
Introduction to Edge Computing

Dr. Rajiv Misra
Professor, Dept. of Computer
Science & Engg. Indian Institute of
Technology Patna rajivm@iitp.ac.in

NPTEL

mailto:rajivm@iitp.ac.in

After this lecture you will be knowing following things:

● Introduction to Edge Computing

● Edge Computing Architecture & building blocks

● Edge Computing for IOT

● Advantages of Edge Computing NPTEL

Cloud

Virtual machines running in
a remote data center or

storage that was offered in a
remote data center

IoT

VMs getting replaced by
containers and workloads are

moving towards containers

Edge

Data processed locally and
compute comes much

closer to the devices or the
sources of data

Edge
ML

Training the models
on edge also called

inferencing

Recapitulate:Evolution of Cloud

NPTEL

Introduction to Edge Computing
Edge computing allows the cloud to be genuinely distributed.
Don't need to rely on the cloud for all the processing and data
aggregation collection processing and querying.
Mimics the public cloud platform capabilities.
Reduces the latency by avoiding the round-trip and brings in the
data sovereignty by keeping data where it actually belongs.

Delivers local storage, compute, and network services.NPTEL

Edge Computing: makes distributed cloud

●Edge computing makes the cloud truly distributed. The
current cloud or rather the previous generation of cloud
was almost like a mainframe or like a client-server
architecture where very little processing was done on
the client side but all the heavy lifting was done by the
cloud.
●With all the innovations in the hardware chips and with
the affordable electronics and silicon it makes more
sense to bring compute down to the last mile and actually
keep the compute closer to the devices.
●So that's when edge computing becomes more and
more viable where you don't need to rely on the cloud for
all the processing and data aggregation, collection,
processing and querying instead you could actually run a
computing layer that is very close to the devices.

NPTEL

Edge Computing: Mimics the public cloud platform capabilities
and Move cloud service closer to data-source

●The edge computing mimics the public cloud platform
capabilities
●For example when you dissect an edge computing
platform you would notice that it almost has all the
capabilities of a typical public cloud
●IOT pass: it has device management, it has data
ingestion, it has stream analytics and it can run
machine learning models and it can run server less
functions so all of those are capabilities that are
predominantly available on the public cloud
●But with edge computing they all come to the last mile
delivery point and run very close to the source of the
data which is sensors actuators and devicesNPTEL

Edge Computing: Reduces the latency by avoiding the round-trip
and brings in the data sovereignty

●The biggest advantage of deploying an edge computing
layer is that it reduces the latency by avoiding the round-
trip.
●It also brings in the data sovereignty by keeping data
where it actually belongs to.
●For example in a healthcare scenario it may not be viable
or it may not be compliant to actually stream sensitive
patient data to the cloud where it is getting stored and
processed instead the patient data should remain on-Prem
within the hospital premises but it still needs to go through
lot of processing and find out very useful insights so in that
case the edge computing layer is going to stay close to the
healthcare equipment with connectivity back to the cloud
and the architects and the customer engineers will decide
what data will stay within the edge boundary and what will
actually cross that and move to the cloud may be
anonymized data.

NPTEL

Edge Computing Building Blocks
Data Ingestion

M2M Brokers

Object Storage

Function as a Service

NoSQL/Time-Series Database

Streem Processing

ML Models NPTEL

Edge Computing Building Blocks: Data
Ingestion
Data Ingestion:

This is the high velocity, high throughput
data endpoint like the Kafka endpoint that
is going to ingest the data.

It is the process of obtaining and
importing data for immediate use or
storage in a database. To ingest
something is to take something in or
absorb something. Data can be streamed
in real time or ingested in batches. In
real-time data ingestion, each data item
is imported as the source emits it.

NPTEL

Edge Computing Building Blocks: M2M
Brokers
M2M Brokers:

Edge will also run message
brokers that will orchestrate
machine to machine
communication.

For example device one talks
to device two via the M2M
broker.

NPTEL

Edge Computing Building Blocks: Storage
Object Storage:

there may be unstructured storage
particularly to store the feed from
video cameras and mics and
anything that is unstructured will go
into object storage.

