the 
high velocity, high throughput endpoint where the sensor data gets streamed. 

Typically could be Kafka if you are doing it yourself or it could be as your event hubs or 
Amazon kinases or Google cloud pub/sub so it is the pipe that basically acquires the data 
and passes on to the data processing pipeline 
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IoT platform: Insight
Now both the device registry and data ingestion 
endpoints are connected to a message routing policy.

A message routing policy which will define how this 
data is going to be split between real-time processing 
and batch processing and how the raw data is stored 
and how the processed data is going to be stored.

This is the place where you actually create a rules 
engine or you basically create some kind of policy that 
is going to define how the data flows.

For example, some data needs to be batch process, 
where you first collect and then process, in some 
cases you need to perform real-time stream analytics.

Message
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IoT platform: Insight
The batch processing layer which is also called as cold path analytics and 
stream analytics layer which is also called as hot path analytics. 

In other words, when you are performing queries on data as it comes that is 
called the hot path analytics and if you are storing and processing the data over 
a period of time it is called the cold path analytics. 

Now both the raw data which is going or about to go to either batch processing 
or stream analytics is first persisted in a time series database or an 
unstructured database and even the output from the batch processing and 
stream analytics gets persisted in the the same database.

Then we have storage and databases for persisting the raw sensor data and 
also the process data 
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IoT platform: actions
Now from the same data store we apply machine learning 
algorithms to basically find out anomaly detection and 
predictive analytics from the data that is coming in.

Finally, all of that is fed into an enterprise Business 
Intelligence Platform, where you can actually run dashboards 
and alerts and the entire visualization happens on the data 
warehousing or the business intelligence layer 

These key building blocks of IOT platform you could actually 
map this to Azure or AWS or Google or G predicts, Bosch 
IOT, etc. 

Every platform has a very similar architecture it's almost like 
a blueprint for any public cloud-based IOT platform.
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Lecture Summary

● Detail of components of IoT architecture.
● Concepts of IoT platform building blocks.
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Preface

Content of this Lecture:

• In this lecture, we will discuss the fundamentals of clock
synchronization in IoT and its different algorithms.

• To understand how clocks operate on IoT devices and how
they can be synchronized in an accurate and efficient
fashion.
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Preface
Content of this Lecture:
• Internet of Things (IoT) devices that are wirelessly

connected in mesh networks often need mutual clock time
synchronization, to enable chronological ordering of sensor
events, coordination of asynchronous processes across
devices, or network-wide coordination of actuators.

• We will also discuss the causality and a general framework
of logical clocks and present two systems of logical time,
namely, lamport and vector, timestamps to capture
causality between distributed events of an Internet of things
as a distributed system.
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Synchronizing clocks on Internet of Things (IoT) devices is 
important for applications such as monitoring and real time 
control.

You want to catch a bus at 9.05 am, but your watch is off by 15
minutes

What if your watch is Late by 15 minutes?
• You’ll miss the bus!

What if your watch is Fast by 15 minutes?
• You’ll end up unfairly waiting for a longer time than you

intended

Need of Synchronization

Time and Clock Synchronization



Time and Synchronization
(“There’s is never enough time…”)

Distributed Time
The notion of time is well defined (and measurable) at 
each single location
But the relationship between time at different locations 
is unclear

Time Synchronization is required for: 
Correctness
Fairness

Time and Synchronization
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Example: Cloud based airline reservation system:

Server X receives, a client request, to purchase the last ticket on
a flight, say PQR 123.
Server X timestamps the purchase using its local clock as
6h:25m:42.55s. It then logs it. Replies ok to the client.
That was the very last seat, Server X sends a message to Server Y
saying the “flight is full”.
Y enters, “Flight PQR 123 is full” + its own local clock value, 
(which happens to read 6h:20m:20.21s).
Server Z, queries X's and Y's logs. Is confused that a client
purchased a ticket at X after the flight became full at Y.
This may lead to full incorrect actions at Z

Synchronization in an IoT

Time and Clock Synchronization



End-hosts in Internet based systems (like clouds)
Each have its own clock
Unlike processors (CPUs) within one server or 
workstation which share a system clock.

Processes in internet based systems follow an 
asynchronous model.

No bounds on
– Messages delays
– Processing delays

Unlike multi-processor (or parallel) systems which follow 
a synchronous system model

Key Challenges

Vu PhamCloud Computing and Distributed Systems Time and Clock Synchronization



An asynchronous distributed system consists of a number of
processes.
Each process has a state (values of variables).
Each process takes actions to change its state, which may be 
an instruction or a communication action (send, receive).
An event is the occurrence of an action.
Each process has a large clock – events within a process can 
be assigned timestamps, and thus ordered linearly.
But- in a IoT system, we also need to know the time order
of events across different processes.

Definitions

Vu PhamCloud Computing and Distributed Systems Time and Clock Synchronization



Space-time diagram

Process
Message 
send event

Internal
event

Message
receive event

Figure : The space-time diagram of a distributed execution.
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Each process (running at some end host) has its own clock.
When comparing two clocks at two processes.

Clock Skew = Relative difference in clock values of two
processes.
• Like distance between two vehicles on road.

Clock Drift = Relative difference in clock frequencies (rates)
of two processes

• Like difference in speeds of two vehicles on the road.
A non-zero clock skew implies clocks are not synchronized
A non-zero clock drift causes skew increases (eventually).

If faster vehicle is ahead, it will drift away.
If faster vehicle is behind, it will catch up and then drift away.

Clock Skew vs. Clock Drift
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Clocks that must not only be 
synchronized with each other but also 
have to adhere to physical time are 
termed physical clocks.

Physical clocks are synchronized to an 
accurate real-time standard like UTC 
(Universal Coordinated Time).

However, due to the clock inaccuracy, a 
timer (clock) is said to be working within
its specification if (where constant ρ is the 
maximum skew rate specified by the 
manufacturer)

1 − ρ ≤ ≤ 1 + ρ

Clock Inaccuracies

Figure: The behavior of fast, slow, and 
perfect clocks with respect to UTC.

Vu PhamCloud Computing and Distributed Systems Time and Clock Synchronization



Maximum Drift rate (MDR) of a clock
Absolute MDR is defined to relative coordinated universal 
Time (UTC). UTC is the correct time at any point of time.

• MDR of any process depends on the environment.

Maximum drift rate between two clocks with similar MDR 
is 2*MDR.
Given a maximum acceptable skew M between any pair of 
clocks, need to synchronize at least once every:
M/ (2* MDR) time units.

• Since time = Distance/ Speed.

How often to Synchronize
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Consider a group of processes
External synchronization

Each process C(i)’s clock is within a bounded D of a well-
known clock S external to the group
|C(i)- S|< D at all times.
External clock may be connected to UTC (Universal 
Coordinated Time) or an atomic clock.
Example: Christian’s algorithm, NTP

Internal Synchronization
Every pair of processes in group have clocks within bound D
|C(i)- C(j)|< D at all times and for all processes i,j.
Example: Berkley Algorithm, DTP

External vs Internal Synchronization

Vu PhamCloud Computing and Distributed Systems Time and Clock Synchronization



External synchronization with D => Internal 
synchronization with 2*D.

Internal synchronization does not imply External 
Synchronization.

• In fact, the entire system may drift away from the
external clock S!

External vs Internal Synchronization
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Basic Fundamentals

Set clock to t

External time synchronization
All processes P synchronize with a time server S.

Time
P

What’s the time? Here’s the time t

S
Check local clock to find time t

What’s Wrong:
By the time the message has received at P, time has moved on.
P’s time set to t is in accurate.
Inaccuracy a function of message latencies.
Since latencies unbounded in an asynchronous system, the inaccuracy 
cannot be bounded.

Vu PhamCloud Computing and Distributed Systems Time and Clock Synchronization



(i) Christians Algorithm

P
TimeSet clock to t

P measures the round-trip-time RTT of message exchange 
Suppose we know the minimum P → S latency min1
And the minimum S → P latency min2
Ø Min1 and Min2 depends on the OS overhead to buffer messages, TCP 

time to queue messages, etc.

The actual time at P when it receives response is between 
[t+min2, t + RTT-min1]

RTT

Vu Pham

What’s the time?
Here’s the time t!

S

Check local clock to find time t
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Christians Algorithm

P
TimeSet clock to t

The actual time at P when it receives response is between 
[t+min2, t + RTT-min1]
P sets its time to halfway through this interval

To: t + (RTT+min2-min1)/2
Error is at most (RTT- min2- min1)/2 

Bounded
RTT

Vu Pham

What’s the time?
Here’s the time t!

S

Check local clock to find time t
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Error Bounds
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Allowed to increase clock value but should never 
decrease clock value

–May violate ordering of events within the same 
process.

Allowed to increase or decrease speed of clock

If error is too high, take multiple readings and 
average them

Error Bounds

Vu PhamCloud Computing and Distributed Systems Time and Clock Synchronization



Send request at 5:08:15.100 (T0)
Receive response at 5:08:15.900 (T1)
– Response contains 5:09:25.300 (Tserver) 

Elapsed time isT1 -T0
5:08:15.900 - 5:08:15.100 = 800 msec

Best guess: timestamp was generated
400 msec ago

Set time toTserver+ elapsed time
5:09:25.300 + 400 = 5:09.25.700

Christians Algorithm: Example
If best-case message 
time=200 msec
T0 = 5:08:15.100
T1 = 5:08:15.900
T server= 5:09:25:300
Tmin = 200msec
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(ii) NTP: Network time protocol
(1991, 1992) Internet Standard, version 3: RFC 1305
NTP servers organized in a tree.
Each client = a leaf of a tree.
Each node synchronizes with its tree parent

Primary servers

Secondary servers

Tertiary servers

Client
Vu PhamCloud Computing and Distributed Systems Time and Clock Synchronization



NTP Protocol

Parent

Let’s start protocol
Message 1

Message 1 recv time tr1
Message 2 send time ts2

Time
Child

Message 2 recv time tr2

Message 1 send time ts1

Message 2
ts1, tr2
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Offset o = (tr1-tr2 + ts2- ts1)/2
Let’s calculate the error. 
Suppose real offset is oreal

Child is ahead of parent by oreal. 
Parent is ahead of child by –oreal.

Suppose one way latency of Message 1 is L1. 
(L2 for Message 2)
No one knows L1 or L2!
Then

tr1 = ts1 + L1 + oreal 
tr2 = ts2 + L2 – oreal

Why o = (tr1-tr2 + ts2- ts1)/2 ?
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Then
tr1 = ts1 + L1 + oreal. 
tr2 = ts2 + L2 – oreal.

Subtracting second equation from first
oreal = (tr1-tr2 + ts2- ts1)/2 – (L2-L1)/2
=> oreal = o + (L2-L1)/2
=> |oreal – o|< |(L2-L1)/2| < |(L2+L1)/2|
• Thus the error is bounded by the round trip time (RTT)

Why o = (tr1-tr2 + ts2- ts1)/2 ?
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Gusella & Zatti, 1989
Master poll’s each machine periodically 

Ask each machine for time
– Can use Christian’s algorithm to compensate the network’s 

latency.

When results are in compute, 
Including master’s time.

Hope: average cancels out individual clock’s tendency to run 
fast or slow
Send offset by which each clock needs adjustment to each 
slave

• Avoids problems with network delays if we send a time-stamp.

(iii) Berkley’s Algorithm
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Berkley’s Algorithm : Example
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(iv) DTP: Datacenter Time Protocol

ACM SIGCOMM 2016

DTP uses the physical layer of network 
devices to implement a decentralized clock 
synchronization protocol.
Highly Scalable with bounded precision!

– ~25ns (4 clock ticks) between peers
– ~150ns for a datacenter with six hops
– No Network Traffic
– Internal Clock Synchronization

End-to-End: ~200ns precision!
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DTP: Phases

(one-way delay)
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INIT phase: The purpose of the INIT phase is to measure the one-way 
delay between two peers. The phase begins when two ports are 
physically connected and start communicating, i.e. when the link 
between them is established.
Each peer measures the one-way delay by measuring the time between 
sending an INIT message and receiving an associated INIT-ACK message,
i.e. measure RTT, then divide the measured RTT by two.

DTP: (i) Init Phase
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DTP: (ii) Beacon Phase
BEACON phase: During the BEACON phase, two ports periodically exchange 
their local counters for resynchronization. Due to oscillator skew, the offset 
between two local counters will increase over time. A port adjusts its local 
counter by selecting the maximum of the local and remote counters upon 
receiving a BEACON message from its peer. Since BEACON messages are 
exchanged frequently, hundreds of thousands of times a second (every few 
microseconds), the offset can be kept to a minimum.
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DTP Switch
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DTP provides bounded precision and scalability

Bounded Precision in hardware
– Bounded by 4T (=25.6ns, T=oscillator tick is 6.4ns)
– Network precision bounded by 4TD 

D is network diameter in hops

Requires NIC and switch modifications

DTP Property

Vu PhamCloud Computing and Distributed Systems Time and Clock Synchronization



We still have a non-zero error!

We just can’t seem to get rid of error
Can’t as long as messages latencies are non-zero.

Can we avoid synchronizing clocks altogether, and 
still be able to order events ?

But Yet…
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To order events across processes, trying to synchronize 
clocks is an approach.
What if we instead assigned timestamps to events that 
were not absolute time ?
As long as those timestamps obey causality, that would 
work

If an event A causally happens before another event B, then 
timestamp(A) < timestamp (B)
Example: Humans use causality all the time
• I enter the house only if I unlock it
• You receive a letter only after I send it

Ordering events in a distributed system
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Proposed by Leslie Lamport in the 1970s.
Used in almost all distributed systems since then
Almost all cloud computing systems use some 
form of logical ordering of events.

Leslie B. Lamport (born February 7, 1941) is an American computer
scientist. Lamport is best known for his seminal work in distributed
systems and as the initial developer of the document preparation
system LaTeX. Leslie Lamport was the winner of the 2013 Turing
Award for imposing clear, well-defined coherence on the seemingly
chaotic behavior of distributed computing systems, in which several
autonomous computers communicate with each other by passing
messages.

Logical (or Lamport) ordering
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Lamport’s research contributions have laid the foundations of the theory of 
distributed systems. Among his most notable papers are

“Time, Clocks, and the Ordering of Events in a Distributed System”, which received the PODC 
Influential Paper Award in 2000,
“How to Make a Multiprocessor Computer That Correctly Executes Multiprocess Programs”,which
defined the notion of Sequential consistency,
“The Byzantine Generals' Problem”,
“Distributed Snapshots: Determining Global States of a Distributed System” and 
“The Part-Time Parliament”.

These papers relate to such concepts as logical clocks (and the happened-before 
relationship) and Byzantine failures. They are among the most cited papers in the 
field of computer science and describe algorithms to solve many fundamental 
problems in distributed systems, including:

the Paxos algorithm for consensus,
the bakery algorithm for mutual exclusion of multiple threads in a computer system that require
the same resources at the same time,
the Chandy-Lamport algorithm for the determination of consistent global states (snapshot), and 
the Lamport signature, one of the prototypes of the digital signature.

Lamport’s research contributions
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Logical (or Lamport) Ordering(2)

Define a logical relation Happens-Before among pairs of events
Happens-Before denoted as ®
Three rules:

1. On the same process: a ®b, if time(a) < time(b) (using the 
local clock)

2. If p1 sends m to p2: send(m) ® receive(m)
3. (Transitivity) If a ®b and b ® c then a ® c

Creates a partial order among events
Not all events related to each other via®
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Example 1:

P2

Time
P1

P3

Instruction or step

Message

A B C D E

E F G

H I J
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Example 1: Happens-Before

P2

Time
P1

P3

Instruction or step

Message

A B C D E

E F G

H I J

• A à B
• B à F
• A à F
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Example 2: Happens-Before

P2

Time
P1

P3

Instruction or step

Message

A B C D E

E F G

H I J

• H à G
• F à J
• H à J
• C à J
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Lamport timestamps
Goal: Assign logical (Lamport) timestamp to each event 
Timestamps obey causality
Rules

Each process uses a local counter (clock) which is an integer
• initial value of counter is zero

A process increments its counter when a send or an 
instruction happens at it. The counter is assigned to the 
event as its timestamp.
A send (message) event carries its timestamp

For a receive (message) event the counter is updated by

max(local clock, message timestamp) + 1
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Example

P2

Time

Instruction or step

P1

P3

Vu Pham

Message
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P2

Time

Instruction or step

P1

P3

0

0

0

Initial counters (clocks)

Lamport Timestamps
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Message
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P2

Time

Instruction or step

P1

P3

ts = 1

ts = 1
Message send

Message carries 
ts = 1

0

0

0

Lamport Timestamps

Vu Pham

Message
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P2

Time

Instruction or step

P1

P3

1

1

Message carries 
ts = 1

ts = max(local, msg) + 1
= max(0, 1)+1

= 2

0

0

0

Lamport Timestamps

Vu Pham

Message
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P2

Time

Instruction or step

P1

P3

1

1

2
Message carries 

ts = 2

2

max(2, 2)+1
=3

0

0

0

Lamport Timestamps

Vu Pham

Message
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P2

Time

Instruction or step

P1

P3

1

1

2

2 3 4

3

max(3, 4)+1
=5

0

0

0

Lamport Timestamps

Vu Pham

Message
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P2

Time

Instruction or step

P1

P3

1

1

2

2 3 4

3 5 6

72

0

0

0

Lamport Timestamps

Vu Pham

Message
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Obeying Causality

P2

Time

P1

P3

Instruction or step

Message

2

6

7

A 

1

B 
2

C 

3

D E
5

• A à B :: 1 < 2
• B à F :: 2 < 3

E F 
3

G
4

H 

1
I J
2

0

0

0

Vu Pham

• A à F :: 1 < 3
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P2

Time

P1

P3

Instruction or step

Message

2

6

7

A 

1

B 
2

C 

3

D E
5

E F 
3

G 
4

H 

1

I J
2

H à G :: 1 < 4
F à J :: 3 < 7
H à J :: 1 < 7

0

0

0

Obeying Causality (2)

Vu Pham

C à J :: 3 < 7
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Not always implying Causality

P2

Time

P1

P3

Instruction or step

Message

2

2

6
A B

1

C

3

D E
5

E F 
3

G 
4

I J 
7

H 

1

• ? C à F ? :: 3 = 3
• ? H à C ? :: 1 < 3
• (C, F) and (H, C) are pairs of

concurrent events

2

0

0

0
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Concurrent Events

A pair of concurrent events doesn’t have a causal path 
from one event to another (either way, in the pair)
Lamport timestamps not guaranteed to be ordered or 
unequal for concurrent events
Ok, since concurrent events are not causality related!

Remember:

E1 à E2 Þ timestamp(E1) < timestamp (E2), BUT 
timestamp(E1) < timestamp (E2) Þ

{E1 à E2} OR {E1 and E2 concurrent}

Vu PhamCloud Computing and Distributed Systems Time and Clock Synchronization



Vector Timestamps

Used in key-value stores like Riak
Each process uses a vector of integer clocks 
Suppose there are N processes in the group 1…N 
Each vector has N elements
Process i maintains vector Vi [1…N]
jth element of vector clock at process i, Vi[j], 
knowledge of latest events at process j

is i’s
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Assigning Vector Timestamps

Incrementing vector clocks
1. On an instruction or send event at process i, it increments 

only its ith element of its vector clock
2. Each message carries the send-event’s vector timestamp 

Vmessage[1…N]
3. On receiving a message at process i:

Vi[i] = Vi[i] + 1

Vi[j] = max(Vmessage[j], Vi[j]) for j ≠ i
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Example

P2

Time

P1

P3

Instruction or step

Message

A B C D E

E F G

H I J
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Vector Timestamps

P2

Time

P1 (0,0,0)

(0,0,0)

P3
(0,0,0)

Initial counters (clocks)
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(0,0,0) (1,0,0)

(0,0,0)

(0,0,0)
Message(0,0,1) 
(0,0,1)

P2

Time

P1

P3

Vector Timestamps
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Time

P1(0,0,0) (1,0,0)

P2
(0,0,0) (0,1,1)

P3
(0,0,0)

Message(0,0,1) 
(0,0,1)

Vector Timestamps
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P2

Time

P1
(0,0,0)

P3

(1,0,0) (2,0,0)
Message(2,0,0)

(0,0,0) (0,1,1) (2,2,1)

(0,0,0) (0,0,1)

Vector Timestamps
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P1
(0,0,0) (1,0,0) (2,0,0) (3,0,0) (4,3,1) (5,3,1)

Time

P2
(0,0,0) (0,1,1) (2,2,1) (2,3,1)

P3
(0,0,0) (0,0,1) (0,0,2) (5,3,3)

Vector Timestamps
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VT1 = VT2,
iff (if and only if)

VT1[i] = VT2[i], for all i = 1, … , N
VT1 ≤ VT2,

iff VT1[i] ≤ VT2[i], for all i = 1, … , N
Two events are causally related iff

VT1 < VT2, i.e.,
iff VT1 ≤ VT2 &

there exists j such that
1 ≤ j ≤ N & VT1[j] < VT2 [j]

Causally-Related
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Two events VT1 and VT2are concurrent
iff

NOT (VT1 ≤ VT2) AND NOT (VT2 ≤ VT1)

We’ll denote this as VT2 ||| VT1

… or Not Causally-Related
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Obeying Causality

• A à B :: (1,0,0) < (2,0,0)
• B à F :: (2,0,0) < (2,2,1)
• A à F :: (1,0,0) < (2,2,1)

P2

P1

P3

(1,0,0) (5,3,1)
Time

(0,0,0) (0,1,1)

(0,0,0)

A 

(0,0,0)

B 

(2,0,0)

C 

(3,0,0)
D E

(4,3,1)

E F 
(2,2,1)

G 
(2,3,1)

H 

(0,0,1)

I 

(0,0,2)

J 

(5,3,3)
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P2

(5,3,1)
Time

P3

(0,0,0) (0,1,1)

(0,0,0)

A
P1 (0,0,0) (1,0,0)

B 
(2,0,0)

C 
(3,0,0)

D E
(4,3,1)

Obeying Causality (2)

E F 
(2,2,1)

G 
(2,3,1)

H 
(0,0,1)

I 
(0,0,2)

J 
(5,3,3)

• H à G :: (0,0,1) < (2,3,1)
• F à J :: (2,2,1) < (5,3,3)
• H à J :: (0,0,1) < (5,3,3)
• C à J :: (3,0,0) < (5,3,3)
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(5,3,1)
Time

P2
(0,0,0) (0,1,1)

P3
(0,0,0)

A 
P1(0,0,0) (1,0,0)

B 
(2,0,0)

C 
(3,0,0)

D E
(4,3,1)

Identifying Concurrent Events

E F 
(2,2,1)

G 
(2,3,1)

H 
(0,0,1)

I 
(0,0,2)

J 
(5,3,3)

• C & F :: (3,0,0) ||| (2,2,1)
• H & C :: (0,0,1) ||| (3,0,0)
• (C, F) and (H, C) are pairs of concurrent events
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Internet of Things (IoT) devices that are wirelessly connected in
mesh networks often need mutual clock time synchronization, to
enable chronological ordering of sensor events, coordination of
asynchronous processes across devices, or network-wide
coordination of actuators.
Time synchronization: 

Christian’s algorithm 
Berkeley algorithm 
NTP
DTP
But error a function of RTT

Can avoid time synchronization altogether by instead assigning 
logical timestamps to events

Conclusion
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After Completion of this lecture you will knowing the following:

● Issues in traditional IoT platform
● How edge ML addresses the issues of IoT platform?
● Work flow of edge ML 
● Advantages and applications of edge ML

NPTEL



Recapitulate: Internet of Things
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Recapitulate:  Traditional IoT platform 

Once the edge device is connected to azure IoT hub service, different custom code modules are developed. 
One to capture incoming data and send that to the custom vision module and another one to manage, control 
and get the score out to display output of the model and the last one is a custom vision model which is used 
to provide the insight.
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Recapitulate: Limitation of traditional IoT platform

Poor internet connection, when the internet is down the system fails. For example, if a 
smart fire alarm system just detect fires when internet connection is up, then it fails in 
performing its task. 

Data gravity, IoT devices create lots of data that demand more way to find the insights 
locally on a device than shipping all of the data to the cloud. For example, a smart 
doorbell, you don't want to stream video to the cloud 24-7 just to identify faces for the 
two minutes that someone is in front of your door, you would rather do that, locally on 
the smart doorbells. 

Real time responses, as opposed to near real time responses that you cannot get by 
sending data to the cloud finding insights and then sending the actions back down.NPTEL



ML on cloud

Remote monitoring and control

Merging remote data across multiple 
IoT devices

Near Infinite storage to train machine 
learning and other advanced ML 
models

Low latency tight control loops require near real-
time response

Pre-process data on premise

Intelligence on edge

Offline operations

Data privacy and IP protection

ML on EdgeVs
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Recapitulate: IOT-Edge: Bringing machine learning to edge for IoT

Once the IoT device fetches the workload description from cloud, then whenever the device receives his 
deployment manifest from the IoT hub service, it understands that it should go fetch those two containers 
i.e. action and things.
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Enabling Intelligence at Edge layer for IOT
To manage the increasing amount of data that is generated by the devices, sensors, most of 
the business logic is now applied at the edge instead of the cloud to achieve low-latency and 
have faster response time for IOT devices using Machine learning at edge.

Edge layer is delivering three essential capabilities
1. local data processing, 
2. filtered data transfer to the cloud and 
3. faster decision-makingNPTEL



Enabling Intelligence at Edge layer for IOT
Local data processing:
● In order to deal with increasing amount of data generated by sensors, most of the 

business logic is now deployed at the edge layer instead of cloud to ensure low-latency 
and faster response time.  

● Only a subset of the data generated by sensors is sent to the cloud after aggregating and 
filtering the data at the edge.

Filtered data transfer to cloud:
● This Edge Computing approach significantly saves the bandwidth and cloud storage.

Faster decision-making:
● AI has enabled new capabilities for edge computing. Since most of the decision-making is 

now taking advantage of artificial intelligence, the edge layer is becoming the perfect 
destination for deploying machine-learning models trained in the cloud.
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Performance vs Cost trade-off in IOT-Edge Platforms
ML implementation on edge heavily depends on specialized processors that complement the CPU. 
There’s no conventional CPU can increase the speed of training ML model. 

To bridge the gap between the cloud and edge, innovations in chip designs offers purpose-built 
accelerator that speed up model inferencing significantly. Chip manufacturers such as Qualcomm, 
NVIDIA and ARM have launched specialized chips that speed up the execution of ML-enabled 
applications.

These modern processors GPUs assist the CPU of the edge devices by taking over the complex 
mathematical calculations needed for running deep learning models, accelerate the inference 
process. 

This result in faster prediction, detection and classification of data ingested to the edge layer. 

The solutions like Microsoft Azure IoT Edge runtime and the Qualcomm Neural Processing SDK for 
ML makes it possible to take models trained in the cloud and run hardware-accelerated inference at 
the intelligent edge.
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Training: Involves the use of a 
deep-learning framework (e.g., 
TensorFlow) and training 
dataset. IoT data provides a 
source of training data that data 
scientists and engineers can 
use to train machine learning 
models for a variety of use 
cases, from failure detection to 
consumer intelligence. 

Inference: Inference refers to 
the process of using a trained 
machine learning algorithm to 
make a prediction. IoT data can 
be used as the input to a 
trained machine learning  
model, enabling predictions that 
can guide decision logic on the 
device, at the edge gateway or 
elsewhere in the IoT system.
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While we may touch many aspects of 
a general machine learning workflow.

This lecture session is not intended 
as an in-depth introduction to 
machine learning.

We intend to illustrate the process of 
creating and using a viable model for 
IoT data processing.

ML on edge IoT
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The process begins by collecting training data.

In some cases, data has already been collected 
and is available in a database, or in form of data 
files.

In other cases, especially for IoT scenarios, the 
data needs to be collected from IoT devices and 
sensors and stored in the cloud.

ML on edge IoT: Collect training data
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In most cases, the raw data as collected from devices 
and sensors will require preparation for machine 
learning.
This step may involve data clean up, data reformatting, 
or preprocessing to inject additional information machine 
learning can key off.
Data preparation involves calculating explicit label for 
every data point in the sample based on the actual 
observations on the data.
This information allows the machine learning algorithm 
to find correlations between actual sensor data patterns 
and the expected results. This step is highly domain-
specific.

ML on edge IoT: Prepare data & Experiment
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Based on the prepared data, we can now 
experiment with different machine learning 
algorithms and parameterizations to train models 
and compare the results to one another.
In this case, for testing we compare the predicted 
outcome computed by the model with the real 
outcome observed for a IOT Application.
In Azure Machine Learning, this be can done in the 
different iterations of models that is  created in a 
model registry.

ML on edge IoT: Build a machine learning model

Build a machine learning model
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Based on the prepared data, we can now 
experiment with different machine learning 
algorithms and parameterizations to train models 
and compare the results to one another.
In this case, for testing we compare the predicted 
outcome computed by the model with the real 
outcome observed for a IOT Application.
In Azure Machine Learning, this be can done in the 
different iterations of models that is  created in a 
model registry.

ML on edge IoT: Deploy the machine learning model
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Our work is not done once the model is deployed. In many cases, we want to continue 
collecting data and periodically upload that data to the cloud.
We can then use this data to retrain and refine our model, which we then can redeploy to IoT 
Edge.

ML on edge IoT: Maintain and refine the model
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Edge ML Platform (SaaS)

Once the edge device is connected to azure IoT hub service, two custom code modules are developed. 

One to capture incoming data and send that to the custom vision module and another one to manage, 
control and get the score out to display output of the model and the last one is a custom vision model which 
is used to provide the insight.
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Edge ML Platform: Insight-Container
Step 1: Package the data transform, insight and 
action into containers.

Now, write those three modules and package them 
as docker containers
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Edge ML Platform: Docker
Step 2: Put the containers to container registry.

Push all those docker containers into container 
registry
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Edge ML Platform: Cloud IOT-HUB
Step 3: Define a workload description in the cloud.

Then, write a deployment manifest which is also 
called as the workload description that deploy 
those three modules.
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Edge ML Platform: Edge Run-time Manifestation

Step 4: Target a IoT edge runtime on edge device.

The edge device is running its runtime that's 
appear because it's right hooked up to specific 
instance of it.
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Edge ML Platform: Migrating Workload
Step 5: Shift the workload description to the target 
IoT edge runtime on edge device.

Whenever the device receives his deployment 
manifest from the IoT hub service, it understands 
that it should go fetch those three containers.
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Edge ML Platform: Enabling Edge 
Step 6: The target IoT edge runtime download the 
correct work load from the cloud and start them up 
using container registry and runs on the edge 
device.

That's a workload that it will bring down from the 
cloud to the local device
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Azure IoT Hub
Azure iot hub allows for bi-directional communication between the cloud and iot devices 

Also, allows developers to take advantage of this information to provide insights monitoring 
and develop custom solutions for their iot platform.
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Azure IoT Hub: key characteristics
Manages service for bi-directional communication: it is a managed service for bi-directional 
communication between the cloud and iot devices.

Platform as a service (Paas): it's a platform as a service offering in azure for iot development.

Highly secure, scalable and reliable: it's a highly secure, scalable and reliable service for iot 
devices.

Integrates with lots of azure services: perfectly integrates with a lot of azure services.

Programmable SDK for popular languages: you do not need to learn any new language to take 
advantage of iot hub for their development purposes.

Multiple protocols: it support for multiple common standards on the market when it comes to 
communication protocols NPTEL



IoT-Edge: key characteristics
The Camera Capture Module handles scanning items using a camera. It then calls the Image Classification module to 
identify the item, a call is then made to the “Text to Speech” module to convert item label to speech, and the name of 
the item scanned is played on the attached speaker. 

The Image Classification Module runs a Tensorflow machine learning model that has been trained with images of 
fruit. It handles classifying the scanned items. 

The Text to Speech Module converts the name of the item scanned from text to speech using Azure Speech Services. 

A USB Camera is used to capture images of items to be bought. 

A Speaker for text to speech playback. 

Azure IoT Hub (Free tier) is used for managing, deploying, and reporting Azure IoT Edge devices running the solution. 

Azure Speech Services (free tier) is used to generate very natural speech telling the shopper what they have just 
scanned. 

Azure Custom Vision service was used to build the fruit model used for image classification.
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Services offered by IoT Edge: 
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Azure IoT Edge in Action
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Azure IoT edge: Functionalities
● Target workload at the correct type of device

○ Once the workload description sent down to the edge, the run time will download the correct work 
load from the cloud and start them up and running. 

● Create workload which can include high value ML
○ This results in the custom code, machine learning model, and business logic all running locally 

independent of cloud connection and also all of those values of edge analytics. 

● Run those workload locally, in disconnected manner
○ The runtime is smart enough to detect if the workload is trying to send messages to the cloud while it 

doesn't have internet connection, the runtime will catch those messages and sync them with the 
cloud once the internet is up.

● Monitor the health of the workloads
○ Azure IoT edge ensures that the work loads continue to run and report status sent back to the cloud. 

Reporting the status back to the cloud allows to understand if there is any issues issues in the 
deployment and take preventive actions.
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Advantages of Edge ML
Reduced latency: Transfer of data back & forth from the cloud takes time. Edge ML reduces 
latency by processing data locally (at the device level).

Real-time analytics: Real-time analytics is a major advantage of Edge Computing. Edge ML 
brings high-performance computing capabilities to the edge, where sensors and IoT devices are 
located.

Higher speeds: Data is processed locally which significantly improves processing speed as 
compared to cloud computing

Reduced bandwidth requirement: Edge ML processes the data locally on the device itself, 
reducing the cost of internet bandwidth and cloud storage.

Improved data security: Edge ML systems perform the majority of data processing locally i.e. on 
the edge device itself. This greatly reduces the amount of data that is sent to the cloud and other 
external locations.
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Advantages of Edge ML
Scalability: Edge ML typically processes large amounts of data. If you have to 
process video image data from many different sources simultaneously, 
transferring the data to a cloud service is not required.

Improved reliability: Higher levels of security combined with greater speed 
produce greater the reliability of Edge ML System.

Reduced cost: ML processing is working on the edge of the device so it is 
highly cost-cost efficient because only processed, data required or valuable 
data is sent to the cloud.

Reduced power: Edge ML processes data at the device level so it saves 
energy costs NPTEL



Applications of Edge ML
Manufacturing: rapid collection and analysis of data produced by edge-based devices and sensors.

Energy (Oil and Gas): real-time analytics with information processing in remote locations.

Industrial IoT: Inspection of devices/machines is done via ML algorithms instead of human beings 
performing manual inspections can save time & money.

Autonomous Vehicles: fast data processing that could take milliseconds to perform which could 
reduce collision.

Healthcare: to process all patient monitoring device data locally like glucose monitors, cardiac 
trackers, blood pressure sensors, etc.

Smart Homes: data movement time can be reduced and also the sensitive information can be 
processed only on edge. NPTEL



Lecture Summary
● Limitations of IoT platform
● How edge ML addresses the issues of IoT platform?
● Work flow of edge ML 
● Advantages and applications of edge ML
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After Completion of this lecture you will knowing the following:

● Basics of computer vision in ML
● Different techniques of computer vision like image classification, 

detection, segmentation, etc
● Object detection models like RCNN, Fast RCNN, Faster RCNN, 

SDD, YOLO
● Azure compute vision as SaaSNPTEL



Computer Vision: Introduction

Computer vision is a sub branch 
of machine learning which deals 
with giving computers the ability 
to see and interpret and extract 
information from images and 
videos, videos can be seen as 
collection of images. NPTEL



How Computer Vision Works?
To train a computer vision model, you essentially feed some thousands of images of cats and it's going to do 
some complex mathematics and feature extraction etc in the background. 

Based on that it learns some key understanding or properties that define cats.

Thousands of cats images

Input

Feature extraction Output

NPTEL



Computer Vision: Data Analytics View
With every machine learning model, the model is not 
only the important part. 

The fundamental fact that's going to determine how 
good your model is the data you feed it. 

Today, this is another point that we want to focus on is 
the fact that your model is only as good as your data. 

So one of the key things that we're going to focus on 
today’s lecture is how to make sure that our data is 
good when we're building computer vision models.NPTEL



Computer Vision: Techniques
Computer vision deals with all the problems related to images and videos. There's a lot of techniques, 
fundamentals or  problems that can be tackled with computer vision. A few of them includes image 
classification, image detection, image segmentation, pattern detection and object localisation. So object 
detection and image classification are the two things that we're going to talk about today and we're going to 
go into some of the predictive model build for an object detection model.
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Computer Vision: Architecture
A typical end-to-end pipeline of computer vision architecture is shown below. 

Input data, the images that you want to train your model on, but those images might be coming from a lot of different sources.NPTEL



Computer Vision Architecture: Pre-processing
The second and important step is pre-processing of input data.

Machine learning depends on standardization, means you need to pre-process 
input images to make sure that they're all of the same size.

There might be some noise in the images, all of that needs to be dealt with 
before the image fed into the model.

If it's not done correctly, the model might learn noise or other features that are 
not good features or it might learn from those that actually mean that your 
model is going to be fundamentally flawed. 

Therefore, pre-processing is essentially it's very important that need to be.NPTEL



Computer Vision Architecture: Data labeling
The third step is labeling your data. 

For an object detection problem, you have images with different 
objects, let's say if you have an image with a cat and a dog, you would 
need to label that specific part of the image where there's a cat and a 
dog.

This label or tags to that specific area where there's a dog or cat, so 
this is essentially labeling and this needs to be done as well.
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Computer Vision Architecture: Feature extraction and prediction

Then feature extraction and prediction part performed by a machine 
learning model. 

These are part of the model training, the model learns about what 
features are present, it extracts the features.