NoSQL/Time-Series Database:

More structured data goes into time
series data base and no sequel
database

NPTEL

Edge Computing Building Blocks: Stream
Processing
Stream Processing:

It is a complex event processing
engine that is enabling you to
perform real-time queries and
process the data as it comes.

For example for every data point
you want to convert Fahrenheit to
Celsius or you want to convert the
timestamp from one format to
another, you could do it either in
stream processing.

NPTEL

Edge Computing Building Blocks: Function
as a Sevice
Function as a service:
To add additional business
logic there is a functions as a
service which is actually
responsible for running
lightweight compute.

If you need to do more
sophisticated code you could
actually move that to functions
as a service.

NPTEL

Edge Computing Building Blocks: ML
Models
Machine Learning models:

Lastely, there is an ML runtime for
example most of the computing
platforms are capable of running
tensorflow light, cafe models and
pitorch models, so you can actually
process the data that comes in
more intelligently and take
preventive measures and perform
predictive analytics.

NPTEL

Edge Computing Architecture

NPTEL

Edge Computing: Three-tier Architecture
Now let's look at this from a different dimension.

There are data sources and by the way edge computing is
not confined just to IOT, it could be even for non IOT use
cases. Anything that generates data can be fed into an IOT
like cameras, clickstream analysis, gaming, etc.

A lot of use cases are relevant for the edge deployments so
it's basically like a three-tier architecture.

But this three-tier architecture is not the traditional three-tier
that we are familiar of.

There is no app server, no database, no middle layer, and
there is no front end, so this is not a traditional three tier
architecture. NPTEL

Edge Computing Architecture: Data Source Tier

The first tier is the Data Source Tier:

In industrial IOT environment, this
could be a set of devices that are
generating the data.

These are nothing but original
endpoint, from where the data is
acquired or the origin of the data.NPTEL

Edge Computing Architecture: Intelligence Tier

Then there is an intelligent tier:

Responsible for running the machine
learning models.

This intelligent tier cuts across the
cloud and the edge so there is a very
well-defined boundary between edge
and cloud where the training takes
place on the cloud and the inferencing
is run on the edge. But collectively,
this overlap between the cloud and
the edge is this intelligence layer.

NPTEL

Edge Computing Architecture: Actionable Insight Tier

Then there is an actionable insight
layer:

Responsible for sending an alert to the
relevant stakeholders or populating the
dashboards and showing some
visualizations or even the edge taking
an action to immediately shut down a
faulty machine or controlling an
actuator and again the actionable
insight takes place on the edge so this
is not the physical boundary.

NPTEL

Edge Computing Architecture: Summary
In Summary, you logically look at the whole
architecture so there is a data source which is
the original endpoint from where the data is
acquired or the origin of the data.

Then there is an intelligence layer where the
constant training and inferencing takes place.

Then there is an insight layer where you actually
visualize the outcome from the intelligence and
also perform actions based on those insights so
that is one way of visualizing edge computing.

NPTEL

Lecture Summary

● In depth concepts of Edge Computing
○ Edge makes distributed cloud
○ Edge mimics the public cloud platform capabilities and Move cloud service closer to data-source
○ Edge reduces the latency by avoiding the round-trip and brings in the data sovereignty

● Building Blocks of Edge Computing

● Three tier architecture of Edge Computing
○ Data Source
○ Intelligence

○ Actionalble Insight NPTEL

NPTEL

Introduction to Cloud

Dr. Rajiv Misra
Professor, Dept. of Computer
Science & Engg. Indian Institute of
Technology Patna rajivm@iitp.ac.in

NPTEL

mailto:rajivm@iitp.ac.in

On completion of this Lecture you will get to know about the following:

● Understanding of today’s cloud scenario

● Different objectives of cloud

● Current limitations of traditional cloud

● Why there is a need of Edge Computing?