And if features are relevant from the images, then those features are 
learned along with the patterns and later the model uses it to build a 
sort of rules for itself and these rules are used to predict the output.NPTEL



Computer Vision: Object Detection Models

The field of object detection is 
not as new as it may seem. In 
fact, object detection has 
evolved over the past 20 years. 
Popular deep learning algorithm 
that achieved remarkable 
results in this domain are:
● RCNN
● Fast RCNN 
● Faster RCNN
● YOLO 
● SSD (Single Shot Detector)
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Object Detection Model: RCNN
R-CNN, or Region-based Convolutional Neural 
Network, consisted of 3 simple steps:

1. Scan the input image for possible objects using 
an algorithm called Selective Search, 
generating ~2000 region proposals 

2. Run a convolutional neural net (CNN) on top of 
each of these region proposals 

3. Take the output of each CNN and feed it into 
a) an SVM to classify the region and b) a linear 
regressor to tighten the bounding box of the 
object, if such an object exists.

In other words, we first propose regions, then extract 
features, and then classify those regions based on 
their features. In essence, we have turned object 
detection into an image classification problem. R-
CNN was very intuitive, but very slow.
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Object Detection Model: Fast RCNN
As we can see from the image, we are now 
generating region proposals based on the last 
feature map of the network, not from the original 
image itself. As a result, we can train just one CNN 
for the entire image. 

In addition, instead of training many different SVM’s 
to classify each object class, there is a single 
softmax layer that outputs the class probabilities 
directly. Now we only have one neural net to train, 
as opposed to one neural net and many SVM’s. 

Fast R-CNN performed much better in terms of 
speed. There was just one big bottleneck remaining: 
the selective search algorithm for generating region 
proposals.
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Object Detection Model: Faster RCNN
The main insight of Faster R-CNN was to replace the slow 
selective search algorithm with a fast neural net. Specifically, it 
introduced the region proposal network (RPN). 

Here’s how the RPN worked: 

● At the last layer of an initial CNN, a 3x3 sliding window 
moves across the feature map and maps it to a lower 
dimension (e.g. 256-d) 

● For each sliding-window location, it generates multiple 
possible regions based on k fixed-ratio anchor boxes 
(default bounding boxes) 

● Each region proposal consists of a) an “objectness” score 
for that region and b) 4 coordinates representing the 
bounding box of the region

In other words, we look at each location in our last feature map 
and consider k different boxes centered around it: a tall box, a 
wide box, a large box, etc. For each of those boxes, we output 
whether or not we think it contains an object, and what the 
coordinates for that box are.
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Object Detection Model: SSD
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SSD stands for Single-Shot Detector. Like R-FCN, it provides enormous speed gains over Faster R-CNN, 
but does so in a markedly different manner.

Our first two models performed region proposals and region classifications in two separate steps. First, 
they used a region proposal network to generate regions of interest; next, they used either fully-connected 
layers or position-sensitive convolutional layers to classify those regions. SSD does the two in a “single 
shot,” simultaneously predicting the bounding box and the class as it processes the image. 

Given an input image and a set of ground truth labels, SSD does the following: 

● Pass the image through a series of convolutional layers, yielding several sets of feature maps at 
different scales (e.g. 10x10, then 6x6, then 3x3, etc.) 

● For each location in each of these feature maps, use a 3x3 convolutional filter to evaluate a small set 
of default bounding boxes. These default bounding boxes are essentially equivalent to Faster R-
CNN’s anchor boxes. 

● For each box, simultaneously predict a) the bounding box offset and b) the class probabilities 
● During training, match the ground truth box with these predicted boxes based on IoU. The best 

predicted box will be labeled a “positive,” along with all other boxes that have an IoU with the truth 
>0.5.

Object Detection Model: SSD
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Object Detection Model: YOLOv3
You Only Look Once or more popularly known as YOLO is one of the fastest real-time object 
detection algorithm (45 frames per second) as compared to the R-CNN family (R-CNN, Fast R-CNN, 
Faster R-CNN, etc.) 

The R-CNN family of algorithms uses regions to localise the objects in images which means the 
model is applied to multiple regions and high scoring regions of the image are considered as object 
detected. 

Instead of selecting some regions, YOLO approaches the object detection problem in a completely 
different way. 

It forwards the entire image to predict bounding boxes and their probabilities only once through the 
neural network.

The authors have also improved the network by making it bigger and taking it towards residual 
networks by adding shortcut connections.
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Object Detection Model: YOLOv3
First, it divides the image into a 13×13 grid of cells. The size of these 169 cells varies depending on the input size. For a 
416×416 input size, the cell size was 32×32. Each cell is responsible for predicting the number of boxes in image.

For each bounding box, the network also predicts the confidence that the bounding box actually encloses an object, and the 
probability of the enclosed object being a particular class.

Most of these bounding boxes are eliminated because their confidence is low or because they are enclosing the same object 
as another bounding box with a very high confidence score. This technique is called non-maximum suppression.
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Object Detection Models: Performance Metric
An overview of the most popular metrics used to compare performance of different deep learning models:

Intersection Over Union (IOU)

Intersection Over Union (IOU) is a measure based on Jaccard Index that evaluates the overlap between two 
bounding boxes. IOU is given by the overlapping area between the predicted bounding box and the ground 
truth bounding box divided by the area of union between them:
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Object Detection Models: Performance Metric
Precision:

Precision is the ability of a model to identify only the relevant objects. It is the percentage of correct positive 
predictions and is given by:

Recall:

Recall is the ability of a model to find all the relevant cases (all ground truth bounding boxes). It is the 
percentage of true positive detected among all relevant ground truths and is given by:

True Positive (TP): A correct detection. Detection with IOU ≥ threshold 
False Positive (FP): A wrong detection. Detection with IOU < threshold 
False Negative (FN): A ground truth not detected
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Computer Vision: SaaS Architecture
A computer vision architecture can easily be taken up 
by a cloud service that is running a computer vision 
model in the cloud. 

A SaaS is a software as a service that is offered by all 
providers like azure, amazon aws, google cloud. All of 
them offers some variation of these for computer vision 
service. 

In that architecture, all you need to do is you need to 
have your images and upload them and tag them. 
Tagging is vital because you as the domain expert 
know what information is present in the images. 

Once you've uploaded them in the cloud, the model 
training and everything that is completely dependent on 
the cloud provider and fully managed by the cloud 
service provider. 
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Computer Vision: SaaS Architecture
It's extremely easy to scale up your dataset 
and allow you to download the models that 
you've built that can later be used offline. 

Once you've trained and download the model, 
simply use the rest API to query that model and 
get the predictions which is extremely reliable 
and simple. 

The SaaS architecture provided by different 
cloud provider offers similar services. 

There might be fundamental differences in the 
ui or how you are uploading images or the api 
or how you're calling the services but under the 
hood they're doing the same thing.
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SaaS: Azure Custom Vision
Azure Custom Vision is a cloud service used to build and deploy 
computer vision models.

Custom Vision uses a pretty interesting neural network technique 
called transfer learning, which applies knowledge gained from 
solving one problem to a different, but related situation. This can 
substantially decrease the time needed for creating the models.

Features provided by Azure Custom Vision service:
● Train a computer vision model by simply uploading and 

labeling few images.
● Build image classifier model using code-free and code-first 

approach.
● Deploy the model in the cloud on-premise, or on edge 

devices.
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Azure Custom Vision on an IoT Edge device

● Build an image classifier with 

Custom Vision. 

● Develop an IoT Edge module 

that queries the Custom 

Vision web server on device. 

● Send the results of the image 

classifier to IoT Hub. NPTEL



Use Case: Creating an image recognition solution with 
Azure IoT Edge and Azure Cognitive Services
Although there are lots of applications for image recognition but we had chosen 
this application which is a solution for vision impaired people scanning fruit and 
vegetables at a self-service checkout.

Required Components
Raspberry Pi 3B or better, USB Camera, and a Speaker.

Note, the solution will run on a Raspberry Pi 3A+, it has enough processing 
power, but the device is limited to 512MB RAM. A Raspberry Pi 3B+ has 1GB of 
RAM and is faster than the older 3B model. Azure IoT Edge requires an 
ARM32v7 or better processor. It will not run on the ARM32v6 processor found in 
the Raspberry Pi Zero.

Desktop Linux - such as Ubuntu 18.0

This solution requires USB camera pass through into a Docker container 
as well as Azure IoT Edge support. So for now, that is Linux.
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Guide for installing Raspberry Pi
Set up Raspbian Stretch Lite on Raspberry Pi: Be sure to configure the correct Country 
Code in your wpa_supplicant.conf file. 

Azure subscription: If you don’t already have an Azure account then sign up for a free 
Azure account. If you are a student then sign up for an Azure for Students account, no 
credit card required. 

Create an Azure IoT Hub, and an Azure IoT Edge device: Install Azure IoT Edge runtime 
on Raspberry Pi and download the deployment configuration file that describes the Azure 
IoT Edge Modules and Routes for this solution. Open the deployment.arm32v7.json link 
and save the deployment.arm32v7.json in a known location on your computer. 

Install Azure CLI and Azure CLI command line tools: With CLI open a command line 
console/terminal and change directory to the location where you saved the 
deployment.arm32v7.json file. 

Deploy edge Iot to device: The modules will now start to deploy to 
your Raspberry Pi, the Raspberry Pi green activity LED will flicker 
until the deployment completes. Approximately 1.5 GB of Dockers 
modules will be downloaded and decompressed on the Raspberry 
Pi. This is a one off operation.
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Considerations and constraints for the solution
The solution should scale from a Raspberry Pi (running 
Raspbian Linux) on ARM32v7, to my desktop development 
environment, to an industrial capable IoT Edge device such 
as those found in the Certified IoT Edge Catalog. 

The solution needs camera input, uses a USB Webcam for 
image capture as it was supported across all target devices.

The camera capture module needed Docker USB device 
pass-through (not supported by Docker on Windows) so that 
plus targeting Raspberry Pi meant that need to target Azure 
IoT Edge on Linux. 

To mirror the devices plus targeting, ir requires Docker 
support for the USB webcam, so develop the solution on 
Ubuntu 18.04 developer desktop.
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Create Classification model using Azure Custom Vision
The Azure Custom Vision service is a simple way to create an image classification machine learning 
model without having to be a data science or machine learning expert. 

You simply upload multiple collections of labelled images. For example, you could upload a collection of 
banana images and label them as ‘banana’.

It is important to have a good variety of labelled images so be sure to improve your classifier.
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1. Create a project in custom vision service mentioning the project type, classification type and domains.
2. Gather initial data (images) and separate them in different folders.
3. Once data is uploaded, train your model by clicking “Train” button on the navigation bar.

1. When the training is ended, the performance metrics will be shown. Click on the “i” bubble to 
see the meaning of each performance metric.

Create Custom Vision Classification model
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5. Custom Vision offers fluent prediction thresholds adjustment to improve model performance. In our case 
we prefer higher Recall over high Precision. It is important not to lower those thresholds too much as the 
model performance will suffer significantly. E.g., having low probability threshold will lead to increased 
number of false positives. If the model is supposed to be deployed in a production setting, we can’t be 
stopping the production line for every false positive detection produced by the model. 

For the problem that we are working with right now we decided to set our KPIs as follows: 

● The main metric to optimize for is mAP – it cannot be any lower than 85% 
● The Recall and Precision are equally important, and both should stay above 80%

Create Custom Vision Classification model
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Export Custom Vision Classification model
Step 1: From the Performance tab of your Custom Vision project click Export.
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Step 2: Select Dockerfile from the list of available options

Export Custom Vision Classification model
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Step 3: Then select the Linux version of the Dockerfile.

Step 4: Download the docker file and unzip and you have a ready-made Docker solution with a Python Flask REST API. This 
was how the Azure IoT Edge Image Classification module is created in this solution. 

Export Custom Vision Classification model
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Installing the solution
Step 1: Clone the repository for creating an image recognition solution with Azure IoT Edge and Azure 
Cognitive Services. 

Step 2: Install the Azure IoT Edge runtime on your Linux desktop or device (eg Raspberry Pi).

Step 3: Install the following software development tools.

Visual Studio Code 
Plus, the following Visual Studio Code Extensions 

Azure IoT Edge 
JSON Tools useful for changing the “Create Options” for a module. 

Docker Community Edition on your development machine

Step 4: With Visual Studio Code, open the IoT Edge solution you cloned to your developer desktop.
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Building the Solution
Step 1: Pushing the image to a local Docker repository with specifying the localhost.

Step 2: Confirm processor architecture using the Visual Studio Code
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Building the Solution
Step 3: Build and Push the solution to 
Docker by right mouse clicking the 
deployment.template.json file and select 
“Build and Push IoT Edge Solution”.
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Deploying the Solution

When the Docker Build and Push 
process has completed select the Azure 
IoT Hub device you want to deploy the 
solution to. Right mouse click the 
deployment.json file found in the config 
folder and select the target device from 
the drop-down list.
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Monitoring the Solution on the IoT Edge Device

Once the solution has been deployed you can monitor it on the IoT Edge device itself using the 
iotedge list command.
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Monitoring the Solution on the IoT Edge Device
You can also monitor the state of the Azure IoT Edge module from the Azure IoT Hub blade on the 
Azure Portal.
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Monitoring the Solution on the IoT Edge Device
Click on the device from the Azure IoT Edge blade to view more details about the modules running 
on the device.
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Lecture Summary
● Computer Vision
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○ Techniques
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● Objection detection models
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○ Faster-RCNN
○ SSD
○ YOLO

● Azure compute vision as SaaS
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After completion of this lecture you will be knowing the following:

● Introduction to Kubernetes
○ Containers
○ Orchestration

● Concepts of Dockers
● Power of kubernetes to deploy software on edge devices
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Introduction to Kubernetes
Kubernetes is the greek word for helmsman or captain of a ship.

Kubernetes also known as k-8 was built by Google based on their 
experience running containers in production 

It is now an open source project and is one of the best and most 
popular container orchestration technologies out there.

As applications grow to span multiple containers deployed across 
multiple servers, operating them becomes more complex. 

To manage this complexity, Kubernetes provides an open source API 
that controls how and where those containers will run.

To understand kubernetes first we need to understand two things:

● Container and 
● Orchestration NPTEL



Introduction to Kubernetes
Containers are isolated environments, 
have their own processes, services, 
networking interfaces, mounts similar to 
virtual machines except the fact that they 
all share the same operating system 
kernel.

Orchestration consists of a set of tools and 
scripts that can help host containers in a 
production environment. An orchestration 
consists of multiple container hosts that 
can host containers, if one fails the 
application is still accessible through the 
others.
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Introduction to Kubernetes
Kubernetes consists of one computer that gets designated as the 
control plane, and lots of other computers that get designated as 
worker nodes. Each of these has a complex but robust stack making 
orchestration possible,

Kubernetes orchestrates clusters of virtual machines and schedules 
containers to run on those virtual machines based on their available 
compute resources and the resource requirements of each container. 

Kubernetes also automatically manages service discovery, 
incorporates load balancing, tracks resource allocation and scales 
based on compute utilisation. And, it checks the health of individual 
resources and enables apps to self-heal by automatically restarting or 
replicating containers.

Now get familiar with each of the kubernetes components:

● Control plane component
● Worker node component
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Kubernetes: Control plane Components
Etcd:

Etcd is a fast, distributed, and consistent key-value store used 
as a backing store for persistently storing Kubernetes object 
data such as pods, replication controllers, secrets, and services. 

Etcd is the only place where Kubernetes stores cluster state 
and metadata. The only component that talks to etcd directly is 
the Kubernetes API server. All other components read and write 
data to etcd indirectly through the API server. 

Etcd also implements a watch feature, which provides an event-
based interface for asynchronously monitoring changes to keys. 
Once you change a key, its watchers get notified. The API 
server component heavily relies on this to get notified and move 
the current state of etcd towards the desired state.
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Kubernetes: Control plane Components
API Server:

The API server is the only component in Kubernetes that directly interacts with 
etcd. All other components in Kubernetes must go through the API server to 
work with the cluster state, including the clients (kubectl). The API server has 
the following functions: 

Provides a consistent way of storing objects in etcd. 

Performs validation of those objects so clients can't store improperly 
configured objects.

Provides a RESTful API to create, update, modify, or delete a resource. 

Performs authentication and authorization of a request that the client sends. 

Responsible for admission control if the request is trying to create, modify, or 
delete a resource. For example, AlwaysPullImages, DefaultStorageClass, and 
ResourceQuota. 
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Kubernetes: Control plane Components
Controller Manager:

In Kubernetes, controllers are control loops that watch the state 
of your cluster, then make or request changes where needed. 

Each controller tries to move the current cluster state closer to 
the desired state. The controller tracks at least one Kubernetes 
resource type, and these objects have a spec field that 
represents the desired state.

Controller examples:

● Node controller 
● Service controller 
● Endpoints controller 
● Namespace controller
● Deployment controller 
● StatefulSet controller
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Kubernetes: Control plane Components
Scheduler:

The Scheduler is a control plane process that assigns pods to 
nodes. It watches for newly created pods that have no nodes 
assigned. 

For every pod that the Scheduler discovers, the Scheduler 
becomes responsible for finding the best node for that pod to 
run on. 

Nodes that meet the scheduling requirements for a pod get 
called feasible nodes. If none of the nodes are suitable, the pod 
remains unscheduled until the Scheduler can place it. 

Once it finds a feasible node, it runs a set of functions to score 
the nodes, and the node with the highest score gets selected. It 
then notifies the API server about the selected node. They call 
this process binding.
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Kubernetes: Worker node components
Kubelet:

Kubelet is an agent that runs on each node in the cluster and is 
responsible for everything running on a worker node. 

It ensures that the containers run in the pod. 

The main functions of kubelet service are: 

● Register the node it's running on by creating a node resource in
the API server.

● Continuously monitor the API server for pods that got scheduled
to the node.

● Start the pod's containers by using the configured container
runtime.

● Continuously monitor running containers and report their status,
events, and resource consumption to the API server.

● Run the container liveness probes, restart containers when the
probes fail and terminate containers when their pod gets deleted
from the API server (notifying the server about the pod
termination).
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Kubernetes: Worker node components
Service proxy (kube-proxy) :
The service proxy (kube-proxy) runs on each node 
and ensures that one pod can talk to another pod, 
one node can talk to another node, and one 
container can talk to another container. 

It is responsible for watching the API server for 
changes on services and pod definitions to 
maintain that the entire network configuration is up 
to date. 

When a service gets backed by more than one 
pod, the proxy performs load balancing across 
those pods.
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Kubernetes: Worker node components
Container runtime:

There are two categories of container runtimes: 

Lower-level container runtimes: These focus on running containers 
and setting up the namespace and cgroups for containers. 

Higher-level container runtimes (container engine): These focus on 
formats, unpacking, management, sharing of images, and providing 
APIs for developers.

Container runtime takes care of:

● Pulls the required container image from an image registry if it's 
not available locally.

● Prepares a container mount point.
● Alerts the kernel to assign some resource limits like CPU or 

memory limits. 
● Pass system call (syscall) to the kernel to start the container.
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Introduction to Dockers
The most popular container technology out in the market is Docker 
container.

Docker is an open platform for developing, shipping, and running 
applications. 

Docker enables you to separate your applications from your 
infrastructure so you can deliver software quickly. 

With Docker, you can manage your infrastructure in the same ways you 
manage your applications. 

By taking advantage of Docker’s methodologies for shipping, testing, 
and deploying code quickly, you can significantly reduce the delay 
between writing code and running it in production.

Docker provides the ability to package and run an application in a 
loosely isolated environment called a container.
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Docker Architecture
Docker uses a client-server architecture. 

The Docker client talks to the Docker 
daemon, which does the heavy lifting of 
building, running, and distributing your 
Docker containers. 

The Docker client and daemon can run on 
the same system, or you can connect a 
Docker client to a remote Docker daemon.

The Docker client and daemon communicate 
using a REST API, over UNIX sockets or a 
network interface. 

Another Docker client is Docker Compose, 
that lets you work with applications consisting 
of a set of containers.
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Docker Architecture: Components
The Docker daemon:

The Docker daemon listens for Docker API requests and 
manages Docker objects such as images, containers, 
networks, and volumes. A daemon can also communicate 
with other daemons to manage Docker services.

The Docker client:

The Docker client is the primary way that many Docker 
users interact with Docker. When you use commands 
such as docker run, the client sends these commands to 
dockerd, which carries them out. The docker command 
uses the Docker API. The Docker client can communicate 
with more than one daemon.
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Docker Architecture: Components
Docker registries: 

A Docker registry stores Docker images. Docker Hub is a public 
registry that anyone can use, and Docker is configured to look 
for images on Docker Hub by default. You can even run your 
own private registry.

Docker objects: 

When you use Docker, you are creating and using images, 
containers, networks, volumes, plugins, and other objects.

Docker Desktop:

Docker Desktop includes the Docker daemon, the Docker client, 
Docker Compose, Docker Content Trust, Kubernetes, and 
Credential Helper. For more information, see Docker Desktop.
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Power of Kubernetes to deploy software on edge devices
Architecture diagram shows works  flow from the 
cloud through the virtual cubelet through the edge 
provider down to all of your edge devices 

First, the virtual cubelet project lets you create a 
virtual node in your kubernetes cluster, a virtual 
node is not a VM like most other nodes in the 
kubernetes cluster instead it is an abstraction of a 
kubernetes node that is provided by the virtual 
cubelet. 

Backing it, is an IOT hub, it can schedule 
workloads to it and treat it like any other 
kubernetes node.
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Power of Kubernetes to deploy software on edge devices
When workloads are scheduled to this virtual node, 
edge provider comes in and that's depicted.

The edge connector or the edge provider which 
are working in tandem with the virtual cubelet it 
takes the workload specification that comes in from 
kubernetes and converts it into an IOT edge 
deployment.

Then the IOT edge deployment is shipped back to 
the backing IOT hub for this virtual node.

Lastly, the IOT hub in turn pushes this deployment 
down to all the targeted devices.
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Lecture Summary
● Understanding of Kubernetes including

○ Containers
○ Orchestration

● Concepts of Dockers
● Power of kubernetes to deploy software on edge devices
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Lecture Overview
● In this lecture, we combine the Machine Learning (ML) and IoT together.
● The primary objective of this lecture is to introduce the processing of IoT data with machine 

learning, specifically on the edge. 
● While we touch many aspects of a general machine learning workflow, this lecture is not intended 

as an in-depth introduction to machine learning
● We do not attempt to create a highly optimized model for the use case, it just illustrates the 

process of creating and using a viable model for IoT data processing.
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ML Development at IoT Edge
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Machine Learning: Background 
Artificial intelligence (A.I.) is defined as the property of machines that mimic 
human intelligence as characterized by behaviours such as cognitive ability, 
memory, learning, and decision making.

Machine learning is a branch of artificial intelligence (AI) and computer 
science which focuses on the use of data and algorithms to imitate the way 
that humans learn, gradually improving its accuracy.

"Deep" machine learning can use labeled datasets, also known as 
supervised learning, to inform its algorithm, but it doesn’t necessarily 
require a labeled dataset. 

Deep learning can ingest unstructured data in its raw form (e.g., text or 
images), and it can automatically determine the set of features which 
distinguish different categories of data from one another.

The “deep” in deep learning is just referring to the number of layers in a 
neural network.

"Non-deep", machine learning is more dependent on human intervention to 
learn. Human experts determine the set of features to understand the 
differences between data inputs, usually requiring more structured data to 
learn.
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ML for Predictive Maintenance: Example

Using simple machine learning techniques we can create a simple model 
of a machine with normal operating conditions for any application and 
determine the values that fall outside of that normal area.

Example: Train a model for the motor vibration with two sensors namely 
A and B, in normal operating conditions. That means, using normal data 
points, model has good understanding of what the motor vibration value 
could be approximately when the motor is operating in normal mode and 
without any problems. 

Now, let’s say, one day at a random point in time, model observes that 
the value of sensor A is 8, and at the same time, the value for sensor B is 
2. This is clearly an unusual value. The trained model can easily say that 
this new value is not normal and can indicate that there might be 
something wrong with the motor. This is how machine learning works to 
detect the unusual behavior of a machine. NPTEL



Predictive Maintenance: Introduction
In the past, companies have used reactive maintenance, 
which focused on preparing an asset once failures had 
occurred.

Then they moved to preventive maintenance, also known 
as the schedule-based or planned maintenance. This 
refers to performing periodic maintenance based on 
manufacturers' recommendation. The focus was on 
reducing the failures by replacing parts based on worst 
case lifetimes for critical pieces of manufacturing tooling.

Next came condition-based maintenance methods, which repairs or replaces equipment when they begin to show 
signs of failure. However, this condition-based method requires an experienced maintenance team to inspect the 
equipment at regular intervals.

With the explosion of computers and sensors, companies are now engaging in machine-led condition-based 
maintenance to reduce costs while improving the uptime of factories. Predictive maintenance takes condition-based 
maintenance a step father. In this methodology, machine learning analytics are used to predict a machine's failure 
early by examining the real-time sensor data and detecting changes in machine health status.
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Predictive Maintenance: Introduction
Predictive maintenance employs advanced analytics, on the machine data collected from end sensor nodes to draw meaningful 
insights that more accurately predict machine failures. It is comprised of three steps; sense, compute, and act.
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Predictive Maintenance: Introduction
Data is collected from sensors that are already available 
in machines or by adding new sensors, or by using 
control inputs. 

Depending upon the machine types and the required 
failure analysis, different sensor signals, such as 
temperature, sound, magnetic field, current, voltage, 
ultrasonic, vibration are analyzed to predict the failure. 

The predicted information from sensor data analysis is 
used to generate an event, work order, and notification. 

The sensor data is also used to visualize the machine's 
overall operating condition. 

An action is taken when the event reports an anomaly, a 
machine that is nearing the end of its useful life, or when 
wear and tear is detected in machine parts.
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Predictive Maintenance: Problems
Will this equipment fail in a given period of time? 

What is the remaining useful life or the time to failure? 

How to quantify wear and tear of expandable components. 
● This is a subset of remaining useful life and focuses on shorter 

living subsystems. 
For detecting anomalies in equipment behavior. 

● With further analysis, it can provide failure classification. 
To optimize equipment settings. NPTEL



Machine Learning Workflow: Predictive Maintenance
A six-step process:

Define the problem and 
the outcome 

Prepare the data 

Analyse the time series 

Model the predict using 
insight from the analysis 

Deploy the predictive 
model 

Monitor the predictive 
performance
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Machine Learning Workflow: Define
As in any successful project, the first step is to clearly define 
the problem. 

This includes the motivation behind creating a predictive and 
the intended goals and outcomes.

After this, you can decide how to tackle the task at hand, 
including which software to use at each stage. 

For example, we might use Excel for data preparation, R for 
the analysis and modelling and Power BI for deployment.
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Machine Learning Workflow: Prepare
It is essential to properly prepare and clean the data that will be 
used to create the prediction. 

Data cleansing might involve removing duplicated or inaccurate 
records, or dealing with missing data points or outliers. 

In the case of a predictive maintenance project, the data will take 
the form of a time series. 

Depending on what is being predicted, the observations might be 
daily, weekly, monthly, quarterly or yearly.
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Machine Learning Workflow: Analyse
Once the data has been prepared, the next step is to analyse it. 

For a time series, this involves decomposing the series into its 
constituent parts. These include trend and seasonal effects. 

The trend is the long-term overall pattern of the data and is not 
necessarily linear. 

Seasonality is a recurring pattern of a fixed length which is 
caused by seasonal factors.
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Machine Learning Workflow: Modelelling
Predictions are created by combining the trend and seasonality components. 

There are functions that can do this for you in Excel, or it can be done by hand in a 
statistical package like R. 

If modelling manually, refine the weightings of each component to produce a more 
accurate model. 

The model can be edited to account for any special factors that need to be included. 

However, be careful to avoid introducing bias into the prediction and making it less 
accurate. 

Whether using Excel or R, your model will include prediction intervals (or confidence 
intervals). These show the level of uncertainty in the prediction at each future point.
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Machine Learning Workflow: Deploy
Once you are happy with your model, it's time to deploy it and make the 
predictions live. 

This means that decision makers within the business or organisation can utilise 
and benefit from your predictions. 

Deployment may take the form of a visualisation, a performance dashboard, a 
graphic or table in a report, or a web application. 

You may wish to include with the prediction intervals calculated in the previous 
step. 

These show the user the limits within which each future value can be expected 
to fall between if your model is correct.
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Machine Learning Workflow: Monitor
After the prediction goes live, it is important to monitor its performance. 

A common way of doing this is to calculate the accuracy using an error 
measurement statistic. 

Popular measures include the mean absolute percentage error (MAPE)
and the mean absolute deviation (MAD). 

Depending on what is being predicted, it may be possible to update your 
model as new data becomes available. 

This should also lead to a more accurate prediction of future values.
NPTEL



Machine Learning Methods: Predictive Maintenance
Problem definition: Classification and Regression approach 

– Classification: Will it fail? 
● Multi-class classification: Will it fail for reason X? 

– Regression: After how long will it fail?

• Methods: 
– Traditional machine learning: 

● Decision trees: Random forests, gradient boosting trees, isolation forest 
● SVM (Support Vector Machines) 

– Deep learning approach: 
● CNN (Convolution Neural Network)/Multilayer Perceptrons (MLPs) 
● RNN (Recurrent Neural Network)/LGTM (Long Short Term Memory)/GRU (Gated Recurrent Unit)

– Hybrid of deep learning and Physics-Based Modeling (PBM): 
● Use PBM to generate training data where lacking 
● Use PBM to reduce the problem space (feature engineering) 
● Use PBM to inform and validate DL models (e.g., to identify catastrophic failures, most notably in 

scenarios with low amounts of training data and a high degree of mission criticality)
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Deep Learning Methods
Deep learning has proven to show superior performance in certain domains such as 
object recognition and image classification. 

It has also gained popularity in domains such as finance where time-series data plays 
an important role. 

Predictive Maintenance is also a domain where data is collected over time to monitor 
the state of an asset with the goal of finding patterns to predict failures which can also 
benefit from certain deep learning algorithms. 

Among the deep learning methods, Long Short Term Memory (LSTM) networks are 
especially appealing to the predictive maintenance domain due to the fact that they are 
very good at learning from sequences. 

This fact lends itself to their applications using time series data by making it possible to 
look back for longer periods of time to detect failure patterns.
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Deep Learning Methods: Multilayer Perceptrons (MLPs)
Generally, neural networks like Multilayer Perceptrons or MLPs provide capabilities that are offered 
by few algorithms, such as: 

● Robust to Noise. Neural networks are robust to noise in input data and in the mapping function 
and can even support learning and prediction in the presence of missing values. 

● Nonlinear. Neural networks do not make strong assumptions about the mapping function and 
readily learn linear and nonlinear relationships. 

● Multivariate Inputs. An arbitrary number of input features can be specified, providing direct 
support for multivariate forecasting. 

● Multi-step Forecasts. An arbitrary number of output values can be specified, providing direct 
support for multi-step and even multivariate forecasting. 

For these capabilities alone, feedforward neural networks may be useful for time series forecasting.NPTEL



Deep Learning Methods: Convolutional Neural Networks (CNNs)

Convolutional Neural Networks or CNNs are a type of neural network that was designed to efficiently 
handle image data. 

The ability of CNNs to learn and automatically extract features from raw input data can be applied to 
time series forecasting problems. A sequence of observations can be treated like a one-dimensional 
image that a CNN model can read and distill into the most salient elements. 

● Feature Learning. Automatic identification, extraction and distillation of salient features from 
raw input data that pertain directly to the prediction problem that is being modeled. 

CNNs get the benefits of Multilayer Perceptrons for time series forecasting, namely support for 
multivariate input, multivariate output and learning arbitrary but complex functional relationships, but 
do not require that the model learn directly from lag observations. Instead, the model can learn a 
representation from a large input sequence that is most relevant for the prediction problem.NPTEL



Long Short Term Memory networks – usually just called “LSTMs” – are a special kind of RNN, 
capable of learning long-term dependencies. They were introduced by Hochreiter & Schmidhuber 
(1997), and were refined and popularized by different researchers. 

LSTM add the explicit handling of order between observations when learning a mapping function 
from inputs to outputs, not offered by MLPs or CNNs. They are a type of neural network that adds 
native support for input data comprised of sequences of observations. 

● Native Support for Sequences. Recurrent neural networks directly add support for input 
sequence data. 

This capability of LSTMs has been used to great effect in complex natural language processing 
problems such as neural machine translation where the model must learn the complex 
interrelationships between words both within a given language and across languages in translating 
from one language to another. 

● Learned Temporal Dependence. The most relevant context of input observations to the 
expected output is learned and can change dynamically. 

Deep Learning Methods: Long Short-Term Memory Networks (LSTMs)
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The model both learns a mapping from inputs to outputs and learns what context from the input 
sequence is useful for the mapping, and can dynamically change this context as needed.

LSTMs are explicitly designed to avoid the long-term dependency problem. Remembering information 
for long periods of time is practically their default behavior. 

All recurrent neural networks have the form of a chain of repeating modules of neural network. In 
standard RNNs, this repeating module will have a very simple structure, such as a single tanh layer.

Deep Learning Methods: Long Short-Term Memory Networks (LSTMs)
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LSTMs also have this chain like structure, but the repeating module has a different structure. Instead of 
having a single neural network layer, there are four, interacting in a very special way.

In the below diagram, each line carries an entire vector, from the output of one node to the inputs of 
others. The pink circles represent pointwise operations, like vector addition, while the yellow boxes are 
learned neural network layers. Lines merging denote concatenation, while a line forking denote its 
content being copied and the copies going to different locations.

Deep Learning Methods: Long Short-Term Memory Networks (LSTMs)
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An LSTM has three of gates, to protect and control the cell state. The first part is called Forget gate, the 
second part is known as the Input gate and the last one is the Output gate.

Forget Gate: The first step in our LSTM is to decide what information we’re going to throw away from 
the cell state. This decision is made by a sigmoid layer called the “forget gate layer.” It looks at ht−1 and 
xt, and outputs a number between 0 and 1 for each number in the cell state Ct−1. 

A 1 represents “completely keep this” while a 0 represents “completely get rid of this.”

Deep Learning Methods: Long Short-Term Memory Networks (LSTMs)
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Input Gate: The next step is to decide what new information we’re going to store 
in the cell state. This has two parts. First, a sigmoid layer called the “input gate 
layer” decides which values we’ll update. Next, a tanh layer creates a vector of 
new candidate values, C̃t, that could be added to the state. In the next step, we’ll 
combine these two to create an update to the state.

Deep Learning Methods: Long Short-Term Memory Networks (LSTMs)
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Deep Learning Methods: Long Short-Term Memory Networks (LSTMs)

It’s now time to update the old cell state, Ct−1, into the new cell state Ct. The 
previous steps already decided what to do, we just need to actually do it. We 
multiply the old state by ft, forgetting the things we decided to forget earlier. Then 
we add it∗C̃t. This is the new candidate values, scaled by how much we decided 
to update each state value.
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Deep Learning Methods: Long Short-Term Memory Networks (LSTMs)

Output gate: Finally, we need to decide what we’re going to output. This output will be based 
on our cell state, but will be a filtered version. First, we run a sigmoid layer which decides what 
parts of the cell state we’re going to output. Then, we put the cell state through tanh (to push 
the values to be between −1 and 1) and multiply it by the output of the sigmoid gate, so that we 
only output the parts we decided to.
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The stationary R-squared is used in time series forecasting as a measure that 
compares the stationary part of the model to a simple mean model. It is defined 
as,

Where SSres denotes the sum of squared residuals from expected values and 
SStot denotes the sum of squared deviations from the dependent variable’s 
sample mean. It denotes the proportion of the dependent variable’s variance 
that may be explained by the independent variable’s variance. A high R2 value 
shows that the model’s variance is similar to that of the true values, whereas a 
low R2 value suggests that the two values are not strongly related.

Performance Metric: R-squared 
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The MAE is defined as the average of the absolute difference between forecasted and true values. 
Where yi is the expected value and xi is the actual value (shown below formula). The letter n 
represents the total number of values in the test set.

The MAE shows us how much inaccuracy we should expect from the forecast on average. MAE = 0 
means that the anticipated values are correct, and the error statistics are in the original units of the 
forecasted values. 

The lower the MAE value, the better the model; a value of zero indicates that the forecast is error-
free. In other words, the model with the lowest MAE is deemed superior when comparing many 
models.

Performance Metric: Mean Absolute Error (MAE)
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MAPE is the proportion of the average absolute difference between projected 
and true values divided by the true value. The anticipated value is Ft, and the 
true value is At. The number n refers to the total number of values in the test 
set.

It works better with data that is free of zeros and extreme values because of the 
in-denominator. The MAPE value also takes an extreme value if this value is 
exceedingly tiny or huge.

Performance Metric: Mean Absolute Percentage Error (MAPE) 
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MSE is defined as the average of the error squares. It is also known as the metric 
that evaluates the quality of a forecasting model or predictor. MSE also takes into 
account variance (the difference between anticipated values) and bias (the distance 
of predicted value from its true value).

Where y’i denotes the predicted value and yi denotes the actual value. The number n 
refers to the total number of values in the test set. MSE is almost always positive, 
and lower values are preferable. This measure penalizes large errors or outliers 
more than minor errors due to the square term (as seen in the formula above).

Performance Metric: Mean Squared Error (MSE) 
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This measure is defined as the square root of mean square error and is an extension 
of MSE. Where y’i denotes the predicted value and yi denotes the actual value. The 
number n refers to the total number of values in the test set. This statistic, like MSE, 
penalizes greater errors more.

This statistic is likewise always positive, with lower values indicating higher 
performance. The RMSE number is in the same unit as the projected value, which is 
an advantage of this technique. In comparison to MSE, this makes it easier to 
comprehend.

Performance Metric: Root Mean Squared Error(RMSE)
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Use Case: Prognostics and Health Management

A layout showing various modules and their 
connections as modeled in the simulation

Simplified diagram of engine simulation

The objective of this use case is to build an LSTM model that can predict the 
number of remaining operational cycles before failure in the test set, i.e., the 
number of operational cycles after the last cycle that the engine will continue to 
operate. Also provided a vector of true Remaining Useful Life (RUL) values for the 
test data.

The data was generated using C-MAPSS, the commercial version of MAPSS 
(Modular Aero-Propulsion System Simulation) software. This software provides a 
flexible turbofan engine simulation environment to conveniently simulate the 
health, control, and engine parameters.

The simulated aircraft sensor values is used to predict two scenarios, so that 
maintenance can be planned in advance:

* Regression models: The question to ask is "Given these aircraft engine 
operation and failure events history, can we predict when an in-service engine will 
fail?" 

* Binary classification: We re-formulate this question “Is this engine going to fail 
within w1 cycles?”
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LSTM model: Dataset

A layout showing various modules and their 
connections as modeled in the simulation

Simplified diagram of engine simulation

Dataset consists of multiple multivariate time series, such data set is divided 
into training and test subsets. Each time series is from a different engine. 
The engine is operating normally at the start of each time series and 
develops a fault at some point during the series. 

In the training set, the fault grows in magnitude until system failure. In the 
test set, the time series ends some time prior to system failure. 
Public dataset (Nasa Turbo fan)

● Damage propagation for aircraft engine
● Run to failure simulation

Aircraft gas turbine. Dataset contains time series (cycles) for all 
measurements of 100 different engines.

The data used in this use-case is taken from the 
https://www.nasa.gov/intelligent-systems-division
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LSTM model: Data Ingestion
We ingest the training, test and ground truth datasets. 

The training data consists of multiple multivariate time series with "cycle" as the time unit, together with 21 sensor readings for 
each cycle. 

Each time series can be assumed as being generated from a different engine of the same type. 

The testing data has the same data schema as the training data. The only difference is that the data does not indicate when the 
failure occurs. 

Finally, the ground truth data provides the number of remaining working cycles for the engines in the testing data.
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LSTM model: Data Preparation and Feature Engineering
First step is to generate labels for the training data which are Remaining Useful Life (RUL), label1 and label2.

Each row can be used as a model training sample where the s_k columns are the features and the RUL is the model 
target. The rows are treated as independent observations and the measurement trends from the previous cycles are 
ignored. The features are normalized to μ = 0, σ = 1 and PCA is applied.

For the LSTM model, opt for more advanced feature engineering and chose to incorporate the trends from the previous 
cycles. In this case, each training sample consists of measurements at cycle i as well as i-5, i-10, i-20, i-30, i-40. The 
model input is a 3D tensor with shape (n, 6, 24) where n is the number of training samples, 6 is the number of cycles 
(timesteps), and 24 is the number of principal components (features).
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LSTM model: Modelling
When using LSTMs in the time-series domain, one important parameter to pick is the sequence length which is the 
window for LSTMs to look back. 

This may be viewed as similar to picking window_size = 5 cycles for calculating the rolling features which are rolling 
mean and rolling standard deviation for 21 sensor values. 

The idea of using LSTMs is to let the model extract abstract features out of the sequence of sensor values in the 
window rather than engineering those manually. The expectation is that if there is a pattern in these sensor values 
within the window prior to failure, the pattern should be encoded by the LSTM. 

One critical advantage of LSTMs is their ability to remember from long-term sequences (window sizes) which is hard to 
achieve by traditional feature engineering. For example, computing rolling averages over a window size of 50 cycles 
may lead to loss of information due to smoothing and abstracting of values over such a long period, instead, using all 
50 values as input may provide better results. While feature engineering over large window sizes may not make sense, 
LSTMs are able to use larger window sizes and use all the information in the window as input. NPTEL



LSTM model: Modelling

Let's first look at an example of the 
sensor values 50 cycles prior to the 
failure for engine id 3. 

We will be feeding LSTM network this 
type of data for each time step for each 
engine id.

LSTM layers expect an input in the 
shape of a numpy array of 3 
dimensions (samples, time steps, 
features) where samples is the number 
of training sequences, time steps is the 
look back window or sequence length 
and features is the number of features 
of each sequence at each time step.
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LSTM model: Network Configuration
The first layer is an LSTM layer with 100 units followed by another LSTM layer with 50 units. 

Dropout is also applied after each LSTM layer to control overfitting. 

Final layer is a Dense output layer with single unit with sigmoid activation for the binary classification problem and linear 
activation for the regression problem.

Network for regression problemNetwork for binary classification problem
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LSTM model: Model Evaluation

Results of Regression problem:
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LSTM model: Model Evaluation

Results of Binary Classification problem:
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Azure Time Series Insights (PaaS): Predictive Maintenance
Azure Time Series Insights (TSI) is a cloud-based service offered by Azure that can be 
used to ingest, model, query and visualize fast-moving time-series data generated by IoT 
devices.

It is a fully managed Platform as a Service(PaaS) soulution built in for IoT.
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Azure Time Series Insights (PaaS): Predictive Maintenance
Real-time data in the form of a time-series can be generated by various devices like mobile devices, 
sensors, satellites, medical devices etc. 
Data from these devices can be fetched to the Azure environment using Azure IoT Hub. Azure IoT hub acts 
as a data integration pipeline to connect to the source devices and then fetch data and deliver it to the TSI 
platform. 
Once the data is in the TSI, it can then be used for visualization purposes, and can be queried and 
aggregated accordingly. Additionally, customers can also leverage existing analytics and machine learning 
capabilities on top of the data available in TSI. 
Data from TSI can be further processed using Azure Databricks and machine learning models can be 
applied based on pre-trained models that will offer predictions in real-time. This is how an overall 
architecture of Azure Time Series Insights can be enabled.NPTEL



Azure Time Series Insights (PaaS): Components
Azure TSI provides the following four components using which users can consume data from varied data 
sources as follows. 

● Integration – TSI provides an easy integration from data generated using IoT devices by allowing 
connection between the cloud data gateways such as Azure IoT Hub and Azure Event Hubs. Data from 
these sources can be easily consumed in JSON structures, cleaned and then stored in a columnar 
store 

● Storage – Azure TSI also takes care of the data that is to be retained in the system for querying and 
visualizing the data. By default, data is stored on SSDs for fast retrieval and has a data retention policy 
of 400 days. This supports querying historic data for up to a period of 400 days 

● Data Visualization – Once the data is fetched from the data sources and stored in the columnar stores, 
it can be visualized in the form of line charts or heat maps. The visuals are provided out of the box by 
Azure TSI and can be leveraged for easy visual analysis 

● Query Service – Although, visualizing the data will answer many questions, however, TSI also provides 
a query service using which you can integrate TSI into your custom applications. 

Usually, a time series data is indexed by timestamps. Therefore, you can build your applications by using TSI 
as a backend service for integrating and storing the data and using the client SDK for Azure TSI for building 
the frontend and display visuals like line charts and heat maps.
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Predictive Maintenance: Steps
Step 1: Sensor data are collected from edge devices and are forwarded to Azure IoT Hub. 
Step 2: Azure IoT hub then drives these gathered data to the TSI platform and Stream Analytics. 
Step 3: At TSI, data can be visualised, queried and aggregated with other services. 
Step 4: Azure machine learning service provides the training of ML model or using a pretrained model on top of 
the data available in TSI. 
Step 5: Once the training is completed, inference is provided using Azure IoT Hub and Iot Edge service.
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Lecture Summary

● Understanding of predictive maintenance
● Machine learning models for predictive maintenance
● Use case of predictive maintenance using LSTM model
● Azure Time Series Insights
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Preface

Content of this Lecture:
• In this lecture, we will discuss how Collaborative cloud-edge

approaches can provide better performance and efficiency
than traditional cloud or edge approaches.

• To understand how resource allocation strategies can be
tailored to specific use cases and can evolve over time
based on user demand and network conditions.

Deep Reinforcement Learning for Cloud-Edge
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The Collaborative Cloud-Edge Environment
Introduction:
• The "user-edge-cloud" model refers to a

distributed computing environment where
resources are allocated across user devices, edge
nodes, and cloud servers.

• Resource allocation is important for optimizing
system performance while ensuring efficient use of
resources.

• Collaborative cloud-edge approaches can be more
effective than traditional approaches that focus
solely on cloud or edge resources.

Deep Reinforcement Learning for Cloud-Edge

Cloud Services:
• Cloud services can be divided into private and public cloud.
• Private cloud is dedicated to a single organization and provides greater control and

security.
• Public cloud is shared by multiple organizations and provides more flexibility and

scalability.

NPTEL



The Collaborative Cloud-Edge Environment
Edge Nodes:
• Edge nodes are local computing resources that are

closer to the user than the cloud node.
• Edge nodes can provide low-latency, high-bandwidth

services to users and can offload some processing from

the cloud.

Deep Reinforcement Learning for Cloud-Edge

Resource Allocation Strategies:
• Cloud Resource allocation strategies can be based on various factors, such as user

demand, network conditions, and available resources.
• Collaborative cloud-edge approaches can use machine learning algorithms to optimize

resource allocation over time.
• Load balancing, task offloading, and caching are some common resource allocation

techniques that can be applied to both cloud and edge resources.

Multi-Edge-Node Scenario:
• Cloud In a multi-edge-node scenario, resource allocation becomes more complex as the

cloud and edge nodes must coordinate with each other to allocate resources effectively.
• Collaborative cloud-edge approaches can use communication protocols and data sharing

to enable effective coordination.
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Public vs Private Cloud

Public Cloud Environment:
• In a public cloud environment, the cloud provider offers different pricing modes for

cloud services based on demand characteristics.
• Pricing modes have different cost structures that affect resource allocation strategies.
• Cloud service providers like Amazon, Microsoft, and Alicloud provide three different

pricing modes, each with different cost structures.
• The edge node must select the appropriate pricing mode and allocate user demands

to rented VMs or its own VMs.

Deep Reinforcement Learning for Cloud-Edge

Private Cloud Environment:
• In a private cloud environment, the edge node has its own virtual machines (VMs) to

process user demands.
• If the number of VMs requested exceeds the edge node's capacity, the edge node can

rent VMs from the cloud node to scale up.
• The cost of private cloud changes dynamically according to its physical computing cost,

so the edge node needs to allocate resources dynamically at each time slot according to
its policy.

• After allocating resources, the computing cost of the edge node and private cloud in this
time slot can be calculated and used to receive new computing tasks in the next time

slot.
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User Settings
The	time	is	discretized	into T time	slots.	
We	assume	that	in	each	time	slot t,	the	demand	submitted	by	the	user	can	be	
defined	as	the	following:

D t=( d t , l t )
D t is	a	pair	of d tand l t ,	where d t is	the	number	of	VMs	requested	of D t ,	and l t is	the	
computing	time	duration	of D t .

Deep Reinforcement Learning for Cloud-Edge

Computing Resources and Cost of Edge Nodes:
• The total computing resources owned by the edge node are represented by E.
• As the resource is allocated to users, we use 𝒆𝒕 to represent the number of

remaining VMs of edge node in time slot t.
• The number of VMs provided by the edge node is expressed as 𝒅𝒕𝒆.
• The number of VMs provided by the cloud node is expressed as 𝒅𝒕𝑪 .
• It should be noted that if the edge node exhibits no available resources, it will

hand over all the arriving computing tasks to the cloud service for processing.
So, no. of VM provided by edge node in time t is given as:

𝒅𝒕𝒆 = $𝒅𝒕 − 𝒅𝒕
𝒄, 𝒆𝒕 ≥ 𝟎

𝟎, 𝒆𝒕 = 𝟎
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Computing Resources and Cost of Edge Nodes:

Deep Reinforcement Learning for Cloud-Edge

• When the resource allocation is successfully performed on the edge node,
each demand processed by the edge node will generate an allocation record.

𝒉𝒕 = 𝒅𝒕𝒆, 𝒍𝒕
• When a new demand arrives and resource allocation is completed, an

allocation record will be generated and added to an allocation record list:
𝐻 =< ℎ%, ℎ&,…. ℎ' >

At the end of each time slot, the following actions are taken:
• The edge node traverses the allocation record list and subtracts one from the

remaining computing time of each record.
• If a record's remaining computing time reaches 0, it means that the demand

has been completed. The edge node releases the corresponding VMs and
deletes the allocation record from the list.

• The number of VMs waiting to be released at the end of time slot t is denoted
as η(.

η( = ∑𝒊*𝟏𝒎 𝒅𝒊𝒄
𝑠. 𝑡. 𝑙- = 0, ℎ- ∈ 𝐻
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Computing Resources and Cost of Edge Nodes:

Deep Reinforcement Learning for Cloud-Edge

• The number of remaining VMs at the next time slot t+1 is calculated based on
the number of remaining VMs at the beginning of time slot t, the quantity
allocated in the end of time slot t, and the quantity released due to completion
of the computing task in time slot t. Then, the number of remaining VMs of the
edge node at the time slot t + 1 is

𝑒(.% = 𝑒( − 𝑑(/ + η(

• The cost of the edge node in time slot t is calculated as the sum of standby
cost (𝑒(𝑝/) and computing cost ((𝐸 − 𝑒()𝑝0).

𝐶(/ = 𝑒( 𝑝/ + 𝐸 − 𝑒()𝑝0NPTEL



Cost of Collaborative Cloud-Side Computing

Deep Reinforcement Learning for Cloud-Edge

Cost in Private Cloud:
• In time slot t, the cost of collaborative cloud-edge in private cloud environment is the

following:
𝐶!
"#$ = 𝑑!%𝑝% + 𝐶!&

Where,
𝑑!%: number of VMs provided by cloud node
𝑝%: unit cost of VMs in private cloud
𝐶!&: cost of the edge node

Cost in Public Cloud:
• In time slot t, the cost of collaborative cloud-edge in public cloud environment includes the

computing cost of cloud nodes and the cost of edge node, which is the following:
𝐶!
"'( = 𝑋)𝑝*+𝑑!% + 𝑋,𝑝'"-#*.! + 𝑋/𝑝#&𝑑!% + 𝑋0𝑝!𝑑!% + 𝐶!&

𝑋$ = ' 𝟏,The service is used
𝟎, The service is not used

Where,
𝑋)𝑝*+𝑑!% : cost of on-demand instance
𝑋,𝑝'"-#*.! + 𝑋/𝑝#&𝑑!% : cost of reserved instance
𝑋0𝑝!𝑑!%: cost of spot instance
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Goal

Deep Reinforcement Learning for Cloud-Edge

• The time is divided into T time slots, and at the beginning of each time
slot t, the user submits its demand to the edge node.

• The edge node allocates the demands to either cloud VMs or its own VMs
based on its resource allocation strategy.

• In a public cloud environment, the edge node determines the type of cloud
service to be used based on the allocation and the price of the corresponding
cloud service set by the cloud service provider.

• The cost of the current time slot t, denoted as 𝐶(, is calculated based on the
allocation and the price of the corresponding cloud service set by the cloud
service provider.

• The long-term cost of the system is minimized over the T time slots by
minimizing the sum of the costs over all time slots i.e.

>
(*%

1

𝐶(
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Resource Allocation Algorithms: 1.Markov Decision Process

Deep Reinforcement Learning for Cloud-Edge

• The resource allocation problem is a sequential decision-making problem
• It can be modeled as a Markov decision process.
• Markov decision process is a tuple (S, A, P, r, γ), where S is the finite set of
states, A the finite set of actions, P is the probability of state transition, r and γ
are the immediate reward and discount factor, respectively.

• 𝒔𝒕 = (𝒆𝒕, 𝜼𝒕 − 𝟏, 𝑫𝒕, 𝑝!) ∈ 𝑆 ,is used to describe the state of the edge node at the
beginning of each time slot, where

et :number of remaining VMs of the edge node in t,
ηt−1 :number of VMs returned in the previous time slot
Dt :user’s demand information in t
pt :unit cost of VMs in private cloud in t.

• 𝒂𝒕 = (𝒙𝒆, 𝒙𝒌) ∈ 𝐴, where
xe :ratio of the number of VMs provided by the edge node to the total number of VMs.
xk :ratio of the number of VMs provided by the cloud node to the total number of VMs.
• 𝒓𝒕 = −𝑪𝒕𝒑𝒓𝒊 is the reward in each time slot Note :

We want to reduce the long-term operation
cost R = ∑$9): 𝑟(𝑠$, 𝑎$) therefore, the reward
function is set as a negative value of the cost.
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2. Parameterized Action Markov Decision Process

Deep Reinforcement Learning for Cloud-Edge

• In the public cloud environment, first, the edge node needs to select the pricing mode of
cloud service to be used and then determine the resource segmentation between the
edge node and the cloud node in each time slot t.

• The resource allocation action can be described by parametric action.

• In order to describe this parameterized action sequential decision, parameterized action
Markov decision process (PAMDP) is used.

• Similar to Markov decision process, PAMDP is a tuple (S, A, P, r, γ).

• The difference with the Markov decision process is that A is the finite set of
parameterized actions.

• The specific modeling is as follows.

• st = (et, ηt−1, Dt, pt, ξt) ∈ S, where pt is the unit cost of spot instance in t, and ξt is the
remaining usage time of reserved instance. When the edge node does not use this type
of cloud service or it expires, this value is 0.

• at = (xe, (k, xk)) ∈ A, where K = {k1, k2, k3} is the set of all discrete actions, k1 is the on-
demand instance, k2 is the reserved instance, and k3 is the spot instance.

• 𝒓𝒕= −𝑪𝒕
𝒑𝒓𝒊 is the reward in each time slot.
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3.Resource Allocation Based on Deep Deterministic Policy 
Gradient

Deep Reinforcement Learning for Cloud-Edge

• The DDPG algorithm is the classical algorithm of the ActorCritic algorithm
• Actor generates actions based on policies and interacts with the environment
• Critic evaluates Actor’s performance through a value function that guides Actor’s
next action

• This improves its convergence and performance.

DDPG introduces the idea of DQN and contains four networks, where the main Actor
network selects the appropriate action a, according to the current state, s and interacts
with the environment:

𝑎 = 𝜋& 𝑆 +𝓝
where𝓝 is the added noise
For the Critic master network, the loss function is,

∇𝐽 𝜔 = '
(
:

)*'

(

𝑦,̇ − 𝑄 𝜙 𝑠) , 𝑎) , 𝜔
-

(1)

Where 𝑦,̇ is target Q value , calculated as ,

𝑦,̇ = 𝑟,̇ + 𝛾𝑄. 𝜙 𝑠.) , 𝜋& 𝜙 𝑠.) , 𝜔′ (2)
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3.Resource Allocation Based on Deep Deterministic Policy 
Gradient

Deep Reinforcement Learning for Cloud-Edge

For the Actor master network, the loss function is:

∇𝐽(𝜃) = '
(
C

)*'

(
∇/𝑄 |𝑠0 , 𝑎0 , 𝜔 1*1!,/*3" 1 ∇/ |𝜋&(𝑠) 1*1! (3)

The parameters ω of the Actor target network and the parameters θ of the Critic
target network are updated using a soft update:

𝜔'⃪𝜏𝜔 + 1 − 𝜏 𝜔.
𝜃.⃪𝜏 + 1 − 𝜏 𝜃. (4)NPTEL



Resource Allocation Algorithms 

Deep Reinforcement Learning for Cloud-Edge

3. Resource Allocation Based on Deep
Deterministic Policy Gradient

• DDPG structure is shown in figure

• Input of the algorithm contains information about the user requests
demands Dt and the unit cost of VMs in private cloud

• At beginning of each iteration, the edge node first obtains state st of
the collaborative cloud-edge environment

• It then pass the state as the input of the neural network into the main
Actor network to obtain the action at.

• After the edge node gets the action, the number of demands to be
processed by the edge node and the number of demands to be
processed by the private cloud will be calculated by the action value,
i.e., 𝑑!"and 𝑑!#, respectively.

• Then, interaction with the environment based on 𝑑!"and 𝑑!#, to get the
next state, reward, and termination flag.

• Storing this round of experience to the experience replay pool

• CERAI will sample from the experience replay pool and calculate the
loss functions of Actor and Critic to update the parameters of the
master and target networks.

• After one round of iterative, the training will be continued to the
maximum number of training rounds set to ensure the convergence of
the resource allocation policy.

NPTEL



CERAI(Cost efficient resource allocation with private cloud ) Algorithm 

Deep Reinforcement Learning for Cloud-Edge

1. Initialize Actor main network and target network parameters 𝜃, 𝜃; Critic main network and target
network parameters 𝜔,𝜔;, . soft update coefficient 𝜏. number of samples for batch gradient
descent m, maximum number of iterations M, random noise𝓝 and experience replay pool K

2. For i = 1 to M do
3. Receive user task information and obtain the status s of collaborative cloud-edge

computing environment;
4. Actor main network selects actions according to s: 𝑎 = 𝜋< 𝑆 +𝓝;
5. The edge node performs action a and obtains the next satus s', reward r and termination flag

𝑖𝑠𝑒𝑛𝑑
6. The edge node generates an allocation record ℎ$ according to the allocation operation. Add it

to the allocation record H;
7. Add the state transition tuple (𝑠, 𝑎, 𝑟, 𝑠;, 𝑖𝑠𝑒𝑛𝑑) in the experience replay pool K;
8. Update status: s = s’;
9. Sample m samples from experience replay pool P calculate the target Q value y according to the

eq 2;
10. Calculate the loss function according to (1) and update the parameters of the Critic main

network;
11. Calculate the loss function according to (3) and update the parameters of the Actor main network;
12. update the parameters of the Critic and Actor target network according to (4)
13. Update allocation record H and release computing resources for completed tasks;
14. If s’ is terminated, complete the current round of iteration, otherwise goto step 3;
15. end.
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4. Resource Allocation Based on P-DQN

Deep Reinforcement Learning for Cloud-Edge

The basic idea of P-DQN is as follows.

• For each action a ∈ A in the parametric action space, because
of xe + xk = 1, we can only consider k and xk in the action value
function, that is Q (s, a) = Q (s, k, xk), where s ∈ S, k ∈ K is the
discrete action selected in the time slot t, and xk ∈ Xk is the
parameter value corresponding to k.

• Similar to DQN, deep neural network Q (s, k, xk; ω) is used in
P-DQN to estimate Q (s, k, xk), where ω is the neural network
parameter.

• For Q (s, k, xk; ω), P-DQN uses the determined policy network
xk(·; θ): S → X k to estimate the parameter value 𝒙𝒌

𝑸 (s), where θ
is used to represent the policy network. That means the goal of
P-DQN is to find the corresponding parameters θ, when ω is
fixed. It can be written as the following

𝑸 𝒔 𝒌, 𝒙𝒌 𝒔; 𝜽 ;𝝎 ≈ 𝑸 𝒔, 𝒌, 𝒙𝒌; 𝝎 (5)
• Similar to DQN, the value of ω can be obtained by minimizing

the mean square error by gradient descent.
• In particular, step t, ωt and θt are the parameters of value

network and deterministic policy network, respectively.
• yt can be written as :
𝒚 = 𝒓 +𝒎𝒂𝒙

𝒌∈ 𝒌
𝑸 𝒔; 𝒌, 𝒙𝒌 𝒔', 𝜽𝒕 ; 𝝎𝒕 (6)

where s′ is the next state after taking the mixed action a = (k, xk).
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4. Resource Allocation Based on P-DQN

Deep Reinforcement Learning for Cloud-Edge

The loss function of value network can be written as the following:

𝒍𝑸 𝝎 = 𝟏
𝟐
𝑸 𝒔, 𝒌, 𝒙𝒌; 𝒘 − 𝒚 𝟐 (7)

loss function of a policy network can be written as

𝒍𝜽 𝜽 = −∑𝒌,
𝒌 𝝁 𝒔, 𝒌, 𝒙𝒌 𝒔; 𝜽 ;𝝎 (8)

• P-DQN structure is shown in Figure .
• Cost Efficient Resource Allocation with public cloud (CERAU) is a resource allocation algorithm based on P-

DQN,. The input of the algorithm contains information about the user requests demands Dt and the unit cost of
spot instance in public cloud in time slot t pt.

• At the beginning of each iteration of the algorithm, the edge node first needs to obtain the state st of the
collaborative cloud-edge environment

• Then pass the state as the input of the neural network into the strategy network to obtain the parameter values
of each discrete action.

• After the edge node gets the action, it will select the appropriate public cloud instance type based on the
discrete values in the action and determine the number of public cloud instances to be used based on the
parameter values.

• Then, interaction with the environment occurs, to get the next state, reward, and termination flag.
• Storing this round of experience to the experience replay pool, CERAU will sample from the experience replay

pool and calculate the gradient of the value network and the policy network.
• Then, it will update the parameters of the corresponding networks.
• After one round of iterative, to ensure the convergence of the resource allocation policy, the training will be

continued to the maximum number of training rounds set.
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CERAU Algorithm 

Deep Reinforcement Learning for Cloud-Edge

Algorithm: Cost efficient resource allocation with public cloud (CERAU)
1. Initialize exploration parameters 𝜖, soft update coeficient 𝜏) and 𝜏, , number of samples for batch

gradient descent m, maximum number of iterations M, random noise 𝓝 and experience replay
pool P;

2. for i = 1 to M do
3. Receive user task information and obtain the status s of collaborative cloud-cdge computing

environment;
4. Calculate the parameter value of each instance type in the cloud service; 𝑥=⃪𝑥=(𝑠!,𝜃!) + 𝓝 ;
5. Selects discrete actions according to 𝜖 −greedy strategy:

a= '
𝑟𝑎𝑛𝑑𝑜𝑚 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝑎𝑐𝑡𝑖𝑜𝑛, 𝑟𝑛𝑑 > 𝜖

𝑘, 𝑥= , 𝑘 = 𝑎𝑟𝑔𝑚𝑎𝑥=∈ @ 𝑄 𝑠, 𝑘, 𝑥=; 𝜔 , 𝑟𝑛𝑑 ≥ 𝜖
6. The edge node performs action and obtains the next status s’, reward r and termination flag isend;
7. The edge node generates an allocation record ℎ$ according to the allocation operation. Add it to

the allocation record list H;
8. Add the state transition tuple (𝑠, 𝑎, 𝑟, 𝑠′ 𝑖𝑠𝑒𝑛𝑑) in the experience replay pool D;
9. Sample m samples from experience replay pool P, calculate the target Q value y according to (6);
10. Update satus: s = s’;
11. Calculate gradient 𝛻A𝑙B 𝜔 and 𝛻<𝑙< 𝜃 according to (7) and (8);
12. Update network parameters: 𝜔′ ← 𝜔 − 𝜏) 𝛻A𝑙B 𝜔 ,𝜃′ ← 𝜃 − 𝜏, 𝛻<𝑙< 𝜃
13. Update allocation record H and release computing resources for completed tasks:
14. If s’ is terminated, complete the current round of iteration. otherwise go to step 3:
15. end
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Preface

Content of this Lecture:
• In this lecture, we will discuss how Collaborative cloud-edge

approaches can provide better performance and efficiency
than traditional cloud or edge approaches with the help of
some examples

Deep Reinforcement Learning for Cloud-Edge
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Example 

Deep Reinforcement Learning for Cloud-Edge

Consider the resource allocation problem where a client submits the following demands in
three consecutive time slots:

Time-Slot (𝑡) Demand 𝐷! = (𝑑!, 𝑙!)

1 (30, 2)

2 (10, 1)

3 (20, 2)

where (𝑑!) represents the number of VMs requested and (𝑙!) represents the duration of 
service request. Assume that time slot (1) is the starting slot such that no VMs have been 
allocated a priori. There are 80 VMs available at the edge node.NPTEL



Example 

Deep Reinforcement Learning for Cloud-Edge

The action (𝑥)* ∈ [0, 1]) represents the ratio of VMs allocated from the private cloud to the total VMs 
requested by client at time slot t. The remaining VMs (1 − 𝑥)*) are allocated from the edge node. 

Calculate the cost of collaborative cloud side computing (𝐶)
+,-) in the given private cloud setting at each of 

the three time slots. Also, find out the number of VMs that will be available at the edge node at the 
beginning of fourth time slot

Time-Slot (𝑡) Policy Action (𝑥!")

1 0.4

2 0.7

3 0.8

(a) Resource allocation using private cloud: Suppose that we have our own private cloud and 
a policy has been deployed to allocate VMs as per client demands which outputs the following 
actions at each timeslot:

Constant Value

Stand-by cost of a VM at the edge node (𝑝#) 0.03

Computing cost of a VM at the edge node (𝑝$) 0.20

Computing cost of a private cloud (𝑝%) 3.00

Given Constants: NPTEL



Example 

Deep Reinforcement Learning for Cloud-Edge

where (𝑘) ∈ {0=on_demand,1=reserved,2=spot}) represents the type of public cloud instance that was 
allocated. Calculate the cost of collaborative cloud side computing (𝐶)

+01) in the given public cloud setting at 
each of the three time slot. Assume that the same demands were made by client as in part (a) and that no 
customization is performed on reserved instances.

Additional Constants:

Time-Slot (𝑡) Policy Action (𝑘!, 𝑥!")

1 (1,0.4)

2 (0,0.7)

3 (2,0.8)

(b) Resource allocation using public cloud: Assume that we have replaced the private cloud 
with a public cloud setting with a new policy that outputs the following actions at each 
timeslot:

Constant Value

Unit price of on-demand instance in public cloud (𝑝&') 3.0

Unit price of reserved instance in public cloud (𝑝(#) 1.5

Customization price of reserved instance  (𝑝)*$(&+!) 800

Unit price of spot instance in public cloud (𝑝!) 1.0

NPTEL



Example : Solution

Deep Reinforcement Learning for Cloud-Edge

Let (𝑒!) represent the number of VMs available at the edge node after allocation at time slot (t).

Assume 𝑒" = 𝐸 = 80

At time slot (t = 1):

Demand: 𝐷" = (𝑑", 𝑙") = (30, 2)

Action: 𝑥"# = 0.4

No of VMs allocated from cloud: 𝑑"$ = 𝑥"# ∗ 𝑑" = 0.4 ∗ 30 = 12

No of VMs allocated from edge node: 𝑑"% = 𝑑" − 𝑑"$ = 30 − 12 = 18

No of VMs remaining at the edge node: 𝑒" = 𝑒" − 𝑑"% = 80 − 18 = 62

Resources can be successfully allocated from edge node; hence, allocation record will be generated:

Allocation record: ℎ" = 𝑑"% , 𝑙" = (18, 2)

Allocation Record List 𝐻: < ℎ" > ∶ < 18, 2 >

Updated Allocation Record List 𝐻: < ℎ" > ∶ < 18, 1 >

Number of VMs waiting to be released: 𝑛" = 0

Number of VMs available at next time slot: 𝑒& = 𝑒" + 𝑛" = 62 + 0 = 62

Cost at the edge node: 𝐶"% = 𝑒"𝑝% + 𝐸 − 𝑒" 𝑝' = 62 ∗ 0.03 + (80 − 62) ∗ 0.2 = 1.86 + 3.6 = 5.46

Cost at the private cloud: 𝐶"
()* = 𝑑"$𝑝$ + 𝐶"% = 12 ∗ 3.0 + 5.46 = 41.46

Cost at the public cloud: 𝐶"
(+, = 𝑑"$𝑝)% + 𝐶"% = 12 ∗ 1.5 + 5.46 = 23.46
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Example : Solution

Deep Reinforcement Learning for Cloud-Edge

At time slot (t = 2):

Demand: 𝐷& = (𝑑&, 𝑙&) = (10, 1)

Action: 𝑥&# = 0.7

No of VMs allocated from cloud: 𝑑&$ = 𝑥&# ∗ 𝑑& = 0.7 ∗ 10 = 7

No of VMs allocated from edge node: 𝑑&% = 𝑑& − 𝑑&$ = 10 − 7 = 3

No of VMs remaining at the edge node: 𝑒& = 𝑒& − 𝑑&% = 62 − 3 = 59

Resources can be successfully allocated from edge node; hence, allocation record will be generated:

Allocation record: ℎ& = 𝑑&% , 𝑙& = (3, 1)

Allocation Record List 𝐻: < ℎ", ℎ&> ∶ < 18, 1 , (3, 1) >

Updated Allocation Record List 𝐻: < ℎ", ℎ&> ∶ < 18, 0 , (3, 0) >

Number of VMs waiting to be released: 𝑛& = 18 + 3 = 21

Number of VMs available at next time slot: 𝑒- = 𝑒& + 𝑛& = 59 + 21 = 80

Cost at the edge node: 𝐶&% = 𝑒&𝑝% + 𝐸 − 𝑒& 𝑝' = 59 ∗ 0.03 + (80 − 59) ∗ 0.2 = 1.77 + 4.2 = 5.97

Cost at the private cloud: 𝐶&
()* = 𝑑&$𝑝$ + 𝐶&% = 7 ∗ 3.0 + 5.97 = 26.97

Cost at the public cloud: 𝐶&
(+, = 𝑑&$𝑝./ + 𝐶&% = 7 ∗ 3.0 + 5.97 = 26.97
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Example : Solution

Deep Reinforcement Learning for Cloud-Edge

At time slot (t = 3):

Demand: 𝐷- = (𝑑-, 𝑙-) = (20, 2)

Action: 𝑥-# = 0.8

No of VMs allocated from cloud: 𝑑-$ = 𝑥-# ∗ 𝑑- = 0.8 ∗ 20 = 16

No of VMs allocated from edge node: 𝑑-% = 𝑑- − 𝑑-$ = 20 − 16 = 4

No of VMs remaining at the edge node: 𝑒- = 𝑒- − 𝑑-% = 80 − 4 = 76

Resources can be successfully allocated from edge node; hence, allocation record will be generated:

Allocation record: ℎ& = 𝑑-% , 𝑙- = (4, 2)

Allocation Record List 𝐻: < ℎ- > ∶ < (4, 2) >

Updated Allocation Record List 𝐻: < ℎ- > ∶ < (4, 1) >

Number of VMs waiting to be released: 𝑛- = 0

Number of VMs available at next time slot: 𝑒0 = 𝑒- + 𝑛& = 76 + 0 = 76

Cost at the edge node: 𝐶-% = 𝑒-𝑝% + 𝐸 − 𝑒- 𝑝' = 76 ∗ 0.03 + (80 − 76) ∗ 0.2 = 2.28 + 0.8 = 3.08

Cost at the private cloud: 𝐶-
()* = 𝑑-$𝑝$ + 𝐶-% = 16 ∗ 3.0 + 3.08 = 51.08

Cost at the public cloud: 𝐶-
()* = 𝑑-$𝑝! + 𝐶-% = 16 ∗ 1.0 + 3.08 = 19.08
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Contents of lecture

In this lecture, we will cover a Public Cloud Services, 
a  case study of AWS services 
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Reference Model

Public Cloud Services: AWS Services

We will use a  reference model to explain AWS services systematically as 5-layered model Model
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Public Cloud Services: AWS Services

Reference Model
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AWS Global Datacenter
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Availability Zone(AZ): Example
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AWS Data Center: Example
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AWS Security
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Virtual Private Cloud(VPC)
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Region and Availability Zones
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Why Availability Zones
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AWS Account, Users and Service scope

Public Cloud Services: AWS Services

NPTEL



AWS Compute and Analytics Services
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Elastic Compute Cloud (EC2)
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Deployment and Administration
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AWS Network and Management Services
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AWS Application and Development Services
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Development and Test Environments
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Big Data
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High Performance Computing (HPC)
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Storage, Backup, and Archival
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Web, Mobile, and Social Apps
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Preface

Mathematical formulations for task-offloading in Edge-Cloud Environment 

Reference ModelContent of this Lecture:

• An Edge-Cloud system architecture that includes the required components
to support scheduling offloading tasks of IoT applications.

• An Edge-Cloud latency models that show the impact of different tasks’
offloading scenarios/schemes for time-sensitive applications in terms of
end-to-end service times.

• Evaluation of the offloading latency models that consider computation and
communication as key parameters with respect to offloading to the local
edge node, other edge nodes or the cloud..NPTEL



Introduction 

• Internet of Things (IoT) technology has quickly evolved in recent years, where 
the number of devices that are connected to the internet (IoT) has increased 
massively. 

• More than 50 billion devices will be connected to the internet , which will 
produce a new set of applications such as Autonomous Vehicles, Augmented 
Reality (AR), online video games and Smart CCTV. 

• Thus, Edge Computing has been proposed to deal with the huge change in the 
area of the distributed system. 

Mathematical formulations for task-offloading in Edge-Cloud Environment 
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Motivation

• For enhancing customer experience and accelerating job execution, IoT task offloading 
enables mobile end devices to release heavy computation and storage to the resource-
rich nodes in collaborative Edges or Clouds. 

• Nevertheless, resource management at the Edge-Cloud environment is challenging 
because it deals with several complex factors (e.g., different characteristics of IoT 
applications and heterogeneity of resources). 

• Different service architecture and offloading strategies quantitatively impact the end-
to-end service time performance of IoT applications .

• Consequently, the latency depends on the scheduling policy of applications offloading 
tasks as well as where the jobs will be placed in order to meet the requirements of 
latency-sensitive applications.

Mathematical formulations for task-offloading in Edge-Cloud Environment 
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System Architecture

Mathematical formulations for task-offloading in Edge-Cloud Environment 

Reference ModelRecently, the number of Internet of Things (IoT) 
devices connected to the Internet has increased
dramatically as well as the data produced by these 
devices. 
This would require offloading IoT tasks to release 
heavy computation and storage to the resource-rich 
nodes such as Edge Computing and Cloud 
Computing. 
Different service architecture and offloading 
strategies have a different impact on the service time 
performance of IoT applications. 
An Edge-Cloud system architecture that supports 
scheduling offloading tasks of IoT applications in 
order to minimize the enormous amount of 
transmitting data in the network. 
Also, it introduces the offloading latency models to 
investigate the delay of different offloading 
scenarios/schemes and explores the effect of 
computational and communication demand on each 
one.
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System Architecture

Mathematical formulations for task-offloading in Edge-Cloud Environment 

Reference Model• The Edge-Cloud system from bottom to 
the top consists of three layers/tiers: IoT 
devices (end-user devices), multiple 
Edge Computing nodes and the Cloud 
(service provider). 