NPTEL

● Highly centralised set of resources
● Compute is going beyond VMs
● Storage is complemented by CDN
● Network stack is programmable
● The Web and Software-as-a-Service
● Infrastructure-as-a-Service
● High-Availability cloud

Current State of Today’s Cloud

NPTEL

Current State of Today’s Cloud: Highly
Centralized in Client-Server Architecture

● Cloud computing started as all about
virtual machines that were running in a
remote data center (or storage).

● Highly centralized architecture closely
resembles 90s client-server computing.

● For example cloud (the remote data
center or the remote infrastructure)
exposed by Amazon, Microsoft, Google,
IBM and others is the server and the
machine from which you are connecting
to it and consuming the cloud resources
is the client.

NPTEL

Current State of Today’s Cloud: Compute is
going beyond VMs
● Although cloud resembles the 90s client-server

computing but at the same time compute has
gone beyond VMs the first generation of cloud
was all about VM virtual machines.

● Where you could programmatically launch a VM
and you could SSH into it and take control of the
Virtual Machine and install the software.

● But there is a dramatic shift in the compute
where VMs are slowly getting replaced by
containers.

● More and more workloads are moving towards
containers.

NPTEL

Current State of Today’s Cloud: Storage is
complemented by CDN
● Another important trend almost all the public

cloud are in storage offerings.
● Object storage is complemented by a content

delivery network today.
● Whenever you put an object in a bucket or a

container of the public cloud storage you can
click a check box to basically replicate and
cache the data across multiple edge locations
but this edge is not the edge that we are talking
about this is the content delivery network where
it caches the frequently accessed content in a
set of pop or edge locations.

NPTEL

Current State of Today’s Cloud: Network
stack is programmable
● Finally network has become extremely programmable today.
● If you look at the hybrid cloud, multi-cloud scenarios and how

network traffic is getting routed and how load balancers firewalls
and a variety of network components are configured it is through
api's and programmability.

● The same capability of SDN is enabling hybrid scenarios
particularly when we look at the combination of software-defined
network with some of the emerging networking technologies.● These mesh they are opening up additional avenues some of the
very recent trends like Google’s Anthos, IBM cloud private and
some of the other container based hybrid cloud platforms are
heavily relying on the programmable Network stack and also a
combination of SDN with service mesh.● This is the current state of the cloud and these trends represent
how the cloud is currently being consumed or how it is delivered to
customers but cloud is going through a huge transformation.

NPTEL

Multiple waves of innovation in Cloud: Pass
to IOT

● Initially cloud was all about compute storage and network resources globally
available highly centralized set of resources because cloud made compute and
storage extremely cheap and affordable lot of industrial customers and
enterprises started connecting devices to the cloud.

● The data that was not persisted or aggregated or acquired is now streamed to
the cloud because it is extremely cheap to store data in the cloud.

● So a lot of companies and lot of industrial environments started to take
advantage of the cloud by streaming the data coming from a variety of sensors
and devices.

● Also use the cheaper compute power to process those data streams and make
sense out of the raw data generated these sensors and devices and that was
the next big shift in the cloud this was IOT pass.NPTEL

Challenges for IOT-Pass

● If you look at azure IOT, Google Cloud IOT, AWS IOT core all of them
essentially give you a mechanism a platform to connect devices and store data
and process it in the cloud but it was not sufficient or it was not enough to
address a lot of scenarios while cloud enabled capabilities like Big Data and
IOT.

● Lot of customers were not ready to move the data to the cloud that is one
challenge.

● The second one is the round trip from the devices to the cloud and back to the
devices was too long and it was increasing the latency in a lot of mission-critical
industrial IOT scenarios.

● Sending the data to the cloud and waiting for the cloud to process it and send
the results back was just not feasible so there had to be a mechanism where
data could be processed locally and compute comes much closer to the devices
or the sources of data so that's how IOT led to edge computing and today
almost every mainstream enterprise IOT platform has a complimentary edge
offering and associated edge offering and more recently there has been a lot of
focus on artificial intelligence.