• The IoT level is composed of a group of 
connected devices (e.g., smartphones, 
self driving cars, smart CCTV);

• These devices have different 
applications where each application has 
several tasks

• Difference in the given architecture is the 
introduced layer between the edge 
nodes and the cloud. This layer 
responsible for managing and assign 
offloading tasks to the edge nodes.
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System Architecture: Edge Controller

Mathematical formulations for task-offloading in Edge-Cloud Environment 

Reference Model• Edge Controller (EC) is also called Edge Orchestrator, 
which is a centralized component responsible for 
planning, deploying and managing application services 
in the Edge-Cloud system. 

• EC communicates with other components in the 
architecture to know the status of resources in the 
system (e.g., available and used), the number of IoT 
devices, their applications’ tasks and where IoT tasks 
have been allocated (e.g., Edge or Cloud). 

• EC consists of the following components: Application 
Manager, Infrastructure Manager, Monitoring and 
Planner. 

• The location of the Edge Controller can be deployed in 
any layer between Edge and Cloud. 

• For example, EC act as an independent entity in the 
edge layer that manages all the edge nodes in its 
control. It is also responsible for scheduling the 
offloading tasks in order to satisfy applications’ users 
and Edge-Cloud System requirements. The EC is 
synchronizing its data with the centralized Cloud 
because if there is any failure, other edge nodes can 
take EC responsibility from the cloud .
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System Architecture: Application Manager

Mathematical formulations for task-offloading in Edge-Cloud Environment 

Reference Model• The application manager:

It is responsible for managing 
applications running in the Edge-Cloud 
system. This includes requirements of 
application tasks, such as the amount of 
data to be transferred, the amount of 
computational requirement (e.g., required 
CPU) and the latency constraints. 
Besides, the number of application users 
for each edge node
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System Architecture: Infrastructure Manager

Mathematical formulations for task-offloading in Edge-Cloud Environment 

Reference Model
• The Infrastructure Manager :

The role of the infrastructure 
manager is to be in charge of the physical 
resources in the entire Edge-Cloud 
system. For instance, processors, 
networking and the connected IoT 
devices for all edge nodes. 

Edge-Cloud is a virtualized 
environment; thus, this component 
responsible for the VMs as well. In this 
context, this component provides the EC 
with the utilization level of the VMs.
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System Architecture: Monitoring and Planner

Mathematical formulations for task-offloading in Edge-Cloud Environment 

Reference Model• The Infrastructure Manager :

The main responsibility of this 
component is to monitoring application tasks (e.g., 
computational delay and communication delay) 
and computational resources (e.g., CPU utilization) 
during the execution of applications’ tasks in the 
Edge-Cloud system. Furthermore, detecting the 
tasks’ failures due to network issues or the 
shortage of computational resources. 

Planner:

The main role of this component is to 
propose the scheduling policy of the offloading 
tasks in the Edge-Cloud system and the location 
where they will be placed (e.g., local edge, other 
edges or the cloud). This offloading tasks works on 
this component and passes its results to EC for 
execution.
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Latency Sensitive Applications

Mathematical formulations for task-offloading in Edge-Cloud Environment 

Reference Model
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Latency Sensitive Applications

Mathematical formulations for task-offloading in Edge-Cloud Environment 

Reference Model• Latency-sensitive applications have high sensitivity to any delays accrue 
in communication or computation during the interaction with the Edge-
Cloud system. 

• For instance, the IoT device sends data to the point that processing is 
complete at the edge node or the cloud in the back end of the network, 
and the subsequent communications are produced by the network in 
response to receive the results. 

• For example, self-driving cars consist of several services, classified these 
services in categories based on their latency-sensitivity, quality 
constraints and workload profile (required communication and 
computation). 

• First, critical applications, which must be processed in the car’s 
computational resources, for instance, autonomous driving and road 
safety applications. 

• Second, high-priority applications, which can be offloaded but with 
minimum latency, such as image aided navigation, parking navigation 
system and traffic control. 

• Third, low-priority applications, which can be offloaded and not vital as 
high-priority applications (e.g., infotainment, multimedia, and speech 
processing). 
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Latency Sensitive Applications

Mathematical formulations for task-offloading in Edge-Cloud Environment 

Reference Model
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Latency Models

Mathematical formulations for task-offloading in Edge-Cloud Environment 

Reference Model• Modelling the various offloading decisions for IoT tasks that can increase the Quality of Service (QoS). 
• With the increasing number of IoT devices, the amount of produced data, the need for an autonomous 

system that requires a real-time interaction as well as the lake of support from the central Cloud due to 
network issues; service time has been considered as one of the most important factors to be handled 
in Edge Computing.

• One of the main characteristics of Edge Computing is to reduce the latency level. 
• Additionally, using Edge Computing will enhance application performance in terms of overall service 

time comparing to the traditional Cloud system. 
• However, different offloading decisions within the Edge-Cloud system can lead to various service time 

due to the computational resources and communications types. The current real-world applications 
measure the latency between the telecommunication service provider and the cloud services. 

• Compare the latency between offloading to the edge or the cloud, latency between multiple edge 
nodes that work collectively to process the offloading tasks. investigating the latency of the Edge-Cloud 
system is an essential step towards developing an effective scheduling policy. 

• Firstly, task allocation in the Edge-Cloud system is not only two choices (e.g., either at IoT device or in 
the cloud), but could be on any edge nodes. Moreover, edge nodes connected in a loosely coupled 
way on heterogeneous wireless networks (i.e., WLAN, MAN and WAN), making the process of 
resource management and the offloading decision more sophisticated. 

• Secondly, given that task processing is allocated among multiple edge nodes working collectively and 
the cloud, it is challenging to make an optimal offloading decision. The latency models to investigate 
the delay of different offloading scenarios/schemes. 
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Latency Models: Latency to Local Edge

Mathematical formulations for task-offloading in Edge-Cloud Environment 

Reference ModelThis is known as a one-level offloading 
system, which is basically offloading to 
“Cloudlet” or “Local Edge”.
It aims to provide a micro-data center that 
supports IoT devices within a specific area 
such as a coffee shop, mall center and 
airport .
Thus, IoT devices can offload their tasks 
to be processed on the edge or cloud, as 
an example. 
This offloading scenario/scheme provides 
ultra-low latency due to the avoidance of 
network backhaul delays. The end-to-end 
service time composed of two delays, 
network delay and computational delay. 
The network delay consists of the time of 
sending the data to the edge and the time 
to receive the output from the edge to the 
IoT device. 
The computation time is the time from 
arriving the task to the edge node until the 
processing has completed. Therefore, the 
end-to-end service time latency is the sum 
of communication delay and computational 
delay, which can be calculated as follows:
• 𝑳𝑳𝒐𝒄𝒂𝒍_𝒆𝒈𝒅𝒆 = 𝒕𝒕𝒆_𝒖𝒑 + 𝒕𝒄𝒆 + 𝒕𝒕𝒆_𝒅𝒐𝒘𝒏

To clarify, IoT devices send their offloading 
tasks through the wireless network, and 
then the tasks will be processed by the 
edge node and finally send the results to 
IoT devices, 
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Latency Models: Latency to Local Edge with Cloud

Mathematical formulations for task-offloading in Edge-Cloud Environment 

Reference ModelIn this offloading scenario/scheme, rather than 
relying on only one Edge node, the IoT tasks can be 
processed collaboratively between the connected 
Edge node and the cloud servers. 
This will combine the benefits of both Cloud and 
Edge Computing, where the cloud has a massive 
amount of computation resources, and the edge has 
lower communication time. 
In this scenario/scheme, the edge can do part of the 
processing such as pre-processing, and the rest of 
the tasks will be processed in the cloud. 
IoT sends the computation tasks to the connected 
edge and then part of these tasks forwarded to the 
cloud. 
Once the cloud finishes the computation, it will send 
the result to the edge, and the edge will send it to the 
IoT devices. 
This scenario/scheme consists of communication 
time (e.g., the time between the IoT device to the 
edge node and the time between edge nodes to the 
cloud) and computation time (e.g., processing time in 
the edge and processing time in the cloud). Thus, the 
end-to-end service time can be calculated as follows:
𝑳𝑳_𝑪 = 𝒕𝒕𝒆_𝒖𝒑 + 𝒕𝒄𝒆 + 𝒕𝒕𝒄_𝒖𝒑 + 𝒕𝒄𝒄 + 𝒕𝒕𝒄_𝒅𝒐𝒘𝒏 + 𝒕𝒕𝒆_𝒅𝒐𝒘𝒏
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Latency Models: Latency to Multiple Edge Nodes with Cloud

Mathematical formulations for task-offloading in Edge-Cloud Environment 

IoT sends the computation tasks to the connected edge 
and then part of these tasks transferred to other 
available resources in the edge level through the edge 
controller and the rest to the cloud. 
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Latency Models: Latency to Multiple Edge Nodes with Cloud

Mathematical formulations for task-offloading in Edge-Cloud Environment 

• This is known as a three-level offloading scenario/scheme that aims to utilize more resources at 
the edge layer and support the IoT devices in order to reduce the overall service time.

• It adds another level by considering other available computation resources in the edge layer. 
• Basically, it distributes IoT tasks over three levels: connected edge, other available edge nodes 

and the cloud.
• The edge controller (edge orchestrator) controllers all edge servers by Wireless Local Area 

Network (WLAN) or Metropolitan Area Network (MAN), which have low latency compared to Wild 
Area Network (WAN). 

• This will help to decrease the dependency of cloud processing as well as increase the utilization of 
computing resources at the edge.

• This scenario/scheme consists of communication time (e.g., the time between the IoT device to the 
edge node, the time between edge node to other collaborative edge node and the time between 
edge nodes to the cloud) and computation time (e.g., processing time in the edge, processing time 
in other collaborative edge node and processing time in the cloud). Thus, the end-to-end service 
time can be calculated as follows: 

• 𝐿01233_455 = 𝑡03_67 + 𝑡83 + 𝑡834 + 𝑡08_67 + 𝑡88 + 𝑡08_94:; + 𝑡034_94:; + 𝑡03_94:;
NPTEL



Experiment

Mathematical formulations for task-offloading in Edge-Cloud Environment 

Assumptions:
• We have three edge nodes connected to the cloud.
• Each edge node has two servers, and each of them has four VMs with a similar configuration.
• The cloud contains an unlimited number of computational resources

Key parameters of the simulation environment :

Key parameters: Values
Simulation Time :30 min
Warm-up Period :3 min
Number of Iterations: 5
Number of IoT Devices: 100–1000
Number of Edge Nodes :3
Number of VM per Edge Server: 8
Number of VM in the Cloud :not limited
Average Data Size for Upload/Download (KB) :500/500NPTEL



Mathematical formulations for task-offloading in Edge-Cloud Environment 

Results
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Mathematical formulations for task-offloading in Edge-Cloud Environment 

Summary

• We presents an Edge-Cloud system architecture that enables the offloading of 
tasks for IoT applications.

• The architecture includes several components that interact with each other to 
support task offloading, such as IoT devices, edge nodes, and cloud servers.

• Offloading latency models were explained that consider computation and 
communication as key parameters for offloading tasks to different destinations, 
including local edge nodes, other edge nodes, and the cloud.

•The experiments conducted on EdgeCloudSim to evaluate the latency models 
for three different offloading scenarios .
. NPTEL
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Preface

Task Offloading Based on LSTM Prediction and Deep Reinforcement Learning

Reference ModelContent of this Lecture:

• A joint decision-making problem for cost minimization in IoT edge computing is
modeled, taking into account processing latency, energy consumption, and task
throw rate.

• The Online Predictive Offloading (OPO) algorithm is proposed based on Deep
Reinforcement Learning and Long Short-Term Memory.

• The algorithm predicts the edge server's load in real-time and allocates
resources in advance, improving the convergence accuracy and speed of the
offloading process.



Introduction

Task Offloading Based on LSTM Prediction and Deep Reinforcement Learning

Reference Model
• Modeling the problem of computing offloading in a multi-edge, multi-device 

computing scenario as a nonlinear optimization problem.

• Moreover, the goal of task offloading is minimizing long-term costs in terms 
of latency and energy consumption. 

• By predicting the characteristics of tasks and edge server loads, tasks are 
dynamically offloaded to the optimal edge server

• . In the decision model, the prediction is combined with task decision to 
dynamically allocate resources for different tasks to further reduce latency 
and improve service quality. 



Motivation

Task Offloading Based on LSTM Prediction and Deep Reinforcement Learning

Reference Model•Task offloading can result in additional transmission delays and energy consumption.

•Task offloading problem is modelled as a joint decision-making problem for cost 
minimization, considering processing latency, energy consumption, and task throw rate.

•The Online Predictive Offloading (OPO) algorithm based on Deep Reinforcement 
Learning (DRL) and Long Short-Term Memory (LSTM) networks is used to solve the task 
offloading problem.

•In the training phase, the OPO algorithm predicts the load of the edge server in real-time 
with the LSTM algorithm, improving the convergence accuracy and speed of the DRL 
algorithm in the offloading process.

•In the testing phase, the LSTM network predicts the characteristics of the next task, and 
the DRL decision model allocates computational resources for the task in advance, 
reducing the response delay and improving offloading performance.



System Model

Task Offloading Based on LSTM Prediction and Deep Reinforcement Learning

Reference Model• The model is built on a multi-terminal, 
multi-edge network scenario

• Here the set of terminal layer devices are 
denoted by 𝓜 = {1, 2, . . . , M}. 

• On each MD (Mobile device), there exists 
a task queue and a computation queue 

• the task queue stores the tasks to be 
decided for offloading

• the computation queue processes the 
tasks that are executed locally. 

• the set of edge layer servers are denoted 
by 𝓝 = {1, 2, . . . , N}. 

• Multiple computation queues are included 
in each edge server for parallel 
computation of transmission queue offload 
tasks.

• Figure shows an illustration of EC system 
with a mobile device and an edge node. 



Task Model

Task Offloading Based on LSTM Prediction and Deep Reinforcement Learning

Reference Model• For any MD, the tasks generated in different time slots are identified by
𝓣 = {1, 2, . . . , 𝑇}.

• Each arriving task is first stored in corresponding MD task cache queue, and then 
the decision model gives where the task will be offloaded to be executed.

• For t ∈ 𝓣, new task generated by the terminal device m ∈𝓜is denoted as

𝜆! 𝑡 = (𝐷!" , 𝜌!" , 𝜏!,!$%" ).

Where , 
𝐷!" :  size of the task data
𝜌!" : computational resources required per bit
𝜏!,!$%" : maximum tolerated delay of the task



Decision Model

Task Offloading Based on LSTM Prediction and Deep Reinforcement Learning

Reference Model• When the terminal device m has a new task 𝜆!(𝑡) in time slot t the decision 
model has to give the offloading scheme.

• 𝑥!" ∈ 0, 1 , indicates whether the current task is offloaded
• 𝑥!" = 0 indicates that the task is executed on the MD,
• 𝑥!" = 1 indicates that the task will be offloaded to an edge server for execution

• 𝑦!,&" ∈ {0, 1} represents the edge server to which the task is offloaded for 
execution

• 𝑦!,&" = 1, the task is offloaded to the edge server n ∈ 𝓝 for execution
• The tasks in this model are atomic level tasks
• Each offloaded task can be executed in only one edge server, and the tasks 

offloaded to the edge server for execution are constrained by

∑𝑛 ∈ 𝓝𝑦!,&" = 1,𝑚 ∈ 𝓜, 𝑡 ∈ 𝓣, 𝑥!" = 1



Computation model: Terminal Layer Computing Model

Task Offloading Based on LSTM Prediction and Deep Reinforcement Learning

Reference Model• The task generated by the t time slot must wait until the computation queue is free 
to execute the computation.Then waiting delay is:

• 𝜏!,'$("" = max
"!){+,,,…,".,}

𝑙!
01!2 𝑡3 − 𝑡 + 1

4
(1)

Where,
𝑙!
01!2 𝑡 : completion time slot of the task

processing delay in the computational queue is
• 𝜏!,5%5" = 6"# 7"#

8"$%&'(%
(2)

Where,
𝑓!95:(05: processing capacity (bits/s) of the MD

By 1 and 2,
𝑙!
01!2 𝑡 = min{t + 𝜏!,'$("" , 𝜏!,,5%5" , 𝜏!,!$%" }

energy consumption 𝐸!95:(05 required for the task to be executed locally
𝐸!95:(05= 𝑃!5%5 𝜏!,5%5" + 𝑃!'$(" 𝜏!,'$(""



Computation model: Edge Layer Computing Model

Task Offloading Based on LSTM Prediction and Deep Reinforcement Learning

the processing latency of the task at the edge layer

𝜏!,#$#% = &!" '!"

(!#$%&'$

completion time for edge layer tasks
𝑙!,&
01!2 𝑡 = min{t + 𝜏!,'$("" +𝜏!,,&";$& +𝜏!,&,5%5!

" , t + 𝜏!,!$%" }
Total delay of task on edge server n,

𝜏!,)*+% = min{𝜏!,,-.%% , 𝜏!,,)%/-) , 𝜏!,&,5%53" , 𝜏!,!-$% }

Where ,
𝜏!,,-.%% :waiting delay in the local model
𝜏!,,)%/-):transmission delay
𝜏!,'$("" +𝜏!,,&";$& +𝜏!,&,5%5!

" : time slot required for a task to be offloaded from the endpoint to the edge 
server and executed to completion
𝜏!,!-$% :maximum tolerated delay

energy consumption incurred when tasks are offloaded to the edge server
𝐸!,&
59<5= 𝑃!'$(" 𝜏!,'$("" + 𝑃!,&";$& 𝜏!,&";$& + 𝑃!,&5%5 𝜏!,&,5%5"

Where, 𝑃!'$(" 𝜏!,'$("" ,𝑃!,&";$& 𝜏!,&";$&, 𝑃!,&5%5 𝜏!,&,5%5" denote waiting energy consumption, 
transmission consumption, and edge node computation consumption of the task, 
respectively. 



Goal

Task Offloading Based on LSTM Prediction and Deep Reinforcement Learning

Reference Model
• The overall model of the system is a trade-off between the time delay and energy 

consumption of the task computation to create a minimization cost problem

• The solution goal is to minimize the total cost of the tasks generated in the system 
over time.



Prediction Model: Task Prediction Model

Task Offloading Based on LSTM Prediction and Deep Reinforcement Learning

Reference Model• A decision process is required after task generation, 
and there will be a certain time delay from task 
generation to give a decision.

• Although task generation is a dynamic and random 
process, considering the long-term nature of the 
task, it will have a strong correlation with time.

• Therefore, based on the history of user devices, we 
can predict the tasks that will be generated in the 
next network time slot

• As shown in Figure, we can predict the information 
of the future task by the prediction model, and 
determine the decision and allocate computing 
resources for the task. 

• If the error between the real task and the predicted 
task is within the allowed threshold, the task is 
directly offloaded and computed according to the 
assigned decision information.

• Otherwise, the offloading decision is given using 
the decision model and the information of the new 
task is added to the historical data as training 
samples.

• By training the LSTM network, the weights and 
biases of each gate in the network are updated to 
improve the accuracy of the prediction model.



Prediction Model: Load Prediction Model

Task Offloading Based on LSTM Prediction and Deep Reinforcement Learning

Reference Model•Historical load sequence data is logged and 
used to train an LSTM load prediction model.
•The predicted idle server (𝐻") is obtained 
from the trained model using historical load 
sequence data as input.
•The predicted idle server is used as the 
offload computing node when training the 
DRL.
•The DRL training process involves selecting 
actions with a certain probability (ε).
•When a random action is selected, the size 
comparison between a random value σ and 
the probability ε is used to determine 
whether it is a Random Action or a Prediction 
Action.
•Using Prediction Action with the pre-
selected idle server can reduce the number 
of explorations by the agent and improve 
convergence speed of the algorithm.



Model Training

Task Offloading Based on LSTM Prediction and Deep Reinforcement Learning

Reference Model•The goal of DRL is to maximize the total reward by making optimal actions.
•DRL typically uses ε-greedy strategies for exploration and exploitation.
•Exploration involves random selection of any action with probability in expectation of a higher reward, 
while exploitation selects the action with the largest action estimate.
•The stochastic strategy fully explores the environment state, but requires extensive exploration and low 
data utilization.
•In the model, action selection is the offloading decision of the task, with the action space known whether 
to execute locally or offload to an edge server.
•During stochastic exploration, LSTM is used to predict the load of the edge server and give an optimal 
action.
•The optimal server at the next time slot is predicted based on historical load situation to obtain a higher 
reward and avoid edge server load imbalance.



Offloading Decision

Task Offloading Based on LSTM Prediction and Deep Reinforcement Learning

Reference Model•Each MD generates different types of tasks at different time slots.
•There is a system response delay to the task's decision request and a waiting delay in the queue between 
the generation of a task and giving a decision.
•The edge system processes data from MD and stores processed records.
•Based on historical records, feature information of the next arriving task can be predicted by LSTM.
•The predicted information is given to the reinforcement learning decision model to make an offloading 
scheme for the predicted task.
•When the real task arrives, the offloading decision is given directly if the error between the real task and 
predicted task is within the allowed range.
•If the error is not within the allowed range, the decision is made according to the real task using the 
decision model.
•Predicting the task's information can reduce the task's response and waiting delay in the system.



Algorithm Design: DQN(Deep Q Network)

Task Offloading Based on LSTM Prediction and Deep Reinforcement Learning

Reference Model• A typical DQN model is composed of agent, state, action, and reward
• the policy is generated as a mapping π : S → A of states to actions to obtain a 

reward 𝑅, 𝑟" 𝑠" , 𝑎" , denotes the reward that can be obtained by choosing
action 𝑎" in state 𝑠"

• 𝑅+
= = ∑("?+)A 𝛾"𝑟" 𝑠" , 𝑎" , is the long-term reward

• when the state space and action space dimensions are large, it is difficult to put all 
state-action pairs into Q-table. 

• To solve this problem, the DQN model in DRL combines deep neural networks and 
Q-learning algorithms, and it transforms the Q-table tables into the Q-networks and 
uses neural networks to fit the optimal Q-functions. 

• There are two neural networks with the same structure but different parameters in 
DQN, i.e., the target network and the main network.

• When iteratively updating the network, the algorithm first uses the target network to 
generate the target Q-value as the label f(t), and uses the loss function Loss(θ) to 
update the parameters of the main network.

• After the introduction of the target network, the target Q value generated by the 
target network remains constant in time j, which can reduce the correlation between 
the current Q value and the target Q value and improve the stability of the 
algorithm.



Algorithm Design: Replay Memory

Task Offloading Based on LSTM Prediction and Deep Reinforcement Learning

• In order to break the correlation within the data, DQN uses the experience replay 
method to solve this problem.

• After interacting with the environment, the agent is stored in the replay buffer in the 
form of (𝑠" , 𝑎", 𝑟" , 𝑠"4, ). 

• When executing valuation updates, the agent randomly selects a small set of 
experience tuples (𝑠" , 𝑎", 𝑟" , 𝑠"4, ) from the replay buffer at each time step

• Then the algorithm updates the network parameters by optimizing the loss function

• Using experience replay can not only make training more efficient, but also reduce 
the problem overfitting that generated by the training process



Algorithm Design: Double DQN

Task Offloading Based on LSTM Prediction and Deep Reinforcement Learning

• Double DQN is proposed to solve the overestimation problem. 
• DQN takes the maximum value with max each time, and the difference between 

this maximum value and the weighted average value introduces an error, 
• this will lead to overestimation after a long time accumulation. 
• The Double DQN is composed of two networks, QA and QB ,
• it utilizes these two networks to proceed the state valuation and the action output 

alternatively.
• That is, one network is used to select out the action, and the other network is used 

to update the Q value according to the selected action.
• The Double DQN makes the learning process more stable and reliable by 

separating the two steps of selecting the action corresponding to the Q value and 
evaluating the Q value corresponding to the action, 

• this eliminates the overestimation brought by the greedy algorithm and obtains a 
more accurate Q estimation.

• Instead of finding the label value of parameter update directly from the target 
network, Double DQN finds the action corresponding to the maximum Q value in 
QA and then uses this selected action to compute the target value of parameter 
update in QB .



Algorithm Design: Dueling DQN

Task Offloading Based on LSTM Prediction and Deep Reinforcement Learning

• Compared with DQN, Dueling DQN considers the Q network into two parts

the first part is only related to the state S, and the specific action A to be 
adopted has nothing to do with this part is called the value function part, noted as 
𝑉B (s), 

second part is related to both the state S and action A, this part is called the 
action advantage function, noted as 𝐴B (s, a), the final value function can be 
expressed as

𝑄B s, a = 𝐴B 𝑠, 𝑎 + 𝑉B (s)



Algorithm Design: Decision Model Elements

Task Offloading Based on LSTM Prediction and Deep Reinforcement Learning

• Agent:
1.Each MD is considered as an agent that selects the next action according to the 
current state of the environment and improves the ability of the agent to make 
decisions by continuously interacting with the environment.
2.The goal of the agent is to make the optimal action in any state, thus minimizing the 
total cost in the edge computing system. 

• State: 
1.At the beginning of each time slot, each agent observes the state of the environment
2.It includes the properties of the MD task, the waiting queue state, the transmission 
queue state, bandwidth information, and the real-time load of the edge nodes, all the 
states are closely related to the action to be selected by the agent.

• Action:
1. Based on the current state, the agent first decides whether the newly generated 

task needs to be offloaded for computation.
2. if it needs to be offloaded, it chooses which server to offload 
3. It also chooses the appropriate transmission power when offloading the 

transmission



Algorithm Design: Decision Model Elements

Task Offloading Based on LSTM Prediction and Deep Reinforcement Learning

• Reward:
1. After observing the state at time slot t, the agent takes an action according to 

the policy and then receives a reward at time slot t + 1 while updating the 
scheduling policy network to make an optimal decision in the next time slot.

2. The goal of each agent is to maximize its long-term discounted reward by 
optimizing the mapping from states to actions so that the agent tends to make 
optimal decisions in its continuous interaction with the environment.

3. The reward function is shown below, 

𝔼 Q
"?+

A
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Algorithm: Online Predictive Offloading Algorithm

Task Offloading Based on LSTM Prediction and Deep Reinforcement Learning

1:Input: input different tasks in each time slots 
2: Output: Optimal offloading decision and total cost 
3: Initialize 𝑄C, 𝑄D and s 
4: Initialize replay memory D to capacity N; 
5: for episode = 1, M do 
6: Initialize sequence s, and preprocessed sequence 
7: for t = 1, T do 
8: With probability 1 − ε select a random action or LSTM predict action
9: Generate another random number σ 
10: if σ > ε then 
11: 𝑎" = Random Action Selection(𝑠") 
12: end if 
13: if σ < ε then 
14: 𝑎" = Prediction Action Selection(𝑠") 
15: end if 
16: Otherwise select a by 𝑎∗ = 𝑎𝑟𝑔𝑚𝑎𝑥$𝑄C(s,a) or 𝑏∗ = 𝑎𝑟𝑔𝑚𝑎𝑥$𝑄C(s,a)
17: Execute action 𝑎" and receive 𝑟" and 𝑠"4,
18: Store ( 𝑠" , 𝑎" , 𝑟" , 𝑠"4, ) into D



Algorithm: Online Predictive Offloading Algorithm

Task Offloading Based on LSTM Prediction and Deep Reinforcement Learning

19: Randomly sample a mini-batch of experience from D
20: Preform a gradient descent step on Loss(θ) with respect to the 
network parameters 
21: Choose a, based on 𝑄C(s, •) and 𝑄D (s, •), observe r,s’  
22: if UPDATE(A) then 
23: 𝑄C((s, a) ← 𝑄C((s, a) + ρ[r + γ 𝑚𝑎𝑥$3 𝑄D (s’ , a∗ ) − 𝑄C (s, a)  
24: else if UPDATE(B) then 
25: 𝑄D(s, a) ← 𝑄D(s, a) + ρ[r + γ𝑚𝑎𝑥$3 𝑄C (s’ , b∗ ) − 𝑄D (s, a)  
26: end if 
27: end for 
28: end for 
29: Repeat



Experiment

Task Offloading Based on LSTM Prediction and Deep Reinforcement Learning

Assume,
• We use a dataset from Google Cluster, which includes information about the arrival 

time, data size, processing time, and deadline of the tasks.
• Each type of task processing density, task processing time and the size of data 

volume are related
• preprocess the raw data according to the characteristics of the data and make the 

data size compatible with the established model by normalization and 
denormalization

• Considering following Simulation parameters.



Experiment: Task Prediction

Task Offloading Based on LSTM Prediction and Deep Reinforcement Learning

• A T times history window is used to predict the task at T + 1 times.
• Set the history window to 50 
• Set different thresholds for the optimization target |𝐷" − 𝐷"~ |. 
• The experimental results are shown in Figure .
Observations:
• When the threshold value is set small, the LSTM prediction model describes the 

historical data volume with higher accuracy and can fully explore the changing 
pattern of the data volume

• However, it will introduce a larger prediction overhead, such as will increase the 
training time of the LSTM model.

Effect of threshold size on LSTM prediction task features. (a) 
Threshold size = 0.5 M; (b) Threshold size = 0.1 M.



Experiment: Training Process of LSTM & DRL

Task Offloading Based on LSTM Prediction and Deep Reinforcement Learning

• When performing training on the DRL offload decision model, it takes a longer time 
to explore and select the better result due to the initial random selection action of 
the agent.

• We predict the server load based on the edge server record history data
• Based on the prediction results, the server predicted to be non-idle is selected with 

a certain probability as the offload choice for the next moment
• This solution allows the agent to effectively avoid selecting servers with high loads, 

thus reducing task processing latency and task dropping rates.
• We use LSTM for load prediction and compare the impact of decisions with load 

prediction (LSTM & DRL) and without load prediction (DRL) on offloading 
performance.

• As result, DRL is significantly slower than the LSTM & DRL for load prediction in the 
early stages of training decision making

• after certain training, the average delay, energy consumption, and the number of 
task throw volumes is reduced rapidly by using LSTM for load prediction



Experiment: Results

Task Offloading Based on LSTM Prediction and Deep Reinforcement Learning

Impact of the Tasks Number
• We use different time slots to verify the impact of the number of tasks on the 

system cost, average task delay, and task discard rate.
• Set the time slots in the dataset to T = 100, 200, 500, 1000, and compare the 

performance of DQN, double DQN, dueling DQN, and OPO under different time 
slots

• As the running time of the system increases (i.e., the number of tasks increases), 
OPO reduces at least 6.25% of the average latency, 25.6% of the offloading cost, 
and 31.7% of the task drop rate compared to other algorithms in terms of cost, 
average latency, and task dropped rate.

Impact of the Learning Rate
• We study the convergence of the algorithm at different learning rates (denoted as lr)
• when lr = 0.001, the algorithm is able to achieve a relatively fast convergence rate 

and a small convergence cost
• As the learning rate decreases (i.e., below 0.0001), the convergence is slower and 

takes longer to reach a better value.
• When the learning rate is larger, the convergence cost increases and may even be 

higher than that of the stochastic strategy.



LSTM Prediction: Numerical

Task Offloading Based on LSTM Prediction and Deep Reinforcement Learning

Suppose you are managing a data center that provides cloud computing services to 
customers. You want to use an LSTM model to forecast the hourly CPU utilization of the 
data center for the next 24 hours in order to optimize resource allocation and minimize 
energy consumption.
You have a dataset with hourly CPU utilization data for the past year, which contains 8,760 
data points. You decide to use the first 7,000 data points for training and the remaining 
1,760 data points for validation. You set the batch size to 64 and the number of epochs to 
50.
Assuming the model takes 5 seconds to process one batch of data on a GPU, how long will it 
take to train the model?
Note: This question assumes that the data has already been preprocessed and formatted for 
input into the LSTM model.



LSTM Prediction: Numerical

Task Offloading Based on LSTM Prediction and Deep Reinforcement Learning

Solution:

The time it will take to train the model can be calculated as follows:
• Batch size = 64
• Number of training data points = 7,000
• Number of epochs = 50
• Number of iterations per epoch = Number of training data points / Batch size = 7,000 / 64 

=    109.375 = ~109 (rounded down to nearest integer)
Total number of iterations = Number of epochs x Number of iterations per epoch = 50 x 109

= 5,450
Time taken to process one batch of data on a GPU = 5 seconds

Total time taken to train the model = Time taken per iteration x Total number of iterations = 
(5 seconds x Batch size) x Total number of iterations

= (5 seconds x 64) x 5,450 = 1,760,000 seconds = ~20.4 days (rounded to 1 decimal 
place)

Therefore, it will take approximately 20.4 days to train the LSTM model using the given 
dataset, batch size, and number of epochs.



Summary

Task Offloading Based on LSTM Prediction and Deep Reinforcement Learning

• The lecture considers the computational offloading problem in edge computing.
• The optimization objective is to minimize long-term cost by jointly optimizing task latency, 

energy consumption, and discard rate.
• The model combines the prediction method of LSTM networks and the decision method 

of DQN.
• An OPO algorithm based on deep reinforcement learning is proposed, combining the 

advantages of Double DQN and Dueling DQN.
• The training speed and accuracy of the DRL model are improved using LSTM's prediction 

capability.
• The proposed algorithm reduces the offloading decision delay of tasks in the actual 

inference process.
• Future research will migrate the method to experimental testing and combine the latest 

algorithms and techniques to improve its performance in real IoT application scenarios.
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Preface

Content of this Lecture:

• In this lecture, we will discuss a generic architecture of
cloud-edge computing with the aim of providing both
vertical and horizontal offloading between service nodes.

• An approximation algorithm which applies a branch-and-
bound method to obtain optimal solutions iteratively.

Workload Optimization for Cloud-Edge

NPTEL



Cloud-Edge Computing Environment
Introduction:

• Edge computing is a paradigm that enables virtualized computational and
communication resources to be deployed near the source of service workloads
instead of relying on massive data centers.

• This allows for a reduction in end-to-end delay for accessing these resources, and
makes it more suitable for real-time or delay-sensitive services.

• Additionally, edge computing enables virtualized resources to be geographically
distributed which can address the requirements of mobility and geo-distribution of
mobile and IoT services.

Workload Optimization for Cloud-Edge

Cloud- Edge Computing:
• Cloud-edge computing can efficiently accommodate different types of services,

with end devices and network edges suitable for real-time and delay-sensitive
services and central offices and data centers able to handle services which require a
large amount of computing capacity.

• Integration of cloud and edge computing is proposed to take advantage of the
benefits both technologies offer.

NPTEL



Cloud-Edge Computing Environment

Example:

• A smart home system that utilizes edge computing could provide a more secure,
efficient, and cost-effective solution for controlling and monitoring devices such as
lights, thermostats, cameras, and door locks.

• The system would have a gateway device, such as a router, that would provide a
local connection for each device.

• The gateway would run a virtualized instance of a cloud application, allowing for
local processing of data and commands.

• This would reduce the latency for any commands sent to the devices, providing a
more responsive system.

• Additionally, all data would be stored on the local gateway, providing a more secure
solution than if the data were stored in a cloud.

Workload Optimization for Cloud-Edge

NPTEL



Cloud-Edge Computing Environment

• The concept of cloud-edge computing is an effective way to manage and guarantee
the quality of services while efficiently managing capital and operating expenses.
Research has been conducted to address the requirements of cloud-edge computing
in order to meet the increasing demand for service workloads.

• Cloud-edge computing should consider both vertical and horizontal offloading
between service nodes.

Workload Optimization for Cloud-Edge

Vertical Offloading :
• Vertical offloading refers to the process of transferring tasks or services from cloud or

datacenters to edge nodes in order to reduce latency or increase efficiency. It is also
known as cloud-edge computing and is used to reduce the burden on the cloud.

Horizontal Offloading :
• Horizontal offloading, on the other hand, is the process of transferring tasks or services

between edge nodes in order to reduce latency or increase efficiency. It is used to
improve the capacity of edge nodes and can also be used to reduce the load on the
cloud.

NPTEL



Architecture of Collaborative Cloud-Edge Computing

Workload Optimization for Cloud-Edge

The novel aspect of the design
is that it deploys virtualized
communication and computation
services to four different hierarchical
tiers.
1. First Tier:
• The first tier of the hierarchy is
composed of end devices, such as
smartphones, IP cameras and IoT
sensors, which directly receive
service workloads from their sources.
• A device can by itself locally
process a fraction of the input
workloads or horizontally offload
some of the other workloads to
neighboring devices, using various
short-range wireless transmission
techniques such as LTE D2D, Wi-Fi
Direct, ZigBee, and Bluetooth.

NPTEL



Architecture of Collaborative Cloud-Edge Computing

Workload Optimization for Cloud-Edge

2. Second Tier:
The second tier comprises access network
technologies such as Ethernet, Wi-Fi, and
4G/5G. The edge nodes are capable of
processing part of the workloads.

3. Third Tier:
The third tier consists of horizontal and
vertical offloading from the edge nodes to
the central offices.

4. Fourth Tier:
The fourth tier consists of horizontal
offloading from the central offices to
neighboring central offices and vertical
offloading to a remote federated data
center. The data center is the top-most tier
of the cloud-edge computing hierarchy and
is responsible for processing the remaining
workloads.

NPTEL



Architecture of Collaborative Cloud-Edge Computing

Workload Optimization for Cloud-Edge

This generic architecture is designed to provide a framework for building and 
deploying different types of services. 

For example: 
In the case of a vehicle congestion avoidance service in a smart city:
• IP cameras are used to monitor traffic and detect abnormal behavior that might 
indicate an emergency event. 
• The data captured by the cameras is then sent to an edge server for further 
analysis and processing. 
• The server can then send the refined data to drivers or news outlets throughout 
the city. 
• If there is a lack of computational power, the data can be redirected to other edge 
servers or even to a remote data center. 

The proposed architecture is designed to be flexible and customizable, allowing 
service nodes to be merged or removed as needed. This flexibility allows for specific 
architectures to be built and deployed, such as Edge server, Coordinate device, and 
Device cloud. These architectures are designed to accommodate different types of 
cloud-edge services and applications.

NPTEL



Architecture of Collaborative Cloud-Edge Computing

Workload Optimization for Cloud-Edge

1) Workload Model: 
Let f ∈ F denote an offered service of a cloud-edge computing system. Each 
service f has a computation size ZSf which is the number of mega CPU cycles 
required to process a request for service f. Also, communication size ZNf indicates 
the data size of the request in megabytes. 
Let Iα, Iβ, Iγ, and Iδ be the sets of devices, network edges, central offices and data 
centers of the system, respectively. A service node i ∈ I could process a set of 
services Fi ⊆ F, where I is the set of all service nodes of the system, 
i.e., I = Iα ∪ Iβ ∪ Iγ ∪ Iδ .

a) Local processing: 
Let pf

i denote the workload (in requests per second) of a service f which is locally 
processed by a node i. We have

pfi ={
.

≥ 0, if f ∈ Fi , ∀i ∈ I
= 0, if f ∉ Fi , ∀i ∈ I

NPTEL



Architecture of Collaborative Cloud-Edge Computing

Workload Optimization for Cloud-Edge

b) Sibling node and horizontal offloading:
The set of siblings Hi of a node i∈I consists of service nodes which are located in the
same tier as i, and to which i can horizontally offload its workloads. Also, let xfi,j be the
workload of a service f which is horizontally offloaded from i to a service node j ∈ Hi .

Similarly, let uf
j ,i be the workload of a service f which is horizontally offloaded from j ∈ Hi

to i. Here, we assume that a service node i can offload the workload of a service f to a
sibling node j on condition that j is able to process
f, i.e., f ∈ Fj . In addition, to prevent loop situations, a node cannot receive the workloads
of a service f from its siblings if it already horizontally offloads this type of workload.
Thus, we have

xfi,j = {
ufj ,I = {

≥ 0, if f ∈ Fj , ∀ j ∈ Hi , ∀i ∈ I ,
= 0, if f ∉ Fj , ∀j ∈ Hi , ∀i ∈ I ,

≥ 0, if f ∈ Fj , ∀ j ∈ Hi , ∀i ∈ I ,
= 0, if f ∉ Fj , ∀j ∈ Hi , ∀i ∈ I ,

NPTEL



Architecture of Collaborative Cloud-Edge Computing

Workload Optimization for Cloud-Edge

c) Parent/child node and vertical offloading:
The set of parents Vi of a service node i ∈ I consists of the nodes located in the next tier up
with i, and to which i can vertically offload its workloads. Let yfi ,j be the workload of a
service f which is vertically offloaded from i to a node j ∈ Vi .
The set of children Ki of i consists of the nodes which are located in the right lower tier with
i, and from which i receives incoming workloads. Let vfj ,i denote the workload of a service f
which is vertically offloaded from j ∈ Ki to i. Since a device i∈Iα directly receives service
workloads from external sources, it has no child nodes, i.e., Ki = ∅, ∀i ∈ Iα.
Similarly, a data center i ∈ Iδ is in the most-top tier of the system, and hence has no parent
nodes, i.e., Vi = ∅, ∀i ∈ Iδ.
Opposed to horizontal offloading, a service node can carry out vertical offloading for all
services f ∈ F. In other words, it can dispatch all types of workloads to its parents. Thus, we
have

yfi ,j ≥ 0, ∀ f ∈ F, ∀ j ∈ Vi , ∀ i ∈ Iα ∪ Iβ ∪ Iγ

vfj ,i ≥ 0, ∀ f ∈ F, ∀ j ∈ Ki , ∀ i ∈ Iβ ∪ I γ ∪ Iδ.

Let λfi denote the submitted workload of a service f from external sources to a device i ∈
Iα. We have

λfi ≥ 0, ∀ f ∈ F, ∀ i ∈ Iα.

NPTEL



Architecture of Collaborative Cloud-Edge Computing

Workload Optimization for Cloud-Edge

2) Computation and Communication Delay:

Computation and Communication Delay consists of:
a) Computation delay of device and edge nodes
b) Computation delay of central office and data center Nodes
c) Communication delay of network connections
d) Computation and communication delay of the cloud-edge computing system

3) System total cost:

The total system cost C of a cloud-edge computing is defined as
C = CS + CN

Where CS is Computation cost of service nodes and CN is Communication cost of
network connections.
Since we aim to minimize the total cost of the cloud-edge computing system while
guaranteeing its delay constraints, we hence have an optimization problem.

NPTEL



Algorithm: Branch-and-Bound With Parallel Multi-Start Search Points

Workload Optimization for Cloud-Edge

• We try to solve a problem (P) which has variables that are integers and nonlinear
delay constraints.

• This type of problem is usually very hard to solve, so we are using the Branch-and-
bound algorithm.

•We search the tree looking for solutions with integers and when we find one, we use it
as an upper bound for the original problem.

•We keep searching until all the nodes of the tree have been solved or the search
conditions have been met. NPTEL



ALGORITHM DESIGN - BRANCH-AND-BOUND WITH PARALLEL MULTI-
START SEARCH POINTS

Workload Optimization for Cloud-Edge

1. Attempt to find an initial solution by applying a Feasibility Pump relaxation heuristic

2. If a feasible solution C*(N*,O*) is reached, set it to the current optimal solution C(N,O)

3. Add an NLP sub-problem SP, generated by removing the integrality conditions of variables
ni of the problem P, to the tree data structure T

4. Start the branch-and-bound procedure iteratively solve the sub-problem SP using
Interior/Direct algorithm with parallel multiple initial searching points

5. If a feasible solution C*(N*,O*) is smaller than the current optimal solution C(N,O) and N*
are integers, set C*(N*,O*) to the current optimal solution and prune the node SP, removing
it and its sub-nodes from T

6. If N* is not an integer, perform a branching operation on a variable ni ∈ N* creating two
new sub-problems SSP1 and SPP2 of SP, added to T using the Pseudo-cost branching method

7. If C*(N*,O*)i >= C(N,O), or there is not a feasible solution, prune the node SP

8. Repeat the branch-and-bound procedure until all nodes of T have been resolved

NPTEL



ALGORITHM DESIGN - BRANCH-AND-BOUND WITH PARALLEL MULTI-
START SEARCH POINTS

Workload Optimization for Cloud-Edge
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Experiment:

Workload Optimization for Cloud-Edge

1. Summarize the cloud-edge computing system and its parameters.

2. Compare the cloud-edge computing system with a traditional design (NH) which does not
support horizontal offloading.

3. Adjust the arrival rate to generate workloads whose total demanded computation
capacity is 10%, 50%, and 100% of the maximum capacity of all service nodes.

4. Optimize the system to minimize the total system cost C which consists of the
computation cost of service nodes and the communication cost of network connections.

5. Present results of other metrics such as computation capacity allocation, workload
allocation, and horizontal offloading workloads.NPTEL



Analysis of the result:

Workload Optimization for Cloud-Edge

1. Evaluate performance of cloud-edge computing architecture design and traditional 
design in unbalanced and balanced workload scenarios.

Unbalanced Workload:

• Unbalanced input workload scenarios refer
to scenarios where incoming workloads are
not evenly distributed across cloud
computing and edge computing resources.

• This could occur due to a sudden spike in
requests from one geographical location or
due to a particular type of workload that is
more suited to being processed locally at
the edge.

• In such cases, the cloud resources may be
overloaded, leading to degraded
performance, while the edge resources
may be underutilized.

NPTEL



Analysis of the result:

Workload Optimization for Cloud-Edge

Balanced Workload:

• Balanced input workload scenarios, on the
other hand, refer to scenarios where
incoming workloads are evenly distributed
across cloud computing and edge computing
resources.

• This can be achieved through careful
planning, careful monitoring of incoming
workloads and the use of intelligent
algorithms to route the workloads to the
most appropriate resources.

• This ensures that both cloud and edge
resources are being utilized efficiently,
leading to improved performance and cost
savings.

NPTEL



Analysis of the result:

Workload Optimization for Cloud-Edge

2. Test two service allocation strategies: homogeneous and heterogeneous.

A. Homogeneous Service Allocation Scenario: 

• In a homogeneous service allocation scenario, services are allocated to the same type of 
cloud-edge computing environment and resources. 

• This means that the same type of hardware and software is used across all the cloud-edge 
sites. 

• This type of scenario is useful when the same types of applications are running across 
multiple sites or when the same types of services need to be provided. 

• For example, if the same type of virtual machine is allocated to different tasks on the 
cloud and edge, then it would be a homogeneous service allocation scenario.

NPTEL



Analysis of the result:

Workload Optimization for Cloud-Edge

B.  Heterogeneous Service Allocation Scenario: 

• In a heterogeneous service allocation scenario, services are allocated to different types of 
cloud-edge computing environments and resources. 

• This means that different types of hardware and software are used across different cloud-
edge sites. 

• This type of scenario is useful when different types of applications are running across 
multiple sites or when different types of services need to be provided. 

• This type of scenario also allows for more flexibility in the types of resources that can be 
used, allowing for a more customized experience for each site.

• For example, if different types of virtual machines are allocated to different tasks on the 
cloud and edge, then it would be a heterogeneous service allocation scenario.

NPTEL



Analysis of the result:

Workload Optimization for Cloud-Edge

3. Observe impact of different computation capacity costs on cloud-edge computing 
architecture design and traditional design:

• The impact of different computation capacity costs on cloud-edge computing architecture 
design and traditional design is largely based on the cost efficiency of the solution. 

• Cloud-edge computing architectures typically provide more cost-efficient solutions than 
traditional designs, as they leverage the cost-effectiveness of the cloud while providing 
more localized processing power. 

• For example, if computation capacity costs are high, cloud-edge computing architectures 
can be more cost-effective by utilizing the cloud for its cost-effectiveness and leveraging 
localized processing power for more efficiency. 

• This allows for cost savings in both cloud and edge compute costs, as cloud capacity is 
leveraged for less expensive compute and edge compute resources can be used as 
needed to meet performance and latency requirements.

NPTEL
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Preface

Content of this Lecture:

In this lecture, we will discuss about the Global
states (i.e. consistent, inconsistent), Models of
communication and Snapshot algorithm i.e. Chandy-
Lamport algorithm to record the global snapshot.

Global State and Snapshot
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Snapshots

Global State and Snapshot

Google Images

Here’s Snapshot: Collect at a place Distributed Snapshot
How do you calculate a 
“global snapshot” in this 
distributed system?
What does a “global 
snapshot” even mean?



Vu Pham

In the Cloud: Global Snapshot

In a cloud each application or service is running on 
multiple servers
Servers handling concurrent events and interacting with 
each other 
The ability to obtain a “global photograph” or “Global 
Snapshot” of the system is important
Some uses of having a global picture of the system

Checkpointing: can restart distributed application on failure
Garbage collection of objects: objects at servers that don’t have any other 
objects (at any servers) with pointers to them
Deadlock detection: Useful in database transaction systems
Termination of computation: Useful in batch computing systems

Global State and Snapshot
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Global State: Introduction
Recording the global state of a distributed system on-the-fly is an

important paradigm.

The lack of globally shared memory, global clock and unpredictable
message delays in a distributed system make this problem non-trivial.

This lecture first defines consistent global states and discusses issues
to be addressed to compute consistent distributed snapshots.

Then the algorithm to determine on-the-fly such snapshots is 
presented.

Global State and Snapshot
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System Model

The system consists of a collection of n processes p1, p2, ..., pn
that are connected by channels.

There are no globally shared memory and physical global clock
and processes communicate by passing messages through
communication channels.
Cij denotes the channel from process pi to process pj and its

state is denoted by SCij .
The actions performed by a process are modeled as three types

of events: Internal events, the message send event and the
message receive event.

For a message mij that is sent by process pi to process pj ,
let send (mij ) and rec(mij ) denote its send and receive events.

Global State and Snapshot
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System Model
At any instant, the state of process pi , denoted by LSi , is a result 

of the sequence of all the events executed by pi till that instant.
For an event e and a process state LSi , e∈LSi iff e belongs to the

sequence of events that have taken process pi to state LSi .
For an event e and a process state LSi , eÏLSi iff e does not

belong to the sequence of events that have taken process pi to
state LSi .

For a channel Cij , the following set of messages can be defined
based on the local states of the processes pi and pj
Transit: transit(LSi , LSj ) = {mij |send (mij ) ∈ LSi rec(mij ) Ï LSj }

Global State and Snapshot
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Consistent Global State

The global state of a distributed system is a collection of the local
states of the processes and the channels.

Notationally, global state GS is defined as,
GS = {U i LSi , Ui,j SCij }

A global state GS is a consistent global state iff it satisfies the
following two conditions :

C1: send(mij )∈LSi ⇒ mij∈SCij ⊕ rec(mij )∈LSj
(⊕ is Ex-OR operator)

C2: send(mij )ÏLSi ⇒ mijÏSCij ∧ rec(mij )ÏLSj

Global State and Snapshot



Vu Pham

Global State of a Distributed System

In the distributed execution of Figure 6.2:
A global state GS1 consisting of local states {LS11 , LS23 , LS33 , LS42} is
inconsistent because the state of p2 has recorded the receipt of
message m12, however, the state of p1 has not recorded its send.
On the contrary, a global state GS2 consisting of local states
{LS12 , LS24 , LS34 , LS42} is consistent; all the channels are empty except
c21 that contains message m21.

Global State and Snapshot
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A global state GS = {Ui LSi
xi , Uj,k SCjk

yj,zk } is transitless iff
∀i , ∀ j    :  1 ≤ i, j ≤ n : : SCjk

yj,zk = Ø
Thus, all channels are recorded as empty in a transitless global state.
A global state is strongly consistent iff it is transitless as well as
consistent. Note that in figure 6.2, the global state of local states
{LS12 , LS23 , LS34 , LS42} is strongly consistent.
Recording the global state of a distributed system is an important
paradigm when one is interested in analyzing, monitoring, testing, or
verifying properties of distributed applications, systems, and algorithms.
Design of efficient methods for recording the global state of a distributed
system is an important problem.

Global State of a Distributed System

Global State and Snapshot



Vu Pham

P2

P3

P4

P1

e1
1 e1

2 e1
3 e1

4

e2
1 e2

2 e2
3 e2

4

e3
1 e3

2 e3
3 e3

4 e3
5

e4
1 e4

2

m12 m21

Example:

Figure 6.2:  The space-time diagram of a distributed execution.

Time

GS1 = {LS1
1 , LS2

3 , LS3
3 , LS4

2} is inconsistent
GS2 = {LS1

2 , LS2
4 , LS3

4 , LS4
2} is consistent

GS3 ={LS1
2 , LS2

3 , LS3
4 , LS4

2} is strongly consistent.
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Issues in Recording a Global State
The following two issues need to be addressed:

I1: How to distinguish between the messages to be recorded in
the snapshot from those not to be recorded.
-Any message that is sent by a process before recording its
snapshot, must be recorded in the global snapshot (from C1).
-Any message that is sent by a process after recording its snapshot, 
must not be recorded in the global snapshot (from C2).

I2: How to determine the instant when a process takes its snapshot.

-A process pj must record its snapshot before processing a message
mij that was sent by process pi after recording its snapshot.

Global State and Snapshot
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Example of Money Transfer

Let S1 and S2 be two distinct sites of a distributed system which
maintain bank accounts A and B, respectively. A site refers to a process
in this example. Let the communication channels from site S1 to site S2
and from site S2 to site S1 be denoted by C12 and C21, respectively.
Consider the following sequence of actions, which are also illustrated in
the timing diagram of Figure 6.3:
Time t0: Initially, Account A=$600, Account B=$200, C12 =$0, C21 =$0.
Time t1: Site S1 initiates a transfer of $50 from Account A to Account B.
Account A is decremented by $50 to $550 and a request for $50 credit 
to Account B is sent on Channel C12 to site S2. Account A=$550,                        
Account B=$200, C12 =$50, C21 =$0.

Global State and Snapshot
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Time t2 : Site S2 initiates a transfer of $80 from Account B to 
Account A.
Account B is decremented by $80 to $120 and a request for $80 
credit to Account A is sent on Channel C21 to site S1. Account 
A=$550, Account B=$120, C12 =$50, C21 =$80.
Time t3: Site S1 receives the message for a $80 credit to Account 
A and updates Account A.                                                                 
Account A=$630, Account B=$120, C12 =$50, C21 =$0.
Time t4: Site S2 receives the message for a $50 credit to Account 
B and updates Account B.                                                                  
Account A=$630, Account B=$170, C12 =$0, C21 =$0.

Global State and Snapshot



S2: B

S1: A

$200 $200 $120 $120 $170

$600 $630$550$550 $630

$50

$80

t0 t1 t2 t3 t4

$0 $50$50$50 $0C12

$0 $0$80$0 $0C21

T3: Site S1 receives the message for a 
$80   credit to Account A and updates

T4: Site S2 receives the message for a $50 
credit to Account B and updates Account B
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Suppose the local state of Account A is recorded at time t0 to show
$600 and the local state of Account B and channels C12 and C21 are
recorded at time t2 to show $120, $50, and $80, respectively. Then
the recorded global state shows $850 in the system. An extra $50
appears in the system.
The reason for the inconsistency is that Account A’s state was

recorded before the $50 transfer to Account B using channel C12

was initiated, whereas channel C12’s state was recorded after the
$50 transfer was initiated.
This simple example shows that recording a consistent global state
of a distributed system is not a trivial task. Recording activities of
individual components must be coordinated appropriately.

Global State and Snapshot
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Model of Communication

Recall, there are three models of communication: FIFO, non-FIFO, and
Co.

In FIFO model, each channel acts as a first-in first-out message queue
and thus, message ordering is preserved by a channel.

In non-FIFO model, a channel acts like a set in which the sender process
adds messages and the receiver process removes messages from it in a
random order.

A system that supports causal delivery of messages satisfies the
following property: “For any two messages mij and mkj ,

if send (mij ) → send (mkj ), then rec(mij )→ rec(mkj)”

Global State and Snapshot
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Snapshot algorithm for FIFO channels
Chandy-Lamport algorithm:

The Chandy-Lamport algorithm uses a control message,
called a marker whose role in a FIFO system is to separate
messages in the channels.
After a site has recorded its snapshot, it sends a marker,

along all of its outgoing channels before sending out any
more messages.
A marker separates the messages in the channel into those to

be included in the snapshot from those not to be recorded in
the snapshot.
A process must record its snapshot no later than when it

receives a marker on any of its incoming channels.

Global State and Snapshot
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Chandy-Lamport Algorithm

The algorithm can be initiated by any process by executing the
“Marker Sending Rule” by which it records its local state and
sends a marker on each outgoing channel.
A process executes the “Marker Receiving Rule” on receiving a

marker. If the process has not yet recorded its local state, it
records the state of the channel on which the marker is received
as empty and executes the “Marker Sending Rule” to record its
local state.
The algorithm terminates after each process has received a

marker on all of its incoming channels.
All the local snapshots get disseminated to all other

processes and all the processes can determine the global state.

Global State and Snapshot
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Chandy-Lamport Algorithm
Marker Sending Rule for process i
1) Process i records its state.
2) For each outgoing channel C on which a marker has not been sent, 
i sends a marker along C before i sends further messages along C.

Marker Receiving Rule for process j
On receiving a marker along channel C:

if j has not recorded its state then
Record the state of C as the empty set 
Follow the “Marker Sending Rule”

else
Record the state of C as the set of messages
received along C after j ’s state was recorded
and before j received the marker along C

Global State and Snapshot
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Properties of the recorded global state

The recorded global state may not correspond to any of the
global states that occurred during the computation.

Consider two possible executions of the snapshot 
algorithm (shown in Figure 6.4) for the previous money 
transfer example .

Global State and Snapshot



S2: B

S1: A

$200 $200 $120 $120 $170

$600 $630$550$550 $630

$50

$80

t0 t1 t2 t3 t4

$0 $50$50$50 $0C12

$0 $0$80$0 $0C21

Figure 6.4: Timing diagram of two possible 
executions of the banking example

Execution

Message

Markers

(1st example)

Markers

(2nd example)
Figure 6.4: Timing diagram of two possible executions of the banking example
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Properties of the recorded global state

1. (Markers shown using red dashed-and-dotted arrows.) 

Let site S1 initiate the algorithm just after t1. Site S1 records 
its local state (account A=$550) and sends a marker to site 
S2. The marker is received by site S2 after t4. When site S2 
receives the marker, it records its local state (account 
B=$170), the state of channel C12 as $0, and sends a marker 
along channel C21. When site S1 receives this marker, it 
records the state of channel C21 as $80. The $800 amount in 
the system is conserved in the recorded global state,            

A = $550, B = $170, C12 = $0, C21 = $80

Global State and Snapshot



S2: B

S1: A

$200 $200 $120 $120 $170

$600 $630$550$550 $630

$50

$80

t0 t1 t2 t3 t4

Figure 6.4: Timing diagram of two possible executions of the banking example

B = $170A = $550 C12 = $0 C21 = $80

The $800 amount in the system is conserved in the recorded global state
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Properties of the recorded global state

2. (Markers shown using green dotted arrows.)

Let site S1 initiate the algorithm just after t0 and before sending the 
$50 for S2. Site S1 records its local state (account A = $600) and 
sends a marker to site S2. The marker is received by site S2 between 
t2 and t3. When site S2 receives the marker, it records its local state 
(account B = $120), the state of channel C12 as $0, and sends a 
marker along channel C21. When site S1 receives this marker, it 
records the state of channel C21 as $80. The $800 amount in the 
system is conserved in the recorded global state, 

A = $600, B = $120, C12 = $0, C21 = $80

Global State and Snapshot



S2: B

S1: A

$200 $200 $120 $120 $170

$600 $630$550$550 $630

$50

$80

t0 t1 t2 t3 t4

Figure 6.4: Timing diagram of two possible executions of the banking example

B = $120A = $600 C12 = $0 C21 = $80

The $800 amount in the system is conserved in the recorded global state
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Properties of the recorded global state

In both these possible runs of the algorithm, the recorded global 
states never occurred in the execution.

This happens because a process can change its state asynchronously
before the markers it sent are received by other sites and the other sites
record their states.

But the system could have passed through the recorded global states in
some equivalent executions.
The recorded global state is a valid state in an equivalent execution and
if a stable property (i.e., a property that persists) holds in the system
before the snapshot algorithm begins, it holds in the recorded global
snapshot.

Therefore, a recorded global state is useful in detecting stable
properties.

Global State and Snapshot
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Conclusion
Recording global state of a distributed system is an
important paradigm in the design of the distributed systems
and the design of efficient methods of recording the global
state is an important issue.

This lecture first discussed a formal definition of the global
state of a distributed system and issues related to its
capture; then we have discussed the Chandy-Lamport
Algorithm to record a snapshot of a distributed system.
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Hot Data Analytics for Real-Time 
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Preface
Content of this Lecture:

• In this lecture, we will discuss Real-time data processing
in IoT edge platform with Spark Streaming and Sliding
Window Analytics.

• We will also discuss a case study based on Twitter
Sentiment Analysis using Streaming.

Spark Streaming
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Hot Path

Real-time 
data

Processing

Stream Analytics,
Event Hub,
Functions,
Synapse,

Kafka,
Databricks

Cold Path

Batch 
Processing

Data Lake,
Data Factory,

Synapse,
Databricks,

Azure DBaas

Warm Path

Small Batch 
Processing

Data Lake,
Functions,

Data Factory,
Synapse,

Databricks,
Azure DBaas

IoT platform: Data Flow
Data FlowThe data is routed to one of the three different paths i.e. the hot 

path or the cold path or the warm path. 

Hot path data is the data that is processed in real time. It gets 
processed within seconds of that happening, so when the message 
hits the hot path it's processed and then it's presented to something 
in the consumption layer. The consumption layer consume that data 
immediately once it's been processed in the hot path. 

The output from a hot path to a cold storage system can be written 
that is consumed by an api. The data is written in real time but the 
api might be querying that data that was written an hour ago.

The main thing about hotpath is that you're processing data in real 
time as it's happening however what's consuming that might be 
querying old data that was processed an hour ago. It could be 
something that's processing it and then presenting it in real time such 
as a dashboard that is constantly monitoring things in their present 
state as comes off of the hot path and into the consumption layer.
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IoT platform: Traditional Stream Processing

● Streaming data is received from 
data sources (e.g. live logs, system 
telemetry data, IoT device data, 
etc.) into some data ingestion 
system like Apache Kafka, Amazon 
Kinesis, etc. 

● The data is then processed in 
parallel on a cluster. 

● Results are given to downstream systems like HBase, Cassandra, Kafka, etc.
● There is a set of worker nodes, each of which runs one or more continuous 

operators. Each continuous operator processes the streaming data one record at a 
time and forwards the records to other operators in the pipeline.

● Data is received from ingestion systems via Source operators and given as output to 
downstream systems via sink operators.

● Continuous operators are a simple and natural model. However, this traditional 
architecture has also met some challenges with today’s trend towards larger scale 
and more complex real-time analytics

Hot Data Analytics
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Traditional Stream Processing: Limitations
● Fast Failure and Straggler Recovery In real time, the system must be able to 

fastly and automatically recover from failures and stragglers to provide results 
which is challenging in traditional systems due to the static allocation of 
continuous operators to worker nodes.

● Load Balancing In a continuous operator system, uneven allocation of the 
processing load between the workers can cause bottlenecks. The system 
needs to be able to dynamically adapt the resource allocation based on the 
workload.

● Unification of Streaming, Batch and Interactive Workloads In many use 
cases, it is also attractive to query the streaming data interactively, or to 
combine it with static datasets (e.g. pre-computed models). This is hard in 
continuous operator systems which does not designed to new operators for 
ad-hoc queries. This requires a single engine that can combine batch, 
streaming and interactive queries.

● Advanced Analytics with Machine learning and SQL Queries Complex 
workloads require continuously learning and updating data models, or even 
querying the streaming data with SQL queries. Having a common abstraction 
across these analytic tasks makes the developer’s job much easier.

Hot Data Analytics
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Big Streaming Data Processing 

Hot Data Analytics
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• Scales to hundreds of nodes
• Achieves low latency
• Efficiently recover from failures
• Integrates with batch and interactive processing

How to Process Big Streaming Data

Spark Streaming
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• Build two stacks – one for batch, one for streaming
• Often both process same data

• Existing frameworks cannot do both
• Either, stream processing of 100s of MB/s with low 

latency
• Or, batch processing of TBs of data with high latency

What people have been doing?

Hot Data Analytics
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• Extremely painful to maintain two different stacks
• Different programming models
• Doubles implementation effort
• Doubles operational effort

What people have been doing?

Hot Data Analytics
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• Traditional processing model
• Pipeline of nodes
• Each node maintains mutable state
• Each input record updates the state 

and new records are sent out 

• Mutable state is lost if node fails

• Making stateful stream processing fault-
tolerant is challenging! 

Fault-tolerant Stream Processing 

Hot Data Analytics
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• Data Streaming is a technique for transferring data so that 
it can be processed as a steady and continuous stream. 

• Streaming technologies are becoming increasingly 
important with the growth of the Internet.

What is Streaming?

Hot Data Analytics
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Spark Ecosystem

Hot Data Analytics
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• Extends Spark for doing big data stream processing
• Project started in early 2012, alpha released in Spring 2017 with Spark 0.7
• Moving out of alpha in Spark 0.9
• Spark Streaming has support built-in to consume from Kafka, Flume, 

Twitter, ZeroMQ, Kinesis, and TCP/IP sockets.
• In Spark 2.x, a separate technology based on Datasets, called Structured 

Streaming, that has a higher-level interface is also provided to support 
streaming.

What is Spark Streaming?

Hot Data Analytics
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What is Spark Streaming?
• Framework for large scale stream processing 

• Scales to 100s of nodes
• Can achieve second scale latencies
• Integrates with Spark’s batch and interactive 

processing
• Provides a simple batch-like API for implementing 

complex algorithm
• Can absorb live data streams from Kafka, Flume, 

ZeroMQ, etc.

Hot Data Analytics
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• Receive data streams from input sources, process 
them in a cluster, push out to databases/ dashboards

• Scalable, fault-tolerant, second-scale latencies

What is Spark Streaming?

Hot Data Analytics
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• Many big-data applications need to process large data 
streams in realtime

Why Spark Streaming ?

Website monitoring
Fraud detection

Ad monetization

Hot Data Analytics
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Why Spark Streaming ?
▪ Many important applications must process large streams of live data 

and provide results in near-real-time
- Social network trends
- Website statistics
- Intrustion detection systems
- etc.

▪ Require large clusters to handle workloads

▪ Require latencies of few seconds

Hot Data Analytics
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• We can use Spark Streaming to stream real-time data
from various sources like Twitter, Stock Market and
Geographical Systems and perform powerful analytics to
help businesses.

Why Spark Streaming ?

Hot Data Analytics
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Need a framework for big data 
stream processing that

Why Spark Streaming?

Website monitoring
Fraud detection

Ad monetization
Scales to hundreds of nodes

Achieves second-scale latencies

Efficiently recover from failures

Integrates with batch and interactive processing

Hot Data Analytics
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• Scaling: Spark Streaming can easily scale to hundreds of nodes.
• Speed: It achieves low latency.
• Fault Tolerance: Spark has the ability to efficiently recover from 

failures.
• Integration: Spark integrates with batch and real-time processing.
• Business Analysis: Spark Streaming is used to track the behavior of 

customers which can be used in business analysis

Spark Streaming Features

Hot Data Analytics
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Requirements

▪ Scalable to large clusters 

▪ Second-scale latencies

▪ Simple programming model 

▪ Integrated with batch & interactive processing

▪ Efficient fault-tolerance in stateful computations

Hot Data Analytics
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Batch Processing
• Ability to process and analyze data at-rest (stored data)
• Request-based, bulk evaluation and short-lived processing
• Enabler for Retrospective, Reactive and On-demand Analytics

Stream Processing
• Ability to ingest, process and analyze data in-motion in real- or near-

real-time
• Event or micro-batch driven, continuous evaluation and long-lived 

processing
• Enabler for real-time Prospective, Proactive and Predictive 

Analytics for Next Best Action
Stream Processing + Batch Processing = All Data Analytics

real-time (now)           historical (past)

Batch vs Stream Processing

Hot Data Analytics
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• Many environments require processing same data in live 
streaming as well as batch post-processing

• Existing frameworks cannot do both
• Either, stream processing of 100s of MB/s with low latency 
• Or, batch processing of TBs of data with high latency

• Extremely painful to maintain two different  stacks 
• Different programming models
• Double implementation effort

Integration with Batch Processing

Hot Data Analytics
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• Traditional model

• Mutable state is lost if node fails

• Making stateful stream processing fault tolerant is 
challenging!

Stateful Stream Processing

– Processing pipeline of nodes
– Each node maintains mutable state
– Each input record updates the state 

and new records are sent out 

mutable state

node 1

node 3

input 
records

node 2

input 
records

Hot Data Analytics
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Modern Data Applications approach to Insights

Hot Data Analytics
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• Storm
• Replays record if not processed by a node
• Processes each record at least once
• May update mutable state twice!
• Mutable state can be lost due to failure!

• Trident – Use transactions to update state
• Processes each record exactly once
• Per-state transaction to external database is slow

Existing Streaming Systems

27Hot Data Analytics
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Run a streaming computation as a series of very small, 
deterministic batch jobs

How does Spark Streaming work?

28

Spark

Spark
Streaming

batches of X seconds

live data stream

processed results

▪ Chop up the live stream into 
batches of X seconds 

▪ Spark treats each batch of data as 
RDDs and processes them using 
RDD operations

▪ Finally, the processed results of 
the RDD operations are returned 
in batches

Hot Data Analytics
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Run a streaming computation as a series of very small, 
deterministic batch jobs

How does Spark Streaming work?

29

▪ Batch sizes as low as ½ second, 
latency of about 1 second

▪ Potential for combining batch 
processing and streaming 
processing in the same system Spark

Spark
Streaming

batches of X seconds

live data stream

processed results

Hot Data Analytics
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Word Count with Kafka

Hot Data Analytics
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Any Spark Application

Hot Data Analytics
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Spark Streaming Application: Receive data

Hot Data Analytics
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Spark Streaming Application: Process data

Hot Data Analytics
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• Micro batch architecture.
• Operates on interval of time
• New batches are created at

regular time intervals.
• Divides received time batch

into blocks for parallelism
• Each batch is a graph that

translates into multiple jobs
• Has the ability to create

larger size batch window as
it processes over time.

Spark Streaming Architecture

Hot Data Analytics
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Spark Streaming Workflow

Hot Data Analytics

• Spark Streaming workflow has four high-level stages. The first is to stream
data from various sources. These sources can be streaming data sources like
Akka, Kafka, Flume, AWS or Parquet for real-time streaming. The second type
of sources includes HBase, MySQL, PostgreSQL, Elastic Search, Mongo DB and
Cassandra for static/batch streaming.

• Once this happens, Spark can be used to perform Machine Learning on the
data through its MLlib API. Further, Spark SQL is used to perform further
operations on this data. Finally, the streaming output can be stored into
various data storage systems like HBase, Cassandra, MemSQL, Kafka, Elastic
Search, HDFS and local file system.
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Spark Streaming Workflow

Hot Data Analytics
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val tweets = ssc.twitterStream()

Example 1 – Get hashtags from Twitter 

DStream: a sequence of RDDs representing a stream of data

batch @ t+1batch @ t batch @ t+2

tweets DStream

stored in memory as an RDD 
(immutable, distributed)

Twitter Streaming API

Hot Data Analytics
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val tweets = ssc.twitterStream()
val hashTags = tweets.flatMap(status => getTags(status))

Example 1 – Get hashtags from Twitter 

flatMap flatMap flatMap

…

transformation: modify data in one DStream to create another DStream new DStream

new RDDs created 
for every batch 

batch @ t+1batch @ t batch @ t+2

tweets DStream

hashTags Dstream
[#cat, #dog, … ]

Hot Data Analytics
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val tweets = ssc.twitterStream()
val hashTags = tweets.flatMap(status => getTags(status))
hashTags.saveAsHadoopFiles("hdfs://...")

Example 1– Get hashtags from Twitter  

output operation: to push data to external storage

flatMap flatMap flatMap

save save save

batch @ t+1batch @ t batch @ t+2
tweets DStream

hashTags DStream

every batch 
saved to HDFS

Hot Data Analytics
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val tweets = ssc.twitterStream()
val hashTags = tweets.flatMap(status => getTags(status))
hashTags.foreach(hashTagRDD => { ... })

Example 1 – Get hashtags from Twitter  

foreach: do whatever you want with the processed data

flatMap flatMap flatMap

foreach foreach foreach

batch @ t+1batch @ t batch @ t+2
tweets DStream

hashTags DStream

Write to a database, update analytics 
UI, do whatever you want

Hot Data Analytics
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Scala
val tweets = ssc.twitterStream()
val hashTags = tweets.flatMap(status => getTags(status))
hashTags.saveAsHadoopFiles("hdfs://...")

Java

JavaDStream<Status> tweets = ssc.twitterStream()
JavaDstream<String> hashTags = tweets.flatMap(new Function<...> {  })
hashTags.saveAsHadoopFiles("hdfs://...")

Java Example

Function object

Hot Data Analytics
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Fault-tolerance
▪ RDDs are remember the

sequence of operations that
created it from the original
fault-tolerant input data

▪ Batches of input data are
replicated in memory of
multiple worker nodes,
therefore fault-tolerant

▪ Data lost due to worker
failure, can be recomputed
from input data

input data 
replicated
in memory

flatMap

lost partitions 
recomputed on 
other workers

tweets
RDD

hashTags
RDD

Hot Data Analytics
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Key concepts
• DStream – sequence of RDDs representing a stream of data

• Twitter, HDFS, Kafka, Flume, ZeroMQ, Akka Actor, TCP 
sockets

• Transformations – modify data from on DStream to another
• Standard RDD operations – map, countByValue, reduce, 

join, …
• Stateful operations – window, countByValueAndWindow, …

• Output Operations – send data to external entity
• saveAsHadoopFiles – saves to HDFS
• foreach – do anything with each batch of results

Hot Data Analytics
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Example 2 – Count the hashtags

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)
val hashTags = tweets.flatMap (status => getTags(status))
val tagCounts = hashTags.countByValue()

flatMa
p

map

reduceByKey

flatMa
p

map

reduceByKey

…

flatMa
p

map

reduceByKey

batch @ 
t+1batch @ t batch @ 

t+2

hashTags

tweets

tagCounts
[(#cat, 10), (#dog, 25), ... ]

Hot Data Analytics
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DStream of data

val tweets = ssc.twitterStream()
val hashTags = tweets.flatMap(status => getTags(status))
val tagCounts = hashTags.window(Minutes(1), 
Seconds(5)).countByValue()

Example 3 – Count the hashtags over last 10 mins

sliding window 
operation window length sliding interval

window length

sliding interval

Hot Data Analytics
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tagCounts

Example 3 – Counting the hashtags over last 10 mins

val tagCounts = hashTags.window(Minutes(10), Seconds(1)).countByValue()

hashTag
s

t-1 t t+1 t+2 t+3

sliding window

countByValu
e count over all 

the data in the 
window
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?

Smart window-based countByValue

val tagCounts = hashtags.countByValueAndWindow(Minutes(10), Seconds(1))

hashTag
s

t-1 t t+1 t+2 t+3

+
+
–

countByValu
e add the counts 

from the new 
batch in the 

window
subtract the 
counts from 
batch before 
the window

tagCounts

Hot Data Analytics
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Smart window-based reduce

• Technique to incrementally compute count generalizes 
to many reduce operations

• Need a function to “inverse reduce” (“subtract” for 
counting)

• Could have implemented counting as:
hashTags.reduceByKeyAndWindow(_ + _, _ - _, 
Minutes(1), …)

48
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Specify function to generate new state based on 
previous state and new data

• Example: Maintain per-user mood as state, and update it 
with their tweets

def updateMood(newTweets, lastMood) => newMood

moods = tweetsByUser.updateStateByKey(updateMood _)

Arbitrary Stateful Computations

Hot Data Analytics
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Inter-mix RDD and DStream operations!
• Example: Join incoming tweets with a spam HDFS file to 

filter out bad tweets

tweets.transform(tweetsRDD => {
tweetsRDD.join(spamHDFSFile).filter(...)

})

Arbitrary Combinations of Batch and Streaming 
Computations

Hot Data Analytics
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Spark Streaming-Dstreams, Batches and RDDs

• These steps repeat for each batch.. Continuously

• Because we are dealing with Streaming data. Spark 
Streaming has the ability to “remember” the previous 
RDDs…to some extent.

Hot Data Analytics
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• Online machine learning
• Continuously learn and update data models 

(updateStateByKey and transform)

• Combine live data streams with historical data
• Generate historical data models with Spark, etc.
• Use data models to process live data stream (transform)

• CEP-style processing
• window-based operations (reduceByWindow, etc.)

DStreams + RDDs = Power

Hot Data Analytics
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• Every interval, an RDD graph is computed from the DStream 
graph

• For each output operation, a Spark action is created
• For each action, a Spark job is created to compute it

From DStreams to Spark Jobs

Hot Data Analytics
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• Out of the box, we provide
• Kafka, HDFS, Flume, Akka Actors, Raw TCP sockets, 

etc.

• Very easy to write a receiver for your own data source

• Also, generate your own RDDs from Spark, etc. and 
push them in as a “stream”

Input Sources

Hot Data Analytics
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Current Spark Streaming I/O

Hot Data Analytics
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• Different classes for 
different languages 
(Scala, Java)

• Dstream has 36 value 
members

• Multiple types of 
Dstreams

• Separate Python API

Dstream Classes

Hot Data Analytics
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Spark Streaming Operations

Hot Data Analytics
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• Batches of input data are replicated in memory for fault-
tolerance

• Data lost due to worker failure, can be recomputed from 
replicated input data

Fault-tolerance

input data 
replicated
in memory

flatMap

lost partitions 
recomputed on 
other workers

tweets
RDD

hashTags
RDD

▪ All transformations are fault-
tolerant, and exactly-once 
transformations

Hot Data Analytics
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Fault-tolerance

Hot Data Analytics
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Can process 60M records/sec (6 GB/sec) on 
100 nodes at sub-second latency

Performance
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Higher throughput than Storm
• Spark Streaming: 670k records/sec/node
• Storm: 115k records/sec/node
• Commercial systems: 100-500k records/sec/node

Comparison with other systems
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Recovers from faults/stragglers within 1 sec

Fast Fault Recovery

Hot Data Analytics
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Traffic transit time estimation using online machine 
learning on GPS observations

Real time application: Mobile Millennium Project
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▪ Markov-chain Monte Carlo 
simulations on GPS 
observations

▪ Very CPU intensive, requires 
dozens of machines for useful 
computation

▪ Scales linearly with cluster size
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Vision - one stack to rule them all

Hot Data Analytics
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Spark program vs Spark Streaming program

Spark Streaming program on Twitter stream
val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)
val hashTags = tweets.flatMap (status => getTags(status))
hashTags.saveAsHadoopFiles("hdfs://...")

Spark program on Twitter log file
val tweets = sc.hadoopFile("hdfs://...")
val hashTags = tweets.flatMap (status => getTags(status))
hashTags.saveAsHadoopFile("hdfs://...")

Hot Data Analytics
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• Explore data 
interactively to 
identify problems

• Use same code in 
Spark for processing 
large logs

• Use similar code in 
Spark Streaming for 
realtime processing

Advantage of an unified stack

$ ./spark-shell
scala> val file = sc.hadoopFile(“smallLogs”)
...
scala> val filtered = file.filter(_.contains(“ERROR”))
...
scala> val mapped = filtered.map(...)
...object ProcessProductionData {

def main(args: Array[String]) {
val sc = new SparkContext(...)
val file = sc.hadoopFile(“productionLogs”)
val filtered = file.filter(_.contains(“ERROR”))
val mapped = filtered.map(...)
...

}
} object ProcessLiveStream {

def main(args: Array[String]) {
val sc = new StreamingContext(...)
val stream = sc.kafkaStream(...)
val filtered = stream.filter(_.contains(“ERROR”))
val mapped = filtered.map(...)
...

}
}

Hot Data Analytics
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• Spark 0.8.1 
• Marked alpha, but has been quite stable 
• Master fault tolerance – manual recovery

• Restart computation from a checkpoint file saved to HDFS

• Spark 0.9 in Jan 2014 – out of alpha!
• Automated master fault recovery
• Performance optimizations
• Web UI, and better monitoring capabilities

• Spark v2.4.0  released in November 2, 2018

Roadmap

Hot Data Analytics
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Sliding Window Analytics

Hot Data Analytics
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Spark Streaming Windowing Capabilities
• Parameters

• Window length: duration of the window
• Sliding interval: interval at which the window operation is

performed
• Both the parameters must be a multiple of the batch interval

• A window creates a new DStream with a larger batch size

Hot Data Analytics



Vu Pham

Spark Window Functions for DataFrames and SQL

Introduced in Spark 1.4, Spark window functions improved the expressiveness of
Spark DataFrames and Spark SQL. With window functions, you can easily calculate a
moving average or cumulative sum, or reference a value in a previous row of a
table. Window functions allow you to do many common calculations with
DataFrames, without having to resort to RDD manipulation.

Aggregates, UDFs vs. Window functions

Window functions are complementary to existing DataFrame operations:
aggregates, such as sum and avg, and UDFs. To review, aggregates calculate one
result, a sum or average, for each group of rows, whereas UDFs calculate one result
for each row based on only data in that row. In contrast, window functions calculate
one result for each row based on a window of rows. For example, in a moving
average, you calculate for each row the average of the rows surrounding the current
row; this can be done with window functions.

Spark Window Functions

Hot Data Analytics
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• Let us dive right into the moving average example. In this example 
dataset, there are two customers who have spent different amounts 
of money each day.

• // Building the customer DataFrame. All examples are written in 
Scala with Spark 1.6.1, but the same can be done in Python or SQL.

val customers = sc.parallelize(List(("Alice", "2016-05-01", 50.00),
("Alice", "2016-05-03", 45.00),
("Alice", "2016-05-04", 55.00),
("Bob", "2016-05-01", 25.00),
("Bob", "2016-05-04", 29.00),
("Bob", "2016-05-06", 27.00))).

toDF("name", "date", "amountSpent")

Moving Average Example

Hot Data Analytics
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// Import the window functions.
import org.apache.spark.sql.expressions.Window
import org.apache.spark.sql.functions._

// Create a window spec.
val wSpec1 = 
Window.partitionBy("name").orderBy("date").rowsBetween(-1, 1)

• In this window spec, the data is partitioned by customer. Each 
customer’s data is ordered by date. And, the window frame is 
defined as starting from -1 (one row before the current row) and 
ending at 1 (one row after the current row), for a total of 3 rows in 
the sliding window.

Moving Average Example

Hot Data Analytics
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// Calculate the moving average
customers.withColumn( "movingAvg",

avg(customers("amountSpent")).over(wSpec1) ).show()

This code adds a new column, “movingAvg”, by applying the avg 
function on the sliding window defined in the window spec:

Moving Average Example

Hot Data Analytics
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• As shown in the above example, there are two parts to applying a window function: (1) 
specifying the window function, such as avg in the example, and (2) specifying the 
window spec, or wSpec1 in the example. For (1), you can find a full list of the window 
functions here:

• https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.function
s$

• You can use functions listed under “Aggregate Functions” and “Window Functions”.

• For (2) specifying a window spec, there are three components: partition by, order by, and 
frame.

1. “Partition by” defines how the data is grouped; in the above example, it was by 
customer. You have to specify a reasonable grouping because all data within a group will 
be collected to the same machine. Ideally, the DataFrame has already been partitioned by 
the desired grouping.

2. “Order by” defines how rows are ordered within a group; in the above example, it 
was by date.

3. “Frame” defines the boundaries of the window with respect to the current row; in the 
above example, the window ranged between the previous row and the next row.

Window function and Window Spec definition

Hot Data Analytics
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Next, let us calculate the cumulative sum of the amount spent per customer.
// Window spec: the frame ranges from the beginning (Long.MinValue) to 
the current row (0).
val wSpec2 = 
Window.partitionBy("name").orderBy("date").rowsBetween(Long.MinValue, 0)
// Create a new column which calculates the sum over the defined window 
frame.
customers.withColumn( "cumSum",
sum(customers("amountSpent")).over(wSpec2)  ).show()

Cumulative Sum
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In the next example, we want to see the amount spent by the customer 
in their previous visit.
// Window spec. No need to specify a frame in this case.
val wSpec3 = Window.partitionBy("name").orderBy("date")

// Use the lag function to look backwards by one row.
customers.withColumn("prevAmountSpent",
lag(customers("amountSpent"), 1).over(wSpec3) ).show()

Data from previous row

Hot Data Analytics



Vu Pham

• In this example, we want to know the order of a customer’s 
visit (whether this is their first, second, or third visit).

// The rank function returns what we want.
customers.withColumn( "rank", rank().over(wSpec3) ).show()

Rank

Hot Data Analytics
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Case Study: Twitter Sentiment 
Analysis with Spark Streaming 
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• Trending Topics can be used to create campaigns and attract 
larger audience. Sentiment Analytics helps in crisis management, 
service adjusting and target marketing.

• Sentiment refers to the emotion behind a social media mention 
online.

• Sentiment Analysis is categorising the tweets related to particular 
topic and performing data mining using Sentiment Automation 
Analytics Tools.

• We will be performing Twitter Sentiment Analysis as an Use Case 
or Spark Streaming.

Case Study: Twitter Sentiment Analysis
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• To design a Twitter Sentiment Analysis System where we 
populate real-time sentiments for crisis management, service 
adjusting and target marketing.

Sentiment Analysis is used to:
• Predict the success of a movie
• Predict political campaign success
• Decide whether to invest in a certain company
• Targeted advertising
• Review products and services

Problem Statement

Hot Data Analytics
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Importing Packages
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Twitter Token Authorization

Hot Data Analytics
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DStream Transformation
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Results
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Sentiment for Trump
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• As we have seen from our Sentiment Analysis demonstration,
we can extract sentiments of particular topics just like we did
for ‘Trump’. Similarly, Sentiment Analytics can be used in crisis
management, service adjusting and target marketing by
companies around the world.

• Companies using Spark Streaming for Sentiment Analysis have
applied the same approach to achieve the following:

1. Enhancing the customer experience
2. Gaining competitive advantage
3. Gaining Business Intelligence
4. Revitalizing a losing brand

Applying Sentiment Analysis
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• https://spark.apache.org/streaming/

• Streaming programming guide –
spark.incubator.apache.org/docs/latest/streaming-
programming-guide.html

• https://databricks.com/speaker/tathagata-das

References

Hot Data Analytics
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▪ Stream processing framework that is ...

- Scalable to large clusters 
- Achieves second-scale latencies
- Has simple programming model 
- Integrates with batch & interactive workloads
- Ensures efficient fault-tolerance in stateful 

computations

Conclusion

Hot Data Analytics
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Introduction to MQTT and Kafka 
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Introduction to MQTT and Kafka
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Preface
Content of this Lecture:

Define MQTT and Kafka

Integration of MQTT and Kafka

Describe the Kafka data model

Describe Kafka architecture

List the types of messaging systems

Explain the importance of brokers

Introduction to MQTT and Kafka
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Introduction: Internet of Things with MQTT
MQTT (Message Queuing Telemetry Transport):

MQTT is a widely used ISO standard (ISO/IEC PRF 20922) client-
server messaging protocol. 

The protocol is lightweight and implements a publish/subscribe 
communication pattern. 

MQTT is stable in unreliable environments of high latency and 
low network bandwidth which makes it a perfect match for 
Internet of Things scenarios like connected cars or smart homes. 

MQTT has many implementations of client libraries and brokers 
like Mosquitto, HiveMQ, JoramMQ, etc and its primary purpose 
is to connect millions of devices — especially in the IoT context.

Introduction to MQTT and Kafka
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Introduction: Internet of Things with MQTT
MQTT (Message Queuing Telemetry Transport):

Introduction to MQTT and Kafka
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Introduction: Internet of Things Streaming using Kafka

Introduction to MQTT and Kafka

• Kafka was initially created by LinkedIn and later distributed on the 
Apache License. Kafka is still open-source. Additionally, a company 
named Confluent is offering Confluent Platform with Kafka as a 
managed service providing several additional features around like 
Schema Registry, REST & MQTT Proxies, and specific connectors.

• Kafka implements an own protocol under the hood, following a 
publish/subscribe pattern which structures communication into 
topics — similar to MQTT. However, that's the only thing both have 
in common. NPTEL
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Introduction: Internet of Things Streaming using Kafka

Introduction to MQTT and Kafka

• Kafka is designed to be deployable as a cluster of multiple 
nodes which makes it excellent for scaling. Additionally, it 
offers persistent storage of messages and integration to 
business on-premise or cloud data canters and 
applications.

• Its main use cases are distributed event streaming and 
storage/consumption of massive amounts of data as 
messages. 

• It makes Kafka a perfect match for scenarios that require 
high-performance, scalable data pipelines, or data 
integration across multiple systems.

NPTEL
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Introduction: Internet of Things Streaming using Kafka

Introduction to MQTT and Kafka
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Kafka is a high-performance, real-time messaging 
system. It is an open source tool and is a part of Apache 
projects. 

The characteristics of Kafka are:

1. It is a distributed and partitioned messaging system.
2. It is highly fault-tolerant
3. It is highly scalable.
4. It can process and send millions of messages per second 

to several receivers.

Introduction to MQTT and Kafka

Introduction: Internet of Things Streaming using Kafka
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Kafka can be used for various purposes in an organization, 
such as:

Kafka Use Cases

Introduction to MQTT and Kafka
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Apache Kafka: a Streaming Data Platform

Ø Most of what a business does can be thought as event 
streams. They are in a

• Retail system: orders, shipments, returns, …
• Financial system: stock ticks, orders, …
• Web site: page views, clicks, searches, …
• IoT: sensor readings, …

and so on.

Introduction to MQTT and Kafka
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Why using both MQTT and Kafka?

If you need to build performant data pipelines, store massive amounts 
of messages, or integrate different business applications or data 
centers in real-time — use Kafka. 

If you have lots of small applications or devices, running in unwired or 
unstable environments, exchanging messages in real-time on 
numerous different channels/topics — use MQTT. 

There are two things that make it quite obvious to combine the two 
technologies: 
• the communication structure in topics and 
• the publish/subscribe message exchange pattern. 
But in which scenarios would you use both Kafka and MQTT together? 
Lets see in further slides.

Introduction to MQTT and Kafka
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Use Case: Why using both MQTT and Kafka?

The most popular use case is probably the integration of MQTT devices with backend 
applications for monitoring, control, or analytics running in the companies' data centers 
or the cloud. 

Imagine you want to send data from different IoT devices to a backend application for 
machine learning based pattern recognition or analytics. At the same time, the backend 
application should send back messages to control the IoT device based on the central 
insights (e.g. send control messages to avoid a device from overheating, …). 

Consequently, MQTT and Kafka are a perfect combination for end-to-end IoT 
integration from the edge to the business applications and data centers. 

The IoT/edge devices can connect to the MQTT broker via MQTT protocol (with all the 
advantages it has in these environments). 

The messages are then forwarded to Kafka to distribute them into the subscribing 
business applications and the other way around.

Introduction to MQTT and Kafka
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Integration between MQTT and Kafka

1. IoT device to publish two messages
2. Build an MQTT Bridge to Kafka
3. Connect to Kafka via MQTT proxy
4. Connect MQTT Broker to Kafka via Kafka Connect
5. Connect MQTT Broker to Kafka via MQTT Broker extension

Introduction to MQTT and Kafka
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Integration between MQTT and Kafka

Introduction to MQTT and Kafka

IoT device to publish two messages: 

NPTEL
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Integration between MQTT and Kafka

Introduction to MQTT and Kafka

IoT device to publish two messages: 

The IoT device can publish two messages — one to the topic of the MQTT 
broker and a second one to the topic of the Kafka broker. This has several 
drawbacks:
• The IoT device needs to check the delivery guarantees of both protocols and 

it must be ensured that the message is received by both or not at all. A lot 
of investment in error handling must be done.

• Additionally, most IoT devices are lightweight. Sending two messages with 
two different protocols is a huge overhead. Most IoT devices might have not 
even the possibility to connect to Kafka natively.

• Kafka is not designed to handle a massive amount of different topics with 
millions of different devices. A full-blown IoT scenario with this integration 
option could lead to issues on the Kafka broker side.

NPTEL
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Integration between MQTT and Kafka

Introduction to Kafka

Scenario 1: Build an MQTT Bridge to Kafka
Another alternative of connecting Kafka and MQTT is building a custom application as a 
bridge between the MQTT and Kafka broker. This application needs to use an MQTT client 
library to connect to the MQTT broker and a Kafka client library to connect to the Kafka broker 
and consequently subscribe to the relevant topics and publish the messages in the desired 
direction. 

In this context resilience and fault tolerance are very important, but hard to reach, especially 
if an end-to-end guaranty of at least once or exactly once message delivery is required. The 
custom bridge application can only acknowledge the MQTT receipt if it successfully forwarded 
the message to the Kafka broker or need to buffer the messages in case something goes 
wrong. A significant development effort in error handling and functionality similar to 
technology already found in Kafka an/or MQTT broker is necessary.NPTEL
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Integration between MQTT and Kafka

Introduction to MQTT and Kafka

Scenario 2: Connect to Kafka via MQTT proxy

If the only requirement is to persist MQTT messages or integrate them with legacy 
systems, this option could be a good fit. In this case, the Confluent Kafka MQTT 
proxy can be used by the IoT devices to directly publish the messages to Kafka. An 
MQTT broker would be additional overhead and would be simply removed from the 
picture.

NPTEL
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Integration between MQTT and Kafka

Introduction to MQTT and Kafka

Scenario 3: Connect MQTT Broker to Kafka via Kafka Connect
Kafka Connect is an extension framework providing different connectors for data 
ingestion to or data query from Kafka for multiple technologies or software vendors. 
Kafka Connect provides an MQTT connector out of the box which represents an 
MQTT client that can subscribe to the MQTT brokers topics.

NPTEL
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Integration between MQTT and Kafka

Introduction to MQTT and Kafka

Scenario4 : Connect MQTT Broker to Kafka via MQTT Broker extension
Another approach is to implement a Kafka client as an extension on the MQTT broker. 
This allows the MQTT broker to ingest the IoT device messages to the Kafka 
broker/cluster.
Some MQTT providers like EMQ or HiveMQ have already implemented the bridging of 
MQTT broker and Kafka by extending their brokers with a native Kafka protocol.

NPTEL
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Kafka can be used to aggregate user activity data such as clicks,
navigation, and searches from different websites of an
organization; such user activities can be sent to a real-time
monitoring system and hadoop system for offline processing.

Aggregating User Activity Using Kafka-Example

Introduction to MQTT and Kafka
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The Kafka data model consists of messages and topics.
Messages represent information such as, lines in a log file, a row of stock 
market data, or an error message from a system.
Messages are grouped into categories called topics.                                            
Example: LogMessage and Stock Message.
The processes that publish messages into a topic in Kafka are known as 
producers.
The processes that receive the messages from a topic in Kafka are known as 
consumers.
The processes or servers within Kafka that process the messages are known as 
brokers.
A Kafka cluster consists of a set of brokers that process the messages.

Kafka Data Model

Introduction to Kafka
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A topic is a category of messages in Kafka.
The producers publish the messages into topics.
The consumers read the messages from topics.
A topic is divided into one or more partitions.
A partition is also known as a commit log.
Each partition contains an ordered set of messages.
Each message is identified by its offset in the partition.
Messages are added at one end of the partition and consumed 
at the other.

Topics

Introduction to MQTT and Kafka
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Topics are divided into partitions, which are the unit of 
parallelism in Kafka.

Partitions allow messages in a topic to be distributed to 
multiple servers.
A topic can have any number of partitions.
Each partition should fit in a single Kafka server.
The number of partitions decide the parallelism of the topic.

Partitions

Introduction to MQTT and Kafka

NPTEL



Vu Pham

Partitions can be distributed across the Kafka cluster.
Each Kafka server may handle one or more partitions.
A partition can be replicated across several servers fro fault-tolerance.
One server is marked as a leader for the partition and the others are 
marked as followers.
The leader controls the read and write for the partition, whereas, the 
followers replicate the data.
If a leader fails, one of the followers automatically become the leader.
Zookeeper is used for the leader selection. 

Partition Distribution

Introduction to MQTT and Kafka

NPTEL



Vu Pham

The producer is the creator of the message in Kafka.

The producers place the message to a particular topic.
The producers also decide which partition to place the message into.
Topics should already exist before a message is placed by the producer.
Messages are added at one end of the partition.

Producers

Introduction to MQTT and Kafka
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The consumer is the receiver of the message in Kafka.

Each consumer belongs to a consumer group.
A consumer group may have one or more consumers.
The consumers specify what topics they want to listen to.
A message is sent to all the consumers in a consumer group.
The consumer groups are used to control the messaging system.

Consumers

Introduction to MQTT and Kafka
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Kafka architecture consists of brokers that take messages from the 
producers and add to a partition of a topic. Brokers provide the 
messages to the consumers from the partitions.

• A topic is divided into multiple partitions.
• The messages are added to the partitions at one end and consumed in 

the same order.
• Each partition acts as a message queue.
• Consumers are divided into consumer groups.
• Each message is delivered to one consumer in each consumer group.
• Zookeeper is used for coordination.

Kafka Architecture

Introduction to MQTT and Kafka
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Kafka architecture supports the publish-subscribe and queue system.

Types of Messaging Systems

Introduction to MQTT and Kafka

NPTEL



Vu Pham

Example: Queue System

Introduction to MQTT and Kafka
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Example: Publish-Subscribe System

Introduction to MQTT and Kafka
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Brokers are the Kafka processes that process the messages in Kafka.

• Each machine in the cluster can run one broker.

• They coordinate among each other using Zookeeper.

• One broker acts as a leader for a partition and handles the 
delivery and persistence, where as, the others act as followers.

Brokers

Introduction to MQTT and Kafka
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Kafka Guarantees
Kafka guarantees the following:

1. Messages sent by a producer to a topic and a partition 
are appended in the same order

2. A consumer instance gets the messages in the same 
order as they are produced.

3. A topic with replication factor N, tolerates upto N-1 
server failures.

Introduction to MQTT and Kafka
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Replication in Kafka
Kafka uses the primary-backup method of replication.

One machine (one replica) is called a leader and is chosen 
as the primary; the remaining machines (replicas) are 
chosen as the followers and act as backups.
The leader propagates the writes to the followers.
The leader waits until the writes are completed on all the 
replicas.
If a replica is down, it is skipped for the write until it 
comes back.
If the leader fails, one of the followers will be chosen as 
the new leader; this mechanism can tolerate n-1 failures if 
the replication factor is ‘n’

Introduction to MQTT and Kafka
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Persistence in Kafka
Kafka uses the Linux file system for persistence of messages

Persistence ensures no messages are lost.
Kafka relies on the file system page cache for fast reads 
and writes.
All the data is immediately written to a file in file system.
Messages are grouped as message sets for more efficient 
writes.
Message sets can be compressed to reduce network 
bandwidth.
A standardized binary message format is used among 
producers, brokers, and consumers to minimize data 
modification.

Introduction to MQTT and Kafka
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Apache Kafka: a Streaming Data Platform
Ø Apache Kafka is an open source streaming data platform (a new 

category of software!) with 3 major components: 
1. Kafka Core: A central hub to transport and store event 

streams in real-time. 
2. Kafka Connect: A framework to import event streams from 

other source data systems into Kafka and export event 
streams from Kafka to destination data systems.  

3. Kafka Streams: A Java library to process event streams live as 
they occur.

Introduction to MQTT and Kafka
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o Kafka Streams code examples
o Apache Kafka  

https://github.com/apache/kafka/tree/trunk/streams/examples/src/main/java/org/apache/kafka/
streams/examples

o Confluent https://github.com/confluentinc/examples/tree/master/kafka-streams

o Source Code https://github.com/apache/kafka/tree/trunk/streams

o Kafka Streams Java docs 
http://docs.confluent.io/current/streams/javadocs/index.html

o First book on Kafka Streams (MEAP)
o Kafka Streams in Action https://www.manning.com/books/kafka-streams-in-action

o Kafka Streams download
o Apache Kafka https://kafka.apache.org/downloads
o Confluent Platform  http://www.confluent.io/download

Further Learning

Introduction to MQTT and Kafka
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Kafka is a high-performance, real-time messaging system.

Kafka can be used as an external commit log for distributed 
systems.

Kafka data model consists of messages and topics.

Kafka architecture consists of brokers that take messages from the 
producers and add to a partition of a topics.

Kafka architecture supports two types of messaging system called 
publish-subscribe and queue system.

Brokers are the Kafka processes that process the messages in Kafka.

Conclusion

Introduction to MQTT and Kafka
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Preface

Introduction to Edge Data Center

Content of this Lecture:
Current demand of Data centers
Why to move Data centers to Edge?
In this lecture, we will discuss a brief introduction to Cloud
Computing and also focus on the aspects i.e. Why Clouds,
What is a Cloud, Whats new in todays Clouds and also
distinguish Cloud Computing from the previous generation
of distributed systemsNPTEL



Waves of Innovation: Cloud IoT Edge ML

Cloud IoT Edge ML

Cloud
(the waves of innovation started with cloud)
Globally available, unlimited compute resources

IoT
(IoT-as-SaaS platform is key drivers of public cloud)
Harnessing signals from sensors and devices, managed 
centrally by the cloud

Edge
(IoT realize not everything needs to be in the cloud)
Intelligence offloaded from the cloud to IoT devices

ML
(rise of AI, ML models are trained in cloud are deployed 
at the edge to make inferencing for predictive analytics 
)

Breakthrough intelligence capabilities, in the cloud and 
on the edge

ML

CurrentStateofCloud
• Highly centralized set of resources,

• Resembles Client/Server computing
• Compute is going beyond VMs as

Containers becoming mainstream
• Storage is complemented by CDN is

replicated and cached at edge locations
• Network stack is programmable SDN

enabling hybrid scenarios

Introduction to Edge Data CenterIntroduction to Edge Data Center
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Edge Computing

● Edge computing makes the cloud truly distributed
● Moves core cloud services closer to the origin of data
● Edge Mimics public cloud platform capabilities
● Delivers storage, compute, and network services locally.
● Reduces the latency by avoiding the roundtrip to the cloud
● Brings in data sovereignty by keeping data where it actually 

belongs, savings on cloud and bandwidth usages

Cloud IoT Edge MLIntroduction to Edge Data Center

NPTEL



Functionality of Edge Computing for IOT 

• Data Ingestion and M2M Brokers

• Object Storage

• Functions as a Service

• Containers

• Distributed Computing
• NoSQL/Time-Series Database

• Stream Processing

• ML Models

Introduction to Edge Data Center
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Cloud Data Center: Current Demand

Introduction to Edge Data Center

In the next decade, we will continue to see 
skyrocketing growth in the number of IP-
connected mobile and machine-to-machine 
(M2M) devices, which will handle significant 
amounts of IP traffic.
Tomorrow’s consumers will demand faster Wi-Fi 
service and application delivery from online 
providers. Also, some M2M devices, such as 
autonomous vehicles, will require real-time 
communications with local processing resources 
to guarantee safety.

Today’s IP networks cannot handle the high-speed data transmissions that 
tomorrow’s connected devices will require. In a traditional IP architecture, data 
must often travel hundreds of miles over a network between end users or devices 
and cloud resources. This results in latency, or slow delivery of time-sensitive 
data.

Connected 
Devices

The CloudNPTEL



Vu Pham

Cloud Data Center: Current Demand

Introduction to Edge Data Center
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Edge Data Center: Solution

Introduction to Edge Data Center

The solution to reducing latency lies in edge computing. By establishing IT deployments for
cloud-based services in edge data centers in localized areas, we effectively bring IT resources
closer to end users and devices. This helps us achieve efficient, high-speed delivery of
applications and data. Edge data centers are typically located on the edge of a network, with
connections back to a centralized cloud core.
Instead of bringing the users and devices to the data center, we bring the power of the data
center to the users and devices. Edge computing relies on a distributed data center
architecture, in which IT cloud servers housed in edge data centers are deployed on the outer
edges of a network. By bringing IT resources closer to the end users and/or devices they serve,
we can achieve high-speed, low-latency processing of applications and data.

NPTEL
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Edge Data Center: Solution

Introduction to Edge Data Center
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Why Move Data Centers to the Edge?

Introduction to Edge Data Center

There are four main benefits of moving data centers to the edge, which involve 
improvements to latency, bandwidth, operating costs, and security:
1. Latency: edge data centers facilitate lower latency, meaning much faster response 

times. Locating compute and storage functions closer to end users reduces the 
physical distance that data packets need to traverse, as well as the number of 
network “hops” involved, which lowers the probability of hitting a transmission path 
where data flow is impaired

2. Bandwidth: edge data centers process data locally, reducing the volume of traffic 
flowing to and from central servers. In turn, greater bandwidth across the user’s 
broader network becomes available, which improves overall network performance

3. Operating Cost: because edge data centers reduce the volume of traffic flowing to 
and from central servers, they inherently reduce the cost of data transmission and 
routing, which is important for high-bandwidth applications. More specifically, edge 
data centers lessen the number of necessary high-cost circuits and interconnection 
hubs leading back to regional or cloud data centers, by moving compute and storage 
closer to end users

4. Security: edge data centers enhance security by: i) reducing the amount of sensitive 
data transmitted, ii) limiting the amount of data stored in any individual location, 
given their decentralized architecture, and iii) decreasing broader network 
vulnerabilities, because breaches can be ring-fenced to the portion of the network that 
they compromise

NPTEL
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Edge Data Center: Introduction

Introduction to Edge Data Center

Edge data centers are small data centers that are located close to
the edge of a network. They provide the same devices found in
traditional data centers, but are contained in a smaller footprint,
closer to end users and devices.
Edge data centers can deliver cached content and cloud
computing resources to these devices. The concept works off
edge computing, which is a distributed IT architecture where
client data is processed as close to the originating source as
possible. Because the smaller data centers are positioned close to
the end users, they are used to deliver fast services with minimal
latency.
In an edge computing architecture, time-sensitive data may be
processed at the point of origin by an intermediary server that is
located in close geographical proximity to the client. The point is
to provide the quickest content delivery to an end device that may
need it, with as little latency as possible. Data that is less time-
sensitive can be sent to a larger data center for historical analysis,
big data analytics and long-term storage. Edge data centers work
off of the same concept, except instead of just having one
intermediary server in close geographical proximity to the client,
it's a small data center -- that can be as small as a box. Even
though it is not a new concept, edge data center is still a relatively
new term.

NPTEL
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Edge Data Center: Introduction

Introduction to Edge Data Center

The major benefit of an edge data center is the quick delivery of services with minimal
latency, thanks to the use of edge caching. Latency may be a big issue for organizations
that have to work with the internet of things (IoT), big data, cloud and streaming services.
Edge data centers can be used to provide high performance with low levels of latency to
end users, making for a better user experience. Typically, edge data centers will connect
to a larger, central data center or multiple other edge data centers.
Data is processed as close to the end user as possible, while less integral or time-centric
data can be sent to a central data center for processing. This allows an organization to
reduce latency.

NPTEL
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Edge Data Center: Use Cases

Introduction to Edge Data Center

1. 5G: Where a decentralized cell network made of edge data centers can help provide low
latency for 5G in use cases with high device density.
Telecommunications companies. With cell-tower edge data centers, telecom companies can
get better proximity to end users by connecting mobile phones and wireless sensors.
2. IoT: Edge data centers can be used for data generated by IoT devices. An edge data center
would be used if data generated by devices needs more processing but is also too time-
sensitive to be sent to a centralized server.
3. Healthcare: Some medical equipment, such as those used for robotic surgeries, would
require extremely low latency and network consistency, of which, edge data centers can
provide.
4. Autonomous vehicles: Edge data centers can be used to help collect, process and share
data between vehicles and other networks, which also relies on low latency. A network of
edge data centers can be used to collect data for auto manufacturers and emergency response
services.
5. Smart factories: Edge data centers can be used for machine Predictive maintenance, as well
as predictive quality management. It can also be used for efficiency regarding robotics used
within inventory management.

NPTEL
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Evolutionary changes that have occurred in distributed edge and
cloud computing over the past 30 years, driven by applications with
variable workloads, low-latency usecase and large data sets .
Evolutionary changes in machine architecture, operating system
platform, network connectivity, and application workload.
Edge computing uses multiple computers at network edge to solve
large-scale problems locally and over the Internet. Thus, distributed
edge computing becomes data-intensive and network-centric.
The emergence of distributed edge computing clouds instead
demands high-throughput computing (HTC) systems built with
distributed computing technologies.
High-throughput computing (HTC) appearing as computer clusters,
service-oriented, computational grids, peer-to-peer networks,
Internet clouds and edge, and the future Internet of Things.

Scalable Computing at network edge

Introduction to Edge Data Center
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The Hype of Cloud: Forecasting 

Gartner in 2009 – Cloud computing revenue will soar 
faster than expected and will exceed $150 billion by 
2013. It will represent 19% of IT spending by 2015.

IDC in 2009: “Spending on IT cloud services will triple 
in the next 5 years, reaching $42 billion.”

Forrester in 2010 – Cloud computing will go from 
$40.7 billion in 2010 to $241 billion in 2020.

Companies and even federal/state governments using 
cloud computing now: fbo.gov

Introduction to Edge Data Center
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Many Cloud Providers
• AWS: Amazon Web Services

– EC2: Elastic Compute Cloud
– S3: Simple Storage Service
– EBS: Elastic Block Storage

• Microsoft Azure
• Google Compute Engine/AppEngine
• Rightscale, Salesforce, EMC, 

Gigaspaces, 10gen, Datastax, Oracle, 
VMWare, Yahoo, Cloudera

• And 100s more…

Introduction to Edge Data Center
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Categories of Clouds
Can be either a (i) public cloud, or (ii) private cloud
Private clouds are accessible only to company employees
Public clouds provide service to any paying customer:

Amazon S3 (Simple Storage Service): store arbitrary 
datasets, pay per GB-month stored 

Amazon EC2 (Elastic Compute Cloud): upload and run 
arbitrary OS images, pay per CPU hour used

Google App Engine/Compute Engine: develop applications 
within their App Engine framework, upload data that will be 
imported into their format, and run

Introduction to Edge Data Center
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Customers Save: Time and Money
“With AWS, a new server can be up and running in three minutes
compared to seven and a half weeks to deploy a server internally and a
64-node Linux cluster can be online in five minutes (compared with three
months internally.”

“With Online Services, reduce the IT operational costs by roughly 30% of
spending”

“A private cloud of virtual servers inside its datacenter has saved nearly
crores of rupees annually, because the company can share computing
power and storage resources across servers.”

100s of startups can harness large computing resources without buying
their own machines.

Introduction to Edge Data Center
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Advances in virtualization make it possible to see the growth of 
Internet clouds as a new computing paradigm.
i.e. dramatic differences between developing software for millions 
to use as a service versus distributing software to run on their PCs.” 

History:
In 1984, John Gage Sun Microsystems gave the slogan,                     
“The network is the computer.” 
In 2008, David Patterson UC Berkeley said,                                               
“The data center is the computer.”
Recently, Rajkumar Buyya of Melbourne University simply said: 
“The cloud is the computer.”
Some people view clouds as grids or clusters with changes through
virtualization, since clouds are anticipated to process huge data sets generated
by the traditional Internet, social networks, and the future IoT.

What is a Cloud?

Introduction to Edge Data Center
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What is a Cloud?
A single-site cloud (as known as “Datacenter”) 
consists of

Compute nodes (grouped into racks)
Switches, connecting the racks
A network topology, e.g., hierarchical
Storage (backend) nodes connected to the 
network
Front-end for submitting jobs and receiving 
client requests
(Often called “three-tier architecture”)
Software Services

A geographically distributed cloud consists of
Multiple such sites
Each site perhaps with a different structure and 
services

Introduction to Edge Data Center
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Cloud computing overlaps with distributed computing.

Distributed computing: A distributed system consists of
multiple autonomous computers, having its own memory,
communicating through message passing.

Cloud computing: Clouds can be built with physical or
virtualized resources over large data centers that are distributed
systems. Cloud computing is also considered to be a form of
utility computing or service computing.

Computing Paradigm Distinctions

Introduction to Edge Data Center
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“A Cloudy History of Time”

Introduction to Edge Data Center

1940
1950

1960

1970

1980

1990

2000

Timesharing Companies
& Data Processing Industry 

Grids

Peer to peer systems

Clusters

The first datacenters!

PCs
(not distributed!)

Clouds and datacenters

2012NPTEL
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“A Cloudy History of Time”

Introduction to Edge Data Center

1940
1950

1960

1970

1980

1990

2000

2012 Clouds

Timesharing Industry (1975):
•Market Share: Honeywell 34%, IBM 15%, 
•Xerox 10%, CDC 10%, DEC 10%, UNIVAC 10%
•Honeywell 6000 & 635, IBM 370/168, 

Xerox 940 & Sigma 9, DEC PDP-10, UNIVAC 1108

Data Processing Industry 
- 1968: $70 M. 1978: $3.15 Billion

First large datacenters: ENIAC, ORDVAC, ILLIAC
Many used vacuum tubes and mechanical relays

Berkeley NOW Project
Supercomputers
Server Farms (e.g., Oceano)

P2P Systems (90s-00s)
•Many Millions of users
•Many GB per day

Grids (1980s-2000s):
•GriPhyN (1970s-80s)
•Open Science Grid and Lambda Rail (2000s)
•Globus & other standards (1990s-2000s)

NPTEL
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Scalable Computing Trends: Technology

Doubling Periods – storage: 12 months, bandwidth: 9 months, 
and CPU compute capacity: 18 months (what law is this?) 
Moore’s law indicates that processor speed doubles every 18 
months.
Gilder’s law indicates that network bandwidth has doubled each 
year in the past.

Then and Now
Bandwidth
• 1985: mostly 56Kbps links nationwide
• 2015: Tbps links widespread

Disk capacity
• Today’s PCs have TBs, far more than a 1990 supercomputer

Introduction to Edge Data Center
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Aiming towards autonomic operations that can be self-
organized to support dynamic discovery. Major
computing paradigms are composable with QoS and
SLAs (service-level agreements).
In 1965, MIT's Fernando Corbató of the Multics operating
system envisioned a computer facility operating “like a
power company or water company”.
Plug your thin client into the computing Utility and Play
Intensive Compute & Communicate Application
Utility computing focuses on a business model in which
customers receive computing resources from a paid
service provider.
All grid/cloud platforms are regarded as utility service providers.

The Trend toward Utility Computing

Introduction to Edge Data Center
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Features of Today’s Clouds

I. Massive scale: Very large data centers, contain tens of thousands
sometimes hundreds of thousands of servers and you can run your
computation across as many servers as you want and as many servers
as your application will scale.

II. On-demand access: Pay-as-you-go, no upfront commitment.
– And anyone can access it

III. Data-intensive Nature: What was MBs has now become TBs, PBs and 
XBs.
– Daily logs, forensics, Web data, etc.

IV. New Cloud Programming Paradigms: MapReduce/Hadoop, 
NoSQL/Cassandra/MongoDB and many others.

– Combination of one or more of these gives rise to novel and 
unsolved distributed computing problems in cloud computing.

Introduction to Edge Data Center
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I. Massive Scale
• Facebook [GigaOm, 2012]

– 30K in 2009 -> 60K in 2010 -> 180K in 2012

• Microsoft [NYTimes, 2008]
– 150K machines
– Growth rate of 10K per month
– 80K total running Bing
– In 2013, Microsoft Cosmos had 110K machines (4 sites)

• Yahoo! [2009]: 
– 100K 
– Split into clusters of 4000

• AWS EC2 [Randy Bias, 2009]
– 40K machines
– 8 cores/machine

• eBay [2012]: 50K machines

• HP [2012]: 380K in 180 DCs

• Google: A lot

Introduction to Edge Data Center
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What does a datacenter look like from inside?

Lots of Servers 

Introduction to Edge Data Center
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Power and Energy 

Off-site

•WUE = Annual Water Usage / IT Equipment Energy (L/kWh)
– low is good

•PUE = Total facility Power  / IT Equipment Power 
– low is good (e.g., Google~1.11)

On-site

Introduction to Edge Data Center
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Cooling 

•Air sucked in

•Combined with purified water

•Moves cool air through system

Introduction to Edge Data Center
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II. On-demand access: *AAS Classification
• On-demand: renting vs. buying one. E.g.: 

AWS Elastic Compute Cloud (EC2): a few cents to a few $ 
per CPU hour 
AWS Simple Storage Service (S3): a few cents per GB-month

HaaS: Hardware as a Service
Get access to barebones hardware machines, do whatever 
you want with them, Ex: Your own cluster
Not always a good idea because of security risks

IaaS: Infrastructure as a Service
Get access to flexible computing and storage infrastructure. 
Virtualization is one way of achieving this. subsume HaaS.
Ex: Amazon Web Services (AWS: EC2 and S3), OpenStack, 
Eucalyptus, Rightscale, Microsoft Azure, Google Cloud.

Introduction to Edge Data Center
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II. On-demand access: *AAS Classification

PaaS: Platform as a Service
Get access to flexible computing and storage 
infrastructure, coupled with a software platform 
(often tightly coupled)
Ex: Google’s AppEngine (Python, Java, Go)

SaaS: Software as a Service
Get access to software services, when you need 
them. subsume SOA (Service Oriented 
Architectures).
Ex: Google docs, MS Office on demand

Introduction to Edge Data Center
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III. Data-intensive Computing
Computation-Intensive Computing

Example areas: MPI-based, High-performance 
computing, Grids
Typically run on supercomputers (e.g., NCSA Blue 
Waters)

Data-Intensive
Typically store data at datacenters
Use compute nodes nearby
Compute nodes run computation services

In data-intensive computing, the focus shifts 
from computation to the data:  
CPU utilization no longer the most important 
resource metric, instead I/O is (disk and/or network)

Introduction to Edge Data Center
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IV. New Cloud Programming Paradigms
Easy to write and run highly parallel programs in new cloud programming 
paradigms:

Google: MapReduce and Sawzall
Amazon: Elastic MapReduce service (pay-as-you-go)
Google (MapReduce)
• Indexing: a chain of 24 MapReduce jobs
• ~200K jobs processing 50PB/month (in 2006)

Yahoo! (Hadoop + Pig)
• WebMap: a chain of several MapReduce jobs
• 300 TB of data, 10K cores, many tens of hours (~2008)

Facebook (Hadoop + Hive)
• ~300TB total, adding 2TB/day (in 2008)
• 3K jobs processing 55TB/day

NoSQL: MySQL is an industry standard, but Cassandra is 2400 times faster

Introduction to Edge Data Center
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Two Categories of Clouds
Can be either a (i) public cloud, or (ii) private 
cloud

Private clouds are accessible only to company 
employees
Example of popular vendors for creating private 
clouds are VMware, Microsoft Azure, Eucalyptus etc.

Public clouds provide service to any paying 
customer
Examples of large public cloud services include 
Amazon EC2, Google AppEngine, Gmail, Office365 
and Dropbox etc.

You’re starting a new service/company: should 
you use a public cloud or purchase your own 
private cloud?

Introduction to Edge Data Center
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Single site Cloud: to Outsource or Own? 
• Medium-sized organization: wishes to run a service for M months

– Service requires 128 servers (1024 cores) and 524 TB 

• Outsource (e.g., via AWS): monthly cost

– S3 costs: $0.12 per GB month. EC2 costs: $0.10 per CPU hour (costs 
from 2009)    Storage = $ 0.12 X 524 X 1000 ~ $62 K

– Total = Storage + CPUs = $62 K + $0.10 X 1024 X 24 X 30 ~ $136 K

• Own: monthly cost

– Storage ~ $349 K / M   Total ~ $ 1555 K / M + 7.5 K (includes 1 
sysadmin / 100 nodes)

• using 0.45:0.4:0.15 split for hardware:power: network and            
3 year lifetime of hardware

o Breakeven analysis: more preferable to own if:
- $349 K / M < $62 K (storage)

- $ 1555 K / M + 7.5 K < $136 K (overall)
Breakeven points

o M > 5.55 months (storage)

o M > 12 months (overall)

Introduction to Edge Data Center

-Startups use clouds a lot
-Cloud providers benefit 
monetarily most from storage
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Conclusion
• Limitations of current cloud data center. 
• Understanding the concept of edge data center.
• Clouds build on many previous generations of distributed 

systems
• Characteristics of  cloud computing problem

- Scale, On-demand access, data-intensive,                    
new programming

Introduction to Edge Data Center
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Preface

Content of this Lecture:
Design of datastore for IoT applications.

In this lecture, we will discuss the design and insight of
Key-value/NoSQL stores for today’s Edge storage
systems.

We will also discuss one of the most popular cloud
storage system i.e. Apache Cassandra and different
consistency solutions.

Design of Key-Value Stores
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IoT Edge: Data Flow 

Design of Key-Value Stores

Initially the data collected from the azure IOT sensor is
passed through the IOT-Edge gateway and then we need to
pull the data from IOT-Edge using stream analytics and
then stream that data then to from the IOT Edge to the
data-store/database
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IoT Edge: Data Flow 

Design of Key-Value Stores
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IoT Edge: Databases

Design of Key-Value Stores

The most popular databases for IoT apps are InfluxDB, CrateDB, Riak TS,
MongoDB, RethinkDB, SQLite, Apache Cassandra.
To select the right storage for Time Series and IoT domain use case, it
depends upon the data-access methods, you may require the following
database:

• Hot database:
These are typically used for data that is frequently being queried or
updated. They are often a good choice for storing data as they provide read
and write capabilities with little latency at the lowest cost. When choosing
a hot database you can consider the following features — flexibility in data
formats, querying abilities, messaging/ queueing capability, and tiered
memory models.
• Cold Database:
They store information in their original state with little to no changes made
thereafter. In contrast with real-time data collection, storing huge volumes
of historical data can be a difficult task on cold databases.
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IoT Edge: Databases

Design of Key-Value Stores

NoSQL with Built-In Sorting
BigTable, HBase, Cassandra, DynamoDB, Accumulo are often used to store time-series data. 

Strong Sides: Extremely well scaled for writes. Performing the basic level of analytics extremely efficient.
Weak Sides: All other kinds of analytics are not supported and not efficient

NoSQL Purpose-Built Time Series DB
There are engines that have been designed from the ground up as Time Series databases. In the majority of 
cases, they are NoSQL. 
NewSQL In-Memory Databases
The in-memory nature of SQL databases increases their ability to handle fast data ingestion. SQL interface 
enriched by the time buckets normalization support

Strong Sides: Provide the reach analytics capabilities.
Weak Sides: The scalability for writes and reads are usually limited or is very expensive

Cloud Time-Series Platforms
Azure and AWS released recently their time series data services/platforms:

Azure Time Series Insights
Amazon Timestream

The platforms cover many aspects of the time series data storing, visualizing, and really reach capabilities in 
querying. They have built-in separation of data between hot, warm, and cold storage to make the data 
storing and retrieval well balances from the cost of ownership perspective.
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IoT Edge Database: Example

Design of Key-Value Stores

As a continuation of the series of lecture about IoT Data Analytics, let’s
use the Fitness Tracker use case which represents well a typical IoT
use case. A dataset (as it is also described here and here) consists of a
set of observation, and each observation contains:

• A metric name generating by a sensor/edge, i.e.: heart rate,
elevation, steps

• A metric value generated by the sensor bound to the point in time,
i.e.: (2020–11–12 17:14:07, 71bpm), (2020–11–12 17:14:32, 93bpm),
etc

• Tags or Context description in which a given sensor is generating data,
i.e.: device model, geography location, user, activity type, etc.
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IoT Edge Database: Functional Requirement

Design of Key-Value Stores

Basic Level: Simple Data Retrieval
Random data access: for the particular point in 
time return the proper metric value
Small range scans: for the particular time range 
(reasonably small, within minutes or hours 
depending on the frequency of data generation) 
return the sequential metric values (i.e.: to draw a 
standard chart on it)



Vu Pham

IoT Edge Database: Functional Requirement

Design of Key-Value Stores

Middle Level: Time Window Normalization
The measurement events usually supposed to be triggered on a 
predefined recurrence basis, but there are always deviations in data 
points timing. That is why it is highly desirable to have capabilities 
around building predefined time windows to normalize the time series 
data.
To the mid-level capacities it is worth to add more sophisticated 
diagnostic analytics/ad-hoc queries:

Flexible Filtering: filter data points based on predicate on 
tags/context attributes, i.e.: filtering data points by some region, user, 
or activity type
Flexible Aggregations: grouping and aggregations on tags/context 
attributes or their combinations, i.e.: max hearth rate by region by 
activity type.
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IoT Edge Database: Functional Requirement

Design of Key-Value Stores

Advance Level: Sequential Row Pattern Matching
The most advanced level would include checking if 
the sequence of events matches the 
particular pattern to perform introspection and 
advanced diagnosis:

Did similar patterns of measurements precede 
specific events?;
What measurements might indicate the cause of 
some event, such as a failure?
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IoT Edge Database: Non Functional Requirement

Design of Key-Value Stores

Besides the functional requirements, it’s really crucial to consider 
non-functional requirements which often are the main drivers for 
the selection:

Scalable storage: ability to handle big data volumes
Scalable writes: the ability to handle a big amount of 
simultaneous writes. This is closely related to the real-time data 
access — the ability to have the minimum possible lag between 
when the data point is generated and when it’s available for 
reading.
Scalable reads: the ability to handle a big amount of 
simultaneous reads
High Maturity: presence on the market and community 
support.
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(Business) Key à Value

(flipkart.com) item number à information about it

(easemytrip.com) Flight number à information about 
flight, e.g., availability

(twitter.com) tweet id à information about tweet

(mybank.com) Account number à information about it

The Key-value Abstraction

Design of Key-Value Stores
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It’s a dictionary datastructure.
Insert, lookup, and delete by key
Example: hash table, binary tree

But distributed.

Seems familiar? Remember Distributed Hash tables (DHT) 
in P2P systems?

Key-value stores reuse many techniques from DHTs.

The Key-value Abstraction (2)

Design of Key-Value Stores
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Yes, kind of
Relational Database Management Systems (RDBMSs)
have been around for ages
MySQL is the most popular among them
Data stored in tables
Schema-based, i.e., structured tables
Each row (data item) in a table has a primary key that is 
unique within that table
Queried using SQL (Structured Query Language)
Supports joins

Is it a kind of database ?

Design of Key-Value Stores
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Relational Database Example

Example SQL queries 
1. SELECT zipcode

FROM users 
WHERE name = “John”

2.    SELECT url
FROM blog
WHERE id = 11

3. SELECT users.zipcode, 
blog.num_posts
FROM users JOIN blog
ON users.blog_url =  
blog.url

user_id name zipcode blog_url blog_id

110 Smith 98765 smith.com 11

331 Antony 54321 antony.in 12

767 John 75676 john.net 13

Id url last_updated num_posts

11 smith.com 9/7/17 991

13 john.net 4/2/18 57

12 antony.in 15/6/16 1090

users table

blog table

Foreign keysPrimary keys

Design of Key-Value Stores
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Data: Large and unstructured: Difficult to come out with 
schemas where the data can fit

Lots of random reads and writes: Coming from millions of 
clients.

Sometimes write-heavy: Lot more writes compare to read

Foreign keys rarely needed

Joins infrequent

Mismatch with today’s workloads 

Design of Key-Value Stores
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Speed
Avoid Single point of Failure (SPoF)
Low TCO (Total cost of operation and Total cost of 
ownership) 
Fewer system administrators
Incremental Scalability
Scale out, not scale up

Needs of Today’s Workloads

Design of Key-Value Stores
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Scale up = grow your cluster capacity by replacing with more 
powerful machines

• Traditional approach
• Not cost-effective, as you’re buying above the sweet spot on the 

price curve
• And you need to replace machines often

Scale out = incrementally grow your cluster capacity by 
adding more COTS machines (Components Off the Shelf)

• Cheaper
• Over a long duration, phase in a few newer (faster) machines as 

you phase out a few older machines
• Used by most companies who run datacenters and clouds today

Scale out, not Scale up

Design of Key-Value Stores
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NoSQL = “Not Only SQL”
Necessary API operations: get(key) and put(key, value)

And some extended operations, e.g., “CQL” in Cassandra 
key-value store

Tables
“Column families” in Cassandra, “Table” in HBase, 
“Collection” in MongoDB
Like RDBMS tables, but … 
May be unstructured: May not have schemas 
• Some columns may be missing from some rows

Don’t always support joins or have foreign keys
Can have index tables, just like RDBMSs

Key-value/NoSQL Data Model

Design of Key-Value Stores
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Unstructured

No schema 
imposed

Columns missing 
from some Rows

No foreign keys, 
joins may not be 
supported

Key-value/NoSQL Data Model 

user_id name zipcode blog_url

110 Smith 98765 smith.com

331 Antony antony.in

767 75676 john.net

Id url last_updated num_posts

11 smith.com 9/7/17 991

13 john.net 57

12 antony.in 15/6/16

users table

blog table

Key Value

Value

Design of Key-Value Stores
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NoSQL systems often use column-oriented storage
RDBMSs store an entire row together (on disk or at a server)
NoSQL systems typically store a column together (or a group of 
columns). 

• Entries within a column are indexed and easy to locate, given a key 
(and vice-versa)

Why useful?
Range searches within a column are fast since you don’t 
need to fetch the entire database
E.g., Get me all the blog_ids from the blog table that were 
updated within the past month 

– Search in the the last_updated column, fetch corresponding 
blog_id column

– Don’t need to fetch the other columns

Column-Oriented Storage

Design of Key-Value Stores
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Design of Apache Cassandra

Design of Apache Cassandra
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A distributed key-value store
Intended to run in a datacenter (and also across DCs)
Originally designed at Facebook
Open-sourced later, today an Apache project
Some of the companies that use Cassandra in their production 
clusters

Blue chip companies: IBM, Adobe, HP, eBay, Ericsson
Newer companies: Twitter
Nonprofit companies: PBS Kids
Netflix: uses Cassandra to keep track of positions in the 
video.

Cassandra

Design of Apache Cassandra



Vu Pham

How do you decide which server(s) a key-value resides 
on?

Inside Cassandra:  Key -> Server Mapping

Design of Apache Cassandra
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Cassandra uses a Ring-based DHT but without 
finger tables or routing

Keyàserver mapping is the “Partitioner”

N80

0Say m=7

N32

N45

Backup replicas for
key K13

N112

N96

N16

Read/write K13

Primary replica for
key K13

(Remember this?)

CoordinatorClient

One ring per DC

Design of Apache Cassandra
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Replication Strategy:
1. SimpleStrategy
2. NetworkTopologyStrategy

1. SimpleStrategy: uses the Partitioner, of which there are two kinds
1. RandomPartitioner: Chord-like hash partitioning
2. ByteOrderedPartitioner: Assigns ranges of keys to servers. 
• Easier for range queries (e.g., Get me all twitter users starting 

with [a-b])
2. NetworkTopologyStrategy: for multi-DC deployments

Two replicas per DC
Three replicas per DC
Per DC
• First replica placed according to Partitioner
• Then go clockwise around ring until you hit a different rack

Data Placement Strategies

Design of Apache Cassandra
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Maps: IPs to racks and DCs. Configured in cassandra.yaml
config file
Some options:

SimpleSnitch: Unaware of Topology (Rack-unaware)
RackInferring: Assumes topology of network by octet of 
server’s IP address
• 101.102.103.104 = x.<DC octet>.<rack octet>.<node octet>

PropertyFileSnitch: uses a config file
EC2Snitch: uses EC2.
• EC2 Region = DC
• Availability zone = rack

Other snitch options available

Snitches

Design of Apache Cassandra
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Need to be lock-free and fast (no reads or disk seeks)
Client sends write to one coordinator node in Cassandra 
cluster 

Coordinator may be per-key, or per-client, or per-query
Per-key Coordinator ensures writes for the key are 
serialized

Coordinator uses Partitioner to send query to all replica 
nodes responsible for key
When X replicas respond, coordinator returns an 
acknowledgement to the client

X? 

Writes 

Design of Apache Cassandra
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Always writable: Hinted Handoff mechanism
If any replica is down, the coordinator writes to all 
other replicas, and keeps the write locally until down 
replica comes back up.
When all replicas are down, the Coordinator (front end) 
buffers writes (for up to a few hours). 

One ring per datacenter
Per-DC coordinator elected to coordinate with other 
DCs
Election done via Zookeeper, which runs a Paxos
(consensus) variant

Writes (2)

Design of Apache Cassandra
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On receiving a write
1. Log it in disk commit log (for failure recovery)
2. Make changes to appropriate memtables

Memtable = In-memory representation of multiple key-value pairs
Typically append-only datastructure (fast)
Cache that can be searched by key
Write-back aas opposed to write-through

Later, when memtable is full or old, flush to disk
Data File: An SSTable (Sorted String Table) – list of key-value pairs, 
sorted by key
SSTables are immutable (once created, they don’t change)
Index file: An SSTable of (key, position in data sstable) pairs
And a Bloom filter (for efficient search) 

Writes at a replica node

Design of Apache Cassandra
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Compact way of representing a set of items
Checking for existence in set is cheap
Some probability of false positives: an item not in set may 
check true as being in set
Never false negatives

Bloom Filter

Large Bit Map
0
1
2
3

69

127

111

Key-K
Hash1

Hash2

Hashk

On insert, set all hashed 
bits.

On check-if-present, 
return true if all hashed bits 
set.
• False positives

False positive rate low
• m=4 hash functions
• 100 items
• 3200 bits
• FP rate = 0.02%

.

.

Design of Apache Cassandra
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Data updates accumulate over time and SStables and logs 
need to be compacted

The process of compaction merges SSTables, i.e., by 
merging updates for a key

Run periodically and locally at each server

Compaction

Design of Apache Cassandra
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Delete: don’t delete item right away

Add a tombstone to the log 
Eventually, when compaction encounters tombstone it 
will delete item

Deletes

Design of Apache Cassandra
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Read: Similar to writes, except
Coordinator can contact X replicas (e.g., in same rack)
• Coordinator sends read to replicas that have responded quickest in 

past
• When X replicas respond, coordinator returns the latest-

timestamped value from among those X
• (X? We will check it later. )

Coordinator also fetches value from other replicas
• Checks consistency in the background, initiating a read repair if 

any two values are different
• This mechanism seeks to eventually bring all replicas up to date

At a replica
• A row may be split across multiple SSTables => reads need to touch 

multiple SSTables => reads slower than writes (but still fast)

Reads 

Design of Apache Cassandra
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Any server in cluster could be the coordinator

So every server needs to maintain a list of all the other 
servers that are currently in the server

List needs to be updated automatically as servers join, 
leave, and fail

Membership

Design of Apache Cassandra
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Cluster Membership – Gossip-Style 

1

1 10120 66

2 10103 62
3 10098 63
4 10111 65

2

4
3

Protocol: 

•Nodes periodically gossip their 
membership list

•On receipt, the local membership 
list is updated, as shown

•If any heartbeat older than Tfail, 
node is marked as failed

1 10118 64

2 10110 64
3 10090 58
4 10111 65

1 10120 70
2 10110 64
3 10098 70
4 10111 65

Current time : 70 at node 2

(asynchronous clocks)

Address

Heartbeat Counter

Time 
(local)

Cassandra uses gossip-based cluster membership

(Remember this?)

Design of Apache Cassandra
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Suspicion mechanisms to adaptively set the timeout based on 
underlying network and failure behavior
Accrual detector: Failure Detector outputs a value (PHI) 
representing suspicion
Applications set an appropriate threshold
PHI calculation for a member

Inter-arrival times for gossip messages
PHI(t) = 

– log(CDF or Probability(t_now – t_last))/log 10
PHI basically determines the detection timeout, but takes 
into account historical inter-arrival time variations for 
gossiped heartbeats

In practice, PHI = 5 => 10-15 sec detection time

Suspicion Mechanisms in Cassandra

Design of Apache Cassandra
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MySQL is one of the most popular (and has been for a 
while)
On > 50 GB data
MySQL 

Writes 300 ms avg
Reads 350 ms avg

Cassandra 
Writes 0.12 ms avg
Reads 15 ms avg

Orders of magnitude faster
What’s the catch? What did we lose?

Cassandra Vs. RDBMS

Design of Apache Cassandra
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CAP Theorem

CAP Theorem
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Proposed by Eric Brewer (Berkeley)
Subsequently proved by Gilbert and Lynch (NUS and MIT)
In a distributed system you can satisfy atmost 2 out of the 
3 guarantees:

1. Consistency: all nodes see same data at any time, or 
reads return latest written value by any client

2. Availability: the system allows operations all the time, 
and operations return quickly

3. Partition-tolerance: the system continues to work in 
spite of network partitions

CAP Theorem

CAP Theorem
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Availability = Reads/writes complete reliably and quickly.
Measurements have shown that a 500 ms increase in 
latency for operations at Amazon.com or at Google.com
can cause a 20% drop in revenue. 
At Amazon, each added millisecond of latency implies a 
$6M yearly loss.
User cognitive drift: If more than a second elapses between 
clicking and material appearing, the user’s mind is already 
somewhere else
SLAs (Service Level Agreements) written by providers 
predominantly deal with latencies faced by clients. 

Why is Availability Important? 

CAP Theorem
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• Consistency = all nodes see same data at any time, or 
reads return latest written value by any client.

When you access your bank or investment account via 
multiple clients (laptop, workstation, phone, tablet), you 
want the updates done from one client to be visible to 
other clients.

When thousands of customers are looking to book a flight, 
all updates from any client (e.g., book a flight) should be 
accessible by other clients.

Why is Consistency Important?

CAP Theorem
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Partitions can happen across datacenters when the 
Internet gets disconnected
• Internet router outages
• Under-sea cables cut
• DNS not working

Partitions can also occur within a datacenter, e.g., a rack 
switch outage

Still desire system to continue functioning normally 
under this scenario

Why is Partition-Tolerance Important?

CAP Theorem
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Since partition-tolerance is essential in today’s cloud 
computing systems, CAP theorem implies that a system 
has to choose between consistency and availability

Cassandra
Eventual (weak) consistency, Availability, Partition-
tolerance 

Traditional RDBMSs
Strong consistency over availability under a partition

CAP Theorem Fallout

CAP Theorem
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Starting point for NoSQL
Revolution
A distributed storage 
system can achieve at 
most two of C, A, and P.
When partition-
tolerance is important, 
you have to choose 
between consistency and 
availability

CAP Tradeoff

Consistency

Partition-tolerance Availability

RDBMSs 
(non-replicated)

Cassandra, RIAK, 
Dynamo, Voldemort

HBase, HyperTable,
BigTable, Spanner Pick 2

CAP Theorem
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If all writes stop (to a key), then all its values (replicas) will 
converge eventually.
If writes continue, then system always tries to keep 
converging.

• Moving “wave” of updated values lagging behind the latest 
values sent by clients, but always trying to catch up.

May still return stale values to clients (e.g., if many back-
to-back writes).
But works well when there a few periods of low writes –
system converges quickly.

Eventual Consistency 

CAP Theorem
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While RDBMS provide ACID 
Atomicity 
Consistency 
Isolation
Durability

Key-value stores like Cassandra provide BASE
Basically Available Soft-state Eventual Consistency
Prefers Availability over Consistency

RDBMS vs. Key-value stores

CAP Theorem
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Cassandra has consistency levels
Client is allowed to choose a consistency level for each 
operation (read/write)

ANY: any server (may not be replica)
• Fastest: coordinator caches write and replies quickly to 

client
ALL: all replicas
• Ensures strong consistency, but slowest

ONE: at least one replica
• Faster than ALL, but cannot tolerate a failure

QUORUM: quorum across all replicas in all datacenters 
(DCs)
• What?

Consistency in Cassandra

CAP Theorem
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In a nutshell:
Quorum = majority 

> 50%
Any two quorums intersect

Client 1 does a write in 
red quorum 
Then client 2 does read 
in blue quorum

At least one server in blue 
quorum returns latest 
write
Quorums faster than ALL, 
but still ensure strong 
consistency

Quorums for Consistency

Five replicas of a key-value pair

A second 
quorumA quorum

A server

CAP Theorem
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Several key-value/NoSQL stores (e.g., Riak and Cassandra) 
use quorums.
Reads

Client specifies value of R (≤ N = total number of 
replicas of that key). 
R = read consistency level.
Coordinator waits for R replicas to respond before 
sending result to client. 
In background, coordinator checks for consistency of 
remaining (N-R) replicas, and initiates read repair if 
needed.

Quorums in Detail

CAP Theorem
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Writes come in two flavors
Client specifies W (≤ N)
W = write consistency level.
Client writes new value to W replicas and returns. Two 
flavors:
• Coordinator blocks until quorum is reached.
• Asynchronous: Just write and return.

Quorums in Detail (Contd..)

CAP Theorem
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R = read replica count, W = write replica count
Two necessary conditions:
1. W+R > N
2. W > N/2

Select values based on application 
(W=1, R=1): very few writes and reads
(W=N, R=1): great for read-heavy workloads
(W=N/2+1, R=N/2+1): great for write-heavy workloads
(W=1, R=N): great for write-heavy workloads with 
mostly one client writing per key

Quorums in Detail (Contd.)

CAP Theorem
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Client is allowed to choose a consistency level for each operation 
(read/write)

ANY: any server (may not be replica)
• Fastest: coordinator may cache write and reply quickly to client

ALL: all replicas
• Slowest, but ensures strong consistency

ONE: at least one replica
• Faster than ALL, and ensures durability without failures

QUORUM: quorum across all replicas in all datacenters (DCs)
• Global consistency, but still fast

LOCAL_QUORUM: quorum in coordinator’s DC
• Faster: only waits for quorum in first DC client contacts

EACH_QUORUM: quorum in every DC
• Lets each DC do its own quorum: supports hierarchical replies

Cassandra Consistency Levels (Contd.)

CAP Theorem
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Cassandra offers Eventual Consistency

Are there other types of weak consistency models?

Types of Consistency

CAP Theorem
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Consistency Solutions

Consistency Solutions
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Consistency Solutions

Strong 
(e.g., Sequential)Eventual

More consistency

Faster reads and writes

Consistency Solutions
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Cassandra offers Eventual Consistency
If writes to a key stop, all replicas of key will converge
Originally from Amazon’s Dynamo and LinkedIn’s 
Voldemort systems

Eventual Consistency

Strong 
(e.g., Sequential)Eventual

More consistency

Faster reads and writes

Consistency Solutions
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Striving towards strong consistency
While still trying to maintain high availability and 
partition-tolerance

Newer Consistency Models

Strong 
(e.g., Sequential)Eventual

Causal
Red-Blue

CRDTs
Per-key sequential

Probabilistic

Consistency Solutions
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Per-key sequential: Per key, all operations have a global 
order
CRDTs (Commutative Replicated Data Types): Data 
structures for which commutated writes give same result 
[INRIA, France]

E.g., value == int, and only op allowed is +1
Effectively, servers don’t need to worry about 
consistency

Newer Consistency Models (Contd.)

Strong 
(e.g., Sequential)Eventual

Causal
Red-Blue

CRDTs
Per-key sequential

Probabilistic

Consistency Solutions
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Red-blue Consistency: Rewrite client transactions to 
separate operations into red operations vs. blue 
operations [MPI-SWS Germany]

Blue operations can be executed (commutated) in any 
order across DCs
Red operations need to be executed in the same order 
at each DC

Newer Consistency Models (Contd.)

Strong 
(e.g., Sequential)Eventual

Causal
Red-Blue

CRDTs
Per-key sequential

Probabilistic

Consistency Solutions
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Causal Consistency: Reads must respect partial order based 
on information flow [Princeton, CMU]

Newer Consistency Models (Contd.)

Strong 
(e.g., Sequential)Eventual

Causal

Red-Blue

CRDTs
Per-key sequential

Probabilistic

Client A

Client B

Client C

W(K1, 33)

W(K2, 55)

R(K1) must return 33W(K1, 22) R(K1) may return 
22 or 33

Time
R(K1) returns 33

R(K2) returns 55
Causality, not messages

Consistency Solutions
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Use the lowest consistency (to the left) consistency model 
that is “correct” for your application

Gets you fastest availability

Which Consistency Model should you use?

Strong 
(e.g., Sequential)Eventual

Causal
Red-Blue

CRDTs
Per-key sequential

Probabilistic

Consistency Solutions
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Linearizability: Each operation by a client is visible (or available) 
instantaneously to all other clients

Instantaneously in real time
Sequential Consistency [Lamport]:

"... the result of any execution is the same as if the operations of all the 
processors were executed in some sequential order, and the operations of 
each individual processor appear in this sequence in the order specified 
by its program.
After the fact, find a “reasonable” ordering of the operations (can re-
order operations) that obeys sanity (consistency) at all clients, and across 
clients.

Transaction ACID properties, example: newer key-value/NoSQL stores 
(sometimes called “NewSQL”)

Hyperdex [Cornell]
Spanner [Google]
Transaction chains [Microsoft Research]

Strong Consistency Models

Consistency Solutions
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Traditional Databases (RDBMSs) work with strong 
consistency, and offer ACID
Modern workloads don’t need such strong guarantees, but 
do need fast response times (availability)
Unfortunately, CAP theorem
Key-value/NoSQL systems offer BASE
[Basically Available Soft-state Eventual Consistency]

Eventual consistency, and a variety of other consistency 
models striving towards strong consistency

We have also discussed the design of Cassandra and 
different consistency solutions.

Conclusion

Consistency Solutions
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After Completion of this lecture you will knowing the following:

● Introduction to AWS IoT platform
● Layered architecture of AWS IoT
● Concepts of AWS IoT Core
● Understanding of AWS greengrass
● Event-Driven architecture with sensor data in AWS IoT
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Recapitulate: Traditional IoT platform 

Cloud
Globally available, unlimited compute resources

IoT
Harnessing signals from sensors and devices, 
managed centrally by the cloud

Edge
Intelligence offloaded from the cloud to IOT 
devices

ML
Breakthrough intelligence capabilities, in the cloud 
and on the edge

ML

NPTEL



AWS IoT: Introduction

AWS IoT started in 2015 with Amazon acquiring a 
company called telemetry.

It started with several cloud services with a very 
simple IoT device management and M2M.

Now it has been expanded significantly.

AWS IoT architecture consists of three different 
layers:

● Things
● Cloud
● Intelligence

NPTEL



AWS IoT Architecture: Services Suite
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AWS IoT Architecture: Things

● Things comprises of components which are on 
premises at the field and on the devices side, 
which actually sense data and act.

● Amazon offers a couple of products for this layer.
● First one is Amazon FreeRTOS which is a real-

time operating system that can run on top of a 
microcontroller with 64 KB of memory or more

● Then AWS greengrass which is the edge 
computing software act as a interfacing with the 
local devices running either Amazon FreeRTOS 
or the AWS IoT devices SDK

NPTEL



AWS IoT Architecture: Cloud

When it comes to cloud there are two important aspects:

The first one is AWS IoT core and as the name suggests it is the core 
building block of the AWS IoT platform and is responsible for registering 
the devices, so it acts as the device registry.

It also exposes endpoints for MQTT WebSockets and HTTP for the 
devices to talk to each other and to talk to the cloud and it is also the 
touch point for applications that want to control the devices running in 
the field.

AWS IoT core acts as an interface between the applications for example 
a mobile app that is talking to a device and similarly a device that is 
sending sensor data to the cloud.

Second one is IoT device management which supports bulk 
onboarding of devices because registering one device at a time in 
industrial use cases is not feasible, so it supports bulk onboarding and 
also has properties like over-the-air software updates, maintenance and 
performing bulk jobs, operations and so on.
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AWS IoT Architecture: Intelligence

AWS IOT device defender is all about security and if there is 
a drift between the preferred configuration and the policy and 
what is currently running and it automatically raises alerts.

It also maintains a highly secure footprint of all the devices 
and if there is any anomaly it raise an alert so that is the fleet 
audit or protection service.

Finally, AWS IoT analytics which is an analytic solution and 
this service is responsible for analyzing the trends, visualizing 
and from there feeding to more powerful systems like quick 
site or redshift and so on. NPTEL



AWS IoT Core: Building Blocks

AWS IOT core is all about connecting devices 
to the cloud, the moment you bring in your 
first device that is going to become available 
you need to talk to AWS IoT core.

The workflow is very straightforward you need 
to register your device with AWS IoT core and 
that is going to act as the digital identity of 
your device. 

The moment you register a device you receive a set of credentials for the device and you're going to 
embed those credentials in the device and once the device has those credentials and it connects to 
the cloud it gets authenticated, authorized and it shows up in the device registry.

The device could be running a microcontroller, a single board computer, a slightly more powerful 
machine that can talk to an Modbus or canvas internally or, even an automobile device like a car. 

After that it can send messages to the cloud and it can receive commands from the cloud. 
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AWS IoT Core: Building Blocks

When you zoom into AWS IoT core, the first one is all about 
authentication and authorization and the second one is device 
gateway which is the cloud endpoint for talking to the IoT core. 

Message broker which is based on MQTT WebSockets and 
HTTP for publishing and subscribing messages or feeding data 
from the device to the cloud but it is predominantly uses it for a 
communication between devices at the cloud to send some 
metadata or telemetry and to receive some settings or 
commands.

There is a rules engine which decides how the messages will flow into rest of the system and the rules engine is ANSI SQL compliant that 
writes simple select statements that will filter the messages and apply a rule and the outcome of this rule can be hooked to a lambda 
function to take further action.

The device shadow is the digital twin or digital identity of the physical device and all the changes that are made to the device will first get 
applied to the device shadow and then it gets propagated all the way to the device. When the device state changes it automatically gets 
synchronized with the device shadow. It acts as the buffer between the desired state and the current state.

The job of the AWS IoT core is to make sure that the desired configuration is matching with the current configuration or not.

Device registry is a huge database repository but meant for the devices or things that you connect to AWS IoT.
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AWS IoT Core: Summary

To put things in perspective, for using multiple 
building blocks of AWS IoT, the device SDK which 
is supported in variety of languages like node.js, 
Python, C, Java where SDK is used to connect 
your device to the cloud.

The first touch point is authentication and 
authorization and then the device gateway for 
communication and further it goes to a rules 
engine and device shadow which maintains a 
replica of this state 

The rules engine is responsible for extending the 
IoT platform to rest of AWS services like dynamo 
DB, Neptune, redshift, AWS sage maker and to 
third-party services.
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AWS Greengrass: Building Blocks
AWS Greengrass extends AWS IOT to your devices 
so they can act locally and the data that they generate 
or filter is filtered before it is sent to the cloud.

Like AWS IoT core there is a message broker built into 
green grass so devices can continue to talk to each 
other, there is a compute layer which is based on 
lambda to write functions that are running locally and 
triggered when a specific condition is met and these 
triggers will actually fire lambda functions that perform 
an action.

Greengrass also have the data and state synchronized with the cloud with the help of  local device 
shadows and the cloud device shadow. If something updated locally, it first gets written to the device 
shadow running on the edge and then it eventually gets synchronized with the cloud.

Greengrass provides local resource access. For example, you want to talk to a local database which 
already has some metadata or material asset tracking information you can you can query that directly, talk 
to the file system, databases or anything that is accessible within the network. 
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AWS Greengrass: Building Blocks
The most recent feature of greengrass is the ability to run 
machine learning inferencing on the edge and this is one 
of the key drivers because there are three aspects when it 
comes to IOT. 

First one is the learning part which is happening in the 
cloud, where you train machine learning models then you 
have decision-making that takes place at the edge and 
where fully trained machine learning models are used and 
they make decisions on behalf of the cloud and the action 
phase that is directly done by the devices.

For example, a machine learning model trained in the cloud to find an anomaly is deployed on the edge and because 
an anomaly is found with a very critical device, the machine learning model decides that one of the other equipments 
need to be shut down and that decision will result in an action where an actuator or a relay or another interface 
physically shuts down a malicious or a vulnerable machine to avoid any eventuality or any fatalities. 

Thus the learn, decide and act cycle that happens with the cloud, edge and devices and performing the decision part 
run locally by ML inferencing.
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AWS Greengrass Group: Cloud Capabilities to the Edge
AWS IoT Greengrass Group: An AWS IoT Greengrass 
group is a collection of settings and components, such as 
an AWS IoT Greengrass core, devices, and subscriptions. 
Groups are used to define a scope of interaction. For 
example, a group might represent one floor of a building, 
one truck, or an entire mining site. Since the group acts as 
the logical boundary for all the devices, it enforces 
consistent configuration and policies to all the entities.

AWS IoT Greengrass Core: This is just a device in AWS 
IoT Core registry that doubles up as an edge device. It is 
an x86 and ARM computing device running the 
Greengrass runtime. Local devices talk to the Core similar 
to the way they interact with AWS IoT Core. 

AWS IoT Devices: These are the devices that are a part 
of the Greengrass group. Once devices become a part of 
the group, they automatically discover the Core to continue 
the communication. Each device has a unique identity and 
runs AWS IoT Device SDK. Existing devices can be added 
to a Greengrass Group.
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AWS Greengrass Group: Cloud Capabilities to the Edge
Lambda Functions: As discussed earlier, Lambda provides 
the local compute capabilities for AWS IoT Greengrass. Each 
function running within the Core uses Greengrass SDK to 
interact with the resources and devices. Lambda functions 
can be customized to run within the Greengrass sandbox 
container or directly as a process within the device OS. 

Subscriptions: AWS IoT Greengrass subscriptions connect 
the resources declaratively. It maintains a list of publishers 
and subscribers that exchange messages. For another 
scenario, a Lambda function may publish messages to a topic 
to which the device is subscribed. Subscriptions eliminate the 
strong dependency between publishers and consumers by 
effectively decoupling them. 
Connectors: AWS IoT Greengrass Connectors allows developers to easily build complex workflows on AWS IoT Greengrass 
without having to worry about understanding device protocols, managing credentials, or interacting with external APIs. Based 
on a declarative mechanism, Connects extend the edge computing scenarios to 3rd party environments and services. 
Connectors rely on Secrets for maintaining the API keys, passwords, and credentials needed by external services. 

ML Inferencing: This is one of the recent additions to AWS IoT Greengrass. The trained model is first uploaded to an Amazon 
S3 bucket that gets downloaded locally. A Lambda function responsible for inferencing inbound data stream publishes the 
predictions to a MQTT topic after loading the local model. Since Python is a first-class citizen in Lambda, many existing 
modules and libraries can be used to perform ML inferencing at the edge.
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AWS IoT: Event-driven architecture with sensor data
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Phase 1: 

● Data originates in IoT devices such as medical devices, car sensors, industrial IoT sensors. 
● This telemetry data is collected using AWS IoT Greengrass, an open-source IoT edge runtime and 

cloud service that helps your devices collect and analyze data closer to where the data is generated. 
● When an event arrives, AWS IoT Greengrass reacts autonomously to local events, filters and 

aggregates device data, then communicates securely with the cloud and other local devices in your 
network to send the data. 

Phase 2: 

● Event data is ingested into the cloud using edge-to-cloud interface services such as AWS IoT Core, 
a managed cloud platform that connects, manages, and scales devices easily and securely. 

● AWS IoT Core interacts with cloud applications and other devices. 
● You can also use AWS IoT SiteWise, a managed service that helps you collect, model, analyze, and 

visualize data from industrial equipment at scale. 

AWS IoT: Event-driven architecture with sensor data
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Phase 3: 

● AWS IoT Core can directly stream ingested data into Amazon Kinesis Data Streams. 
● The ingested data gets transformed and analyzed in near real time using Amazon 

Kinesis Data Analytics with Apache Flink and Apache Beam frameworks. 
● Stream data can further be enriched using lookup data hosted in a data warehouse such 

as Amazon Redshift. 

Phase 4: 

● Amazon Kinesis Data Analytics can persist SQL results to Amazon Redshift after the 
customer’s integration and stream aggregation (for example, one minute or five 
minutes).

● The results in Amazon Redshift can be used for further downstream business 
intelligence (BI) reporting services, such as Amazon QuickSight. 

● Amazon Kinesis Data Analytics can also write to an AWS Lambda function, which can 
invoke Amazon SageMaker models. 

● Amazon SageMaker is a the most complete, end-to-end service for machine learning.

AWS IoT: Event-driven architecture with sensor data
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Phase 5: 

● Once the ML model is trained and deployed in SageMaker, inferences are invoked in a 
micro batch using AWS Lambda. 

● Inferenced data is sent to Amazon OpenSearch Service to create personalized 
monitoring dashboards using Amazon OpenSearch Service dashboards.

● The transformed IoT sensor data can be stored in Amazon DynamoDB. 
● Customers can use AWS AppSync to provide near real-time data queries to API 

services for downstream applications. 
● These enterprise applications can be mobile apps or business applications to track and 

monitor the IoT sensor data in near real-time.
● Amazon Kinesis Data Analytics can write to an Amazon Kinesis Data Firehose stream, 

which is a fully managed service for delivering near real-time streaming data to 
destinations like Amazon Simple Storage Service (Amazon S3), Amazon Redshift, 
Amazon OpenSearch Service, Splunk, and any custom HTTP endpoints or endpoints 
owned by supported third-party service providers, including Datadog, Dynatrace, 
LogicMonitor, MongoDB, New Relic, and Sumo Logic.

AWS IoT: Event-driven architecture with sensor data
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This use case describe the steps in setting up Greengrass Machine Learning Inference, using Greengrass Image 
Classification ML Connector with model trained with Amazon SageMaker, and Greengrass ML Feedback 
connector to send data back to AWS for model retraining or prediction performance analysis.

Use Case: Greengrass Machine Learning Inference
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Use Case: Greengrass Machine Learning Inference
The common design patterns of using Greengrass Connectors:

1. Creates a Amazon SageMaker training job to create the model. When the Greengrass configuration is being 
deployed, the Greengrass Core will download the model from the Amazon SageMaker training job as a local 
machine learning resource.

2. Data acquisition - This function periodically acquire the raw data inputs from a image source. In this example, we 
are using static images to simulate image sources.

3. Data preprocessor - This function pre-process the image by resize to the images used to train the model.
4. Estimator - This function predict the data input with the connector via IPC
5. Greengrass ML Image Classification Connector - The Connector loads the model from local Greengrass 

resource and invoke the model.
6. The process will handle the prediction result, with object detected and confidence level.
7. The result can be used to trigger an action, or send it back to the cloud for further processing.
8. Greengrass ML Feedback Connector - Greengrass ML Feedback Connector sends field data back to AWS 

according to the sampling strategy configured
9. Greengrass ML Feedback Connector sends unlabeled data to AWS
10. Unlabled data can be labeled using Amazon Ground Truth, and the labeled data can be used to retrain the model
11. Greengrass ML Feedback Connector sends prediction performance which can be used for realtime performance 

analysis.
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The main steps for deployment are:

1. Prerequisites. Ensure there is an AWS IoT certificate and private key created and accessible 
locally for use.

2. Train the ML model. We will use an example notebook from Amazon SageMaker to train the 
model with the Image Classification Algorithm provided by Amazon SageMaker.

3. Generate and launch the CloudFormation stack. This will create the Lambda functions, the 
Greengrass resources, and an AWS IoT thing to be used as the Greengrass Core. The 
certificate will be associated with the newly created Thing. At the end, a Greengrass 
deployment will be created and ready to be pushed to the Greengrass core hardware.

4. Create the config.json file, using the outputs from the CloudFormation. Then place all files into 
the /greengrass/certs and /greengrass/config directories.

5. Deploy to Greengrass. From the AWS Console, perform a Greengrass deployment that will 
push all resources to the Greengrass Core and start the MLI operations.

Use Case Greengrass ML Inference: Deployment
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Prerequisites:

● AWS Cloud.

Ensure you have an AWS user account with permissions to manage iot, greengrass, lambda, 
cloudwatch, and other services during the deployment of the CloudFormation stack.

● Local Environment

Ensure a recent version of the AWS CLI is installed and a user profile with permissions mentioned above is 
available for use.

● Greengrass Core AWS IoT

Greengrass Core SDK Software which can be installed using pip command sudo pip3.7 install 
greengrasssdk

Use Case Greengrass ML Inference: Deployment

NPTEL

https://github.com/awslabs/aws-iot-greengrass-accelerators/blob/master/accelerators/machine_learning_inference/Greengrass_Connectors.md


Train the model with Amazon SageMaker:
We will train the model using algorithm provided by Amazon SageMaker, Amazon SageMaker Image Classification Algorithm and 
Caltech-256 dataset.

● Login to Amazon SageMaker Notebook Instances console https://console.aws.amazon.com/sagemaker/home?#/notebook-
instances

● Select Create notebook instance
● Enter a name in Notebook instance name, such as greengrass-connector-training
● Use the default ml.t2.medium instance type
● Leave all default options and select Create notebook instance
● Wait for the instance status to be InService, and select Open Jupyter
● Select SageMaker Example tab, expand Sagemaker Neo Compilation Jobs, Image-classification-fulltraining-highlevel-

neo.ipynb, select Use
● Keep default option for the file name and select Create copy

Use Case Greengrass ML Inference: Deployment
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Train the model with Amazon SageMaker:

● We are to use transfer learning approach with use_pretrained_model=1. Locate the cell that 
configure the hyper-parameters and add the additional use_pretrained_model=1. Details of the 
hyperparameters can be found in Amazon SageMaker Developer Guide - Image Classification 
Hyperparameters

● We will also be setting the prefix for our training job so that the Cloudformation Custom Resources is 
able to get the latest training job. Configure a base_job_name in the sagemaker.estimator. Locate 
the cell that initialize the sagemaker.estimator and add the base_job_name, for example, using 
greengrass-connector as the prefix. You will need this name prefix when creating the stack.

● Add a cell below the cell that do the training ic.fit() and the command 
ic.latest_training_job.name in the empty cell. This will give you the name of the training job that 
you can verify to make sure the Cloudformation stack picks up the correct job.

● Select the Cell from thet notebook menu and Run All

Use Case Greengrass ML Inference: Deployment
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Launch the CloudFormation Stack:

Prior to launching the accelerator locally, a CloudFormation package needs to be created, 
and then the CloudFormation stack launched from the Template. Follow the steps below to 
create the package via the command line, and then launch the stack via the CLI or AWS 
Console.

The CloudFormation template does most of the heavy lifting. Prior to running, each input
template needs to be processed to an output template that is actually used. The package 
process uploads the Lambda functions to the S3 bucket and creates the output template 
with unique references to the uploaded assets.

Use Case Greengrass ML Inference: Deployment
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Configure the Greengrass Core:

With the stack deployed, we use one output from the CloudFormation stack, the 
GreengrassConfig value, along with the certificate and private key to complete the config.json
so that Greengrass Core can connect and authenticate.

Starts the Greengrass Core:

With the Greengrass configuration config.json in place, start the Greengrass Core.

Use Case Greengrass ML Inference: Deployment
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Deploy Cloud Configurations to the Greengrass Core:

From the AWS Console of AWS IoT Greengrass, navigate to the Greengrass Group you 
created with the Cloudformation, and perform Actions->Deploy to deploy to the Greengrass 
Core machine.

Use Case Greengrass ML Inference: Deployment
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To test out this accelerator without any hardware, you can install the Greengrass on 
an EC2 to simulate as a Greengrass Core

1. Create a EC2 running Greengrass, using the Cloudformation template in 
cfn/greengrass_core_on_ec2-s3_models.cfn.yml

2. Once the instance is created, copy the greengrass-setup.zip to the EC2
3. In the EC2, extract greengrass-setup.zip into /greengrass folder using 

command sudo unzip -o greengrass-setup.zip -d /greengrass
4. Restart the Greengrass daemon using the command sudo systemctl restart 

greengrass

Use Case Greengrass ML Inference: Testing
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Lecture Summary

● Introduction to AWS IoT platform
● Layered architecture of AWS IoT
● Concepts of AWS IoT Core
● Understanding of AWS greengrass
● Event-Driven architecture with sensor data in AWS IoTNPTEL
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Preface

Federated Learning

After Completion of this lecture you will knowing the following:

● Current IoT scenarios
● Why there is a need to shift from centralized ML training to decentralized ML 

training of data?
● Concepts of Federated Learning ( ie Distributed ML)
● Several challenges of federated learning
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Current IoT Scenario

Federated Learning

Explosion of IoT Market
● McKinsey reported $11.1 Trillion market value by 2025
● 14 billion connected devices - Bosch
● 5 billion connected devices - Cisco
● 309 billion IoT supplier revenue - Gartner
● 7.1 trillion IoT solutions revenue - IDC

A “deluge of data” is observed in 2020
1.5 GB of traffic per day from average internet user
3000 GB per day - Smart Hospitals
4000 GB data per day - self driving cars EACH
Radars ~ 10-100 kb per sec
40,000 GB per day - connected aircrafts
1,000,000 GB per day - connected factoriesNPTEL



Shift from Centralized to Decentralized data

Federated Learning

● The standard setting in Machine Learning (ML) considers a centralized dataset 
processed in a tightly integrated system

● But in the real world data is often decentralized across many IOT devices
● Sending the data tpo Cloud for centralized ML may be too costly 

○ Self-driving cars are expected to generate several TBs of data a day 
○ Some wireless devices have limited bandwidth/power 

● Data may be considered too sensitive sometimes such as medical reports
○ We see a growing public awareness and regulations on data privacy 
○ Keeping control of data can give a competitive advantage in business and 

research 
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Federated Learning: Distributed ML

Federated Learning

● 2016: the term FL is first coined by Google researchers; 2020: more 
than 1,000 papers on FL in the first half of the year (compared to just 
180 in 2018)1 

● We have already seen some real-world deployments by companies and 
researchers for large scale IOT devices

● Several open-source libraries are under development: PySyft, 
TensorFlow Federated, FATE, Flower, Substra... 

● FL is highly multidisciplinary: it involves machine learning, numerical 
optimization, privacy & security, networks, systems, hardware...
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Federated Learning: Decentralised data

Federated Learning

● Federated Learning (FL) aims to collaboratively train a ML model while 
keeping the data decentralized 

● Enabling devices to learn from each other (ML training is brought close 
● A network of nodes and all nodes with their own central server but 

instead of sharing data with the central server, we share model we 
don't send data from node to server instead send our model to server
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Gradient Descent Procedure

Federated Learning

The procedure starts off with initial values for the coefficient or coefficients for the 
function. These could be 0.0 or a small random value. 

coefficient = 0.0

The cost of the coefficients is evaluated by plugging them into the function and 
calculating the cost. 

cost = f(coefficient) or cost = evaluate(f(coefficient))

We need to know the slope so that we know the direction (sign) to move the 
coefficient values in order to get a lower cost on the next iteration.

delta = derivative(cost)
we can now update the coefficient values. 

A learning rate parameter (alpha) must be specified that controls how much the 
coefficients can change on each update.

coefficient = coefficient – (alpha * delta)

This process is repeated until the cost of the coefficients (cost) is 0.0 or close to 0
It does require you to know the gradient of your cost function or the function you 
are optimizing
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Gradient Descent Algorithm

Federated Learning

Gradient Descent
• Gradient Descent is the most basic but most used optimization algorithm. It’s 

used heavily in linear regression and classification algorithms. Backpropagation 
in neural networks, Federated Learning also uses a gradient descent algorithm. 

• Gradient descent is a first-order optimization algorithm which is dependent on 
the first order derivative of a loss function. It calculates that which way the 
weights should be altered so that the function can reach a minima. Through 
backpropagation, the loss is transferred from one layer to another and the 
model’s parameters also known as weights are modified depending on the 
losses so that the loss can be minimized.

algorithm: θ=θ−α⋅∇J(θ)
Advantages:
• Easy computation
• Easy to implement
• Easy to understand

The devices train the generic neural network model using the gradient descent
algorithm, and the trained weights are sent back to the server. The server then
takes the average of all such updates to return the final weights.
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Edge Computing ML: FL

Federated Learning

• FL is category of machine learning (ML) , which 
moves the processing over the edge nodes so 
that the clients’ data can be maintained. This 
approach is not only a precise algorithm but 
also a design framework for edge computing.

• Federated learning is a method of ML that 
trains an ML algorithm with the local data 
samples distributed over multiple edge devices 
or servers without any exchange of data. This 
term was first introduced in 2016 by McMahan.

• Federated learning distributes deep learning by 
eliminating the necessity of pooling the data 
into a single place. 

• In FL, the model is trained at different sites in 
numerous iterations. This method stands in 
contrary to other conventional techniques of 
ML, where the datasets are transferred to a 
single server and to more traditional 
decentralized techniques that undertake that 
local datasets
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Edge Computing ML: FL

Federated Learning

Deep Learning model training

Finding the function: model training
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Edge Computing ML: FL

Federated Learning

Finding the function: model training
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How is this aggregation applied? FedAvg Algo

Federated Learning
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Example: FL with i.i.d.

Federated Learning

In FL, each client trains its model decentral. In other 
words, the model training process is carried out 
separately for each client. 

Only learned model parameters are sent to a trusted 
center to combine and feed the aggregated main model. 
Then the trusted center sent back the aggregated main 
model back to these clients, and this process is 
circulated.

A simple implementation with IID (independent and 
identically distributed) data to show how the parameters 
of hundreds of different models that are running on 
different nodes can be combined with the FedAvg
method and whether this model will give a reasonable 
result. 

This implementation was carried out on the MNIST Data 
set. The MNIST data set contains 28 * 28 pixel 
grayscale images of numbers from 0 to 9.
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Image Classifier using FedAvg

Federated Learning

The MNIST data set does not contain each label equally. Therefore, to fulfill the IID 
requirement, the dataset was grouped, shuffled, and then distributed so that each 
node contains an equal number of each label.

A simple 2-layer model can be used for the classification process used FedAvg.
Since the parameters of the main model and parameters of all local models in the 
nodes are randomly initialized, all these parameters will be different from each other, 
so the main model sends its parameters to the nodes before the training of local 
models in the nodes begins.

Nodes start to train their local models over their own data by using these parameters.
Each node updates its parameters while training its own model. After the training 
process is completed, each node sends its parameters to the main model.
The main model takes the average of these parameters and sets them as its new 
weight parameters and passes them back to the nodes for the next iteration.
The above flow is for one iteration. This iteration can be repeated over and over to 
improve the performance of the main model.
The accuracy of the centralized model was calculated as approximately 98%. The 
accuracy of the main model obtained by FedAvg method started from 85% and 
improved to 94%.
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Apple personalizes Siri without hoovering up data

Federated Learning

The tech giant is using privacy-preserving machine learning to 
improve its voice assistant while keeping your data on your 
phone.

It relies primarily on a technique called federated learning.

It allows Apple to train different copies of a speaker 
recognition model across all its users’ devices, using only the 
audio data available locally. 

It then sends just the updated models back to a central server 
to be combined into a master model. 

In this way, raw audio of users’ Siri requests never leaves 
their iPhones and iPads, but the assistant continuously gets 
better at identifying the right speaker. In addition to federated 
learning, Apple also uses something called differential privacy 
to add a further layer of protection. The technique injects a 
small amount of noise into any raw data before it is fed into a 
local machine-learning model. The additional step makes it 
exceedingly difficult for malicious actors to reverse-engineer 
the original audio files from the trained model.
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Federated Learning: Training

Federated Learning

● There are connected devices let's say we have cluster of four IOT 
Devices from four of the IOT devices and there is one central server 
that has an untrained model.

● We will send a copy of the model to each of the node.
● Each node would receive a copy of that model.
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Federated Learning: Training

Federated Learning

● Now all the nodes in the network has that untrained model that is 
received from the server.
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Federated Learning: Training

Federated Learning

● In the next step, we are taking data from each node by taking data it 
doesn't mean that we are sharing data.

● Every node has its own data based on which it is going to train a 
model.
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Federated Learning: Training

Federated Learning

● Each node is training the model to fit the data that they have and it will 
train the model accordingly to its data.
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Federated Learning: Training

Federated Learning

● Now the server  would combine all these model received from each node 
by taking an average or it will aggregate all the models received from the 
nodes.

● Then the server will train that a central model, this model which is now 
trained by aggregating the models from each node. It captures the pattern 
in the training data on all the nodes it is an aggregated one
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Federated Learning: Training

Federated Learning

● Once the model is aggregated, the server will send the copy of the 
updated model back to the nodes.

● Everything is being achieved at the edge so no data sharing is done 
which means there is privacy preservation and also very less 
communication overhead.
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Federated Learning: Challenges

Federated Learning

Systems heterogeneity

● Size of data
● Computational power
● Network stability
● Local solver
● Learning rate

Expensive Communication

● Communication in the 
network can be slower 
than local computation by 
many order of magnitude.
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Federated Learning: Challenges

Federated Learning

Dealing with Non-I.I.D. data   i.i.d (independent and identical distributed)
● Learning from non-i.i.d. data is difficult/slow because each IOT device 

needs the model to go in a particular direction 
● If data distributions are very different, learning a single model which 

performs well for all IOT devices may require a very large number of 
parameters 

● Another direction to deal with non-i.i.d. data is thus to lift the 
requirement that the learned model should be the same for all IOT 
devices (“one size fits all”)

● Instead, we can allow each IOT k to learn a (potentially simpler) 
personalized model θk but design the objective so as to enforce some 
kind of collaboration

● When local datasets are non-i.i.d., FedAvg suffers from client drift
● To avoid this drift, one must use fewer local updates and/or smaller 

learning rates, which hurts convergence
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Federated Learning: Challenges

Federated Learning

Preserving Privacy
● ML models are susceptible to various attacks on data privacy
● Membership inference attacks try to infer the presence of a 

known individual in the training set, e.g., by exploiting the 
confidence in model predictions

● Reconstruction attacks try to infer some of the points used to 
train the model, e.g., by differencing attacks

● Federated Learning offers an additional attack surface because 
the server and/or other clients observe model updates (not only 
the final model) NPTEL



Key differences with Distributed Learning

Cloud IoT Edge ML

Data distribution
● In distributed learning, data is centrally stored (e.g., in a data center)

○ The main goal is just to train faster
○ We control how data is distributed across workers: usually, it is 

distributed uniformly at random across workers
● In FL, data is naturally distributed and generated locally

○ Data is not independent and identically distributed (non-i.i.d.), and it 
is imbalanced

Additional challenges that arise in FL
● Enforcing privacy constraints
● Dealing with the possibly limited reliability/availability of participants
● Achieving robustness against malicious parties
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Federated Learning: Concerns

Federated Learning

When to apply Federated Learning

● Data privacy needed
● Bandwidth and power consumptions are concerns
● High cost of data transfer

When NOT to apply Federated Learning

● When more data won’t improve your model (construct a learning 
cure)

● When additional data is uncorrelated
● Performance is already at ceiling
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Federated Learning: Applications

Federated Learning

● Predictive maintenance/industrial IOT
● Smartphones

● Healthcare (wearables, drug discovery, prognostics, etc.)

● Enterprise/corporate IT (chat, issue trackers, emails, etc.)
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Lecture Summary

Federated Learning

● Market trend of IoT platform
● Why decentralized training is important?
● Understanding of Federated Learning
● Different issues with federated learning
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Thank You!

Federated Learning
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Preface

After completion of this lecture you will know the following:

● Understanding of Autonomous Vehicles
● Role of Edge computing in Automotive Industry
● How ML is trained in Self-driving cars?
● Use Case of LSTM model for self-driving cars

ML for Autonomous Vehicles
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Autonomous Vehicles: Introduction
Autonomous vehicles (AVs) have attracted a 
significant amount of interest in recent years. 
According to a report released by the US state 
Department of Transportation, “Self-Driving-Cars 
can reduce 90% of Traffic Deaths”. 

A big chunk of major Automobile companies is 
trying to develop Self-Driving-Cars. Some big 
players are Tesla, Waymo, even Google is 
developing Self Driving Cars which has no 
presence in the automobile sector, have invested a 
huge amount of money, manpower and 
engineering capabilities in developing such 
systems.

Designing policies for an autonomous driving 
system is particularly challenging due to 
demanding performance requirements in terms of 
both making safe operational decisions and fast 
processing in real-time. 
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Edge Computing in Automotive
Historically, the adoption of computing (be it cloud or edge) and software in automotive 
has trailed the in-general adoption in other industries. 

Cloud computing has been around for a while in many industries and many forms. But, 
vehicle telematics became one of the top use cases adopted in automotive somewhere 
in 2008. 

Connected vehicles will continue to evolve at an exponential rate with V2V and V2X 
communication. This generates a large volume of data (every connected vehicle will 
generate data up to 4TB/day). How to handle, process, analyse the large amounts of 
data and make critical decisions quickly and efficiently? 

Automobile makers are focused on leveraging edge computing to address these ever-
evolving challenges. A group of cross-industry global players has formed the 
Automotive Edge Computing Consortium (AECC) to drive best practices for the 
convergence between the vehicle and computing ecosystem. 

When driving a vehicle, milliseconds matter. Autonomous vehicles are no different, 
even though it may be your AI that drives them. AI = data + compute, and you want 
your compute to be as close to your data as possible. Enter edge computing.
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Edge Computing: Self-Driving Car Sensors
Given its real-time data processing capabilities, edge computing has naturally 
established itself as a pillar in autonomous vehicle technology. However, this data 
isn't generated by the computer but rather by the multitude of sensors that 
comprise an autonomous vehicle's peripheral "eyes" and "ears." 

Sensor topology can vary widely amongst autonomous vehicles, even within the 
same sector. 

Most self-driving sensors are fundamentally similar - they collect data about the 
world around them to help pilot the vehicle. For example, the Nuro vehicle 
contains cameras, radar, Lidar, and thermal cameras to provide a complete, multi-
layered view of the vehicle's surroundings. 

Currently, a Tesla utilize eight cameras,12 , and a forward radar system, but rely 
much more heavily on camera visuals than Nuro vehicles. Google's Waymo Driver 
primarily relies on Lidar and uses cameras and radar sensors to help map the 
world around it.
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Self-Driving Car: Requirements
Autonomous driving vehicles require two in-vehicle computing systems. One computer processes a large 
amount of sensed data and images collected by cameras and sensors. And a second computer to analyze 
processed image data and make intelligent and quick decisions for the vehicle.

● Pre-processing collected data. Autonomous vehicles have video cameras and a variety of sensors 
like ultrasonic, LiDAR, and radar to become aware of their surroundings and the internals of the 
vehicle. This data coming from different vehicle sources must be quickly processed through data 
aggregation and compression processes. An in-vehicle computer needs to have multiple I/O ports for 
receiving and sending data.

● Secure network connectivity. The in-vehicle computing solution must remain securely connected to 
the Internet to upload the pre-processed data to the cloud. In this case, having multiple wireless 
connections for redundancy and speed is crucial. High-speed connectivity is also vital for continuous 
deployments of vehicle updates or "push" updates like location, on-road conditions, and vehicle 
telematics.

● High-performance computing. Autonomous vehicles may generate approximately 1 GB of data 
every second. Gathering and sending a fraction of that data (for instance, 5 minutes of data) to a 
cloud-based server for analysis is impractical and quite challenging due to limited bandwidth and 
latency. Autonomous driving systems shouldn’t always rely on network connectivity and cloud services 
for their data processing. Self-driving vehicles need real-time data processing to make crucial quick 
decisions according to their surroundings. In-vehicle edge computing is essential for reducing the 
need for network connectivity (offline decision-making) and for increasing decision-making accuracy.a
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How Machine Learning Trains AI in Self-Driving Cars

The value of the sensor data collected in all self-driving cars and vehicles depends on 
the compute methodologies downstream of the sensors themselves. In many ways, the 
most valuable intellectual property of companies like Tesla, Waymo, Aurora 
Innovations, and Nuro is the software and data infrastructure built to process and action 
the sensor data. 

Today, all autonomous vehicles on the road utilize edge computing AI programs, which 
are often trained using data center machine learning models. Autonomous car machine 
learning models are only made possible by the incredible computing power of modern 
data centers capable of hundreds of petaflops. 

The computing requirements of these vast machine learning models well exceed the 
computing power of edge computers. Given this information, data centers are often 
used to form algorithms deployed for edge. 

The problem of self-driving-car can be seen as a Regression Problem.

Training an AI algorithm is similar; it takes hundreds of compute hours on a high-power 
data center. Yet once that algorithm is learned, it can quickly and accurately utilize that 
algorithm using much less computing power.
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Machine learning in autonomous driving

Kalman Filter, In real-life autonomous driving, the machine will deal with the 
same information from different sensors, such as Lidar, Radar, MEC signals and 
V2V Communications. This information will always have discrepancies with each 
other, and Kalman filter can help us to get a relatively reliable answer according to 
these two sets of information.
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Machine learning in autonomous driving
Lidar, Radar, and Cameras ML is an important part of autonomous driving. A 
self-driving vehicle usually has multiple sensors, including cameras, lidar, and 
radar sensors. The machine learning module will tell the vehicle what to do with 
different information. For example, the car needs to stop when there were 
pedestrians, and the machine must be able to tell the difference between actual 
pedestrians and pictures of human. Additionally, camera sets cannot precisely 
measure distance or work at night. Lidar sensors usually emit high-frequency 
signals, and those high-frequency signals could be used for positioning and 3D 
modelling, being able to tell the difference between actual human and pictures 
of human. Radar is a low energy cost solution for positioning because the radio 
wave it emits is usually with low frequency. Low-frequency wave cannot depict 
the detailed 3D shape, but it is enough for positioning. However, cameras are 
still needed because neither lidar nor radar can identify colors. 

Vehicle-to-Vehicle Communication. Communication (V2V) technology can 
increase the accuracy of autonomous driving prominently. When multiple cars 
are sharing their information, they can calibrate according to their relative 
positions.
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Key component of ML for self driving cars
Perception: a core element of what the self-driving car needs to build an understanding of the 
world around around it using two major inputs:

● Scene Prior, and
● Sensor Data

Scene Prior, is prior on the scene. For example it would be a little silly to recompute the actual 
location of the road, interconnectivity of the intersections of every intersection. Things you can pre-
compute in advance and save your onboard computing for all the tasks that are more critical which 
is often referred to as the mapping exercise. 

Sensor, the signal that's going to tell you what is not like, what you mapped and the things like 
traffic light right or green, where are the pedestrians and the cars what are you doing.
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Key component of ML for self driving cars

ML for Autonomous Vehicles

Components
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Key component of ML for self driving cars
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Scene Representation
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Key component of ML for self driving cars

ML for Autonomous Vehicles

Perform semantic object segmentation 
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Key component of ML for self driving cars

ML for Autonomous Vehicles

Perform finer classification of objects 
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Key component of ML for self driving cars

ML for Autonomous Vehicles

Time tracking using embeddings/RNN
Now the vector representations of different 
objects will be tracked over time. 

A common technique that you can use is a 
recurrent neural networks that essentially are 
networks that will build a state that gets better 
and better as it gets more observation 
sequential observations of for the pattern.

Once semantic representation and coding in an 
embedding for the pedestrian, the car under it 
and the model will track that over time and build 
a state of a good understanding of what's going 
on in the scene.

The vector representation combined with 
recurrent neural networks is a common 
technique to achieve this.
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Data for training ML models in Self-Driving Cars

Waymo Open Dataset is the largest, richest and most diverse AV datasets ever 
published for academic research Sun et al. (2019). This dataset, collected from 
Waymo level-5 autnomous vehicles in various traffic conditions, comprise radar, 
lidar and camera data from 1000 20-second segments with labels. We will 
introduce details about the Waymo dataset, as well as how the data is 
preprocessed before being fed into several machine learning models.
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Data for training ML models in Self-Driving Cars

Labels refer to kinematics and spatial parameters of objects, which are 
represented as bounding boxes. Specifically, one kind of labels, type, is classified 
into pedestrian, vehicle, unknown, sign and cyclist categories. Detailed information 
is provided for each label, among which we especially pay attention to the 
coordinates of the bounding boxes, velocities v, and accelerations a in the 
subsequent feature extraction step. 

Coordinate Systems three coordinate systems are provided in this dataset: global 
frame, vehicle frame, and sensor frame. Some raw features are represented in 
unintended coordinate systems. In order to maintain consistency, it is crucial to 
transform data into the correct coordinate system. The dataset also provides 
vehicle pose VP, a 4 × 4 row matrix, to transform variables from one coordinate 
system to another.

Acceleration Computation Because one’s instant acceleration of is not directly 
available in the dataset, the “ground truth” for training and evaluation needs to be 
computed by velocity differences.
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Data for training ML models in Self-Driving Cars

Data Size: According to the data format, 1000 segments are packed into multiple 
compressed files (tars) with a size of 25 GB each. In our experiments, 32 training 
tars are used as the training set and 8 validation tars are used as the testing set. 
The total number of videos extracted from the segments is 45000.

Image embedding there are five cameras installed on the AV, facing towards front, 
front-left, frontright, side-left, and side-left respectively. These images reflect the 
time-series information of the moving vehicle with relatively smoother variation than 
numerical data, which helps to prevent spiky prediction between consecutive 
frames.
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Use Case: LSTM model for self driving cars

Basic Model with 12 Features, One of the straightforward ways to build the acceleration 
prediction model is to treat 12 basic features as the input of the model. The ”encoder-
decoder” architecture proposed for trajectory prediction in SS-LSTM is a suitable 
architecture for the acceleration prediction problem as the acceleration curve is a 
trajectory based on past experiences.

ML for Autonomous Vehicles

NPTEL



Use case: LSTM model for self driving cars
Advanced Model with Image Inputs, The architecture of such an advanced model is 
similar to the previous basic model. An ”encoder-decoder” structure is maintained to 
learn the information hidden in the input features. The difference is that the front camera 
images are treated as additional inputs.
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Use Case: LSTM model for self driving cars
Advanced Model with more Image Inputs
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Use Case: LSTM model for self driving cars

Comparison of results with other state-of-the-art methods
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Future trend of autonomous driving

Like other intelligent industries of IIoT, autonomous driving is also reducing the 
total energy consumption. Gasoline has been the primary fuel for all kinds of 
vehicles, and natural gas storage only has about 52 years left, with current 
consumption levels. If the natural gas demands increased, natural gas could 
run out faster. So, the energy crisis is existing all the time. 

First of all, the rise of autonomous driving cars can improve the energy 
efficiency of private-owned cars. Usually, an average family car can reach its 
maximum speed at about 200 to 250 km/h, but the city’s usual speed limit is 
usually about 60km/h. That means the engine displacement of nowadays cars 
are mostly excessive. However, high engine displacement is necessary 
because faster cars are always safer because driver can overtake or change 
lane faster. If autonomous vehicles took the places of private-owned vehicles. 
In that case, it is pointless to use bigger and faster cars because autonomous 
driving cars are much more reliable than human drivers.
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Future trend of autonomous driving

Secondly, auto-driving vehicles could reduce the natural gas dependency. As 
this paper mentioned before, smaller cars do not need potent energy resource, 
and electricity will be enough for most auto-driving vehicles. The popularization 
of auto-Driving cars is also an excellent opportunity to accept renewable 
energy over traditional energy sources, which will do good to the global climate 
as well. 

Last but not least, when autonomous driving vehicles replaced private cars, 
parking issues will be solved, people will have bigger house and living areas 
because no garage is needed. There will be no traffic congestion as routes will 
be pre-scheduled to ensure efficiency. Long-distance deliverance will be more 
reliable because the auto-driving vehicle will never be tried.
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Lecture Summary

● Different concepts of Autonomous Vehicles
● How Edge computing is important in Automotive Industry?
● How ML is trained in Self-driving cars?
● Use Case of LSTM model for self-driving cars
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Thank You!
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