NPTEL

Cloud for AI-ML
● Today’s cloud has become the logical destination for training and running artificial intelligence

and machine learning models.● Due to accelerators like GPUs GPUs FPGAs it has become extremely cheap and also
powerful to train very complex very sophisticated ML models and AI models ● But in most of the scenarios a model that is restrained in the cloud is going to be run in an
offline environment.● For example, you might have trained an artificial intelligence model that can identify the make
and model of a car and automatically charge the tall fee for that vehicle when it passes through
the toll gate now since the toll gates are on highways and freeways with very little connectivity
and almost with no network access you need to run this model in offline scenario.● So edge computing became the boundary for running these cloud trained AI models but
running in an offline mode within the edge so that is how we are basically looking at the
evolution of cloud and on the waves of innovation. ● So cloud are distributed or rather decentralized platform for aggregating storing and processing
data with high performance computing IOT brought in all the devices to the cloud with IOT data
at edge made cloud decentralized by bringing compute closer to the data source and now it is
AI that is actually driving the next wave where cloud is becoming the de facto platform for
training the models and edge is becoming the de facto platform for running the models so one
is called the training the other one is called inferencing.

NPTEL

Limitations of current cloud system
● AI use cases need real-time responses from the devices they are

monitoring.

● Cloud-based inference cannot provide this real-time response due to
inherent issues with latency.

● If edge devices have connectivity issues or no internet connection it
can not perform well.

● Sufficient bandwidth required to transfer the relevant amount of data in
a proper time frame can also be an issue.NPTEL

Cloud

Virtual machines running in
a remote data center or

storage that was offered in a
remote data center

IoT

VMs getting replaced by
containers and workloads are

moving towards containers

Edge

Data processed locally and
compute comes much

closer to the devices or the
sources of data

Edge
ML

Training the models
on edge also called

inferencing

Evolution of Cloud

NPTEL

Summary of this lecture
● Today’s cloud is highly Centralized in Client-Server

Architecture
● Compute is going beyond VMs
● Storage is complemented by CDN
● Network stack is programmable
● Multiple waves of innovation in Cloud
● Challenges for IOT-Pass
● Evolution of Cloud towards Edge ComputingNPTEL

NPTEL

Introduction to IoT Platform

Dr. Rajiv Misra
Professor, Dept. of Computer
Science & Engg. Indian Institute of
Technology Patna rajivm@iitp.ac.in

NPTEL

mailto:rajivm@iitp.ac.in

After completion of this lecture you will knowing the following:

● Different components of IoT platforms
● IoT platforms building blocks which are provided by different

cloud providers such as microsoft, amazon, google, etc

NPTEL

Architectural approach for IoT platform
IoT applications have three components. Things or devices send data or events
that are used to generate insights. Insights are used to generate actions to help
improve a business or process.

The equipment or things in a manufacturing plant send various types of data as
they operate. An example is a milling machine sending feed rate and temperature
data. This data is used to evaluate whether the machine is running or not, an
insight. The insight is used to optimize the plant, an action.

NPTEL

Introduction to IoT platform

Things

Sensors
Automation

etc

Azure
Sphere

Azure Iot
Device
SDK

Cloud IoT
Device

Provision,
Device security,

Device
messaging

IoT Central
IoT Hub,

IoT Hub DPS,
Digital Twins

Hot Path
Real-time

data
Processing

Stream Analytics,
Event Hub,
Functions,
Synapse,

Kafka,
Databricks

Cold Path
Batch

Processing

Data Lake,
Data Factory,

Synapse,
Databricks,

Azure DBaas

Warm Path
Small Batch
Processing

Data Lake,
Functions,

Data Factory,
Synapse,

Databricks,
Azure DBaas

Presentation

Reporting,
Dataset, APIs
Applications

Azure DBaas,
Power BI,
Synapse,
Azure App
services

Consumers

External
systems,
Report

Consumers,
Data

Integration

Ed
ge

Io
T

Ed
ge

,
Da

ta
bo

x
Ed

ge

NPTEL

Introduction to IoT platform: Things
Things

Sensors
Automation

etc

Azure
Sphere

Azure Iot
Device
SDK

Cloud IoT
Device

Provision,
Device security,

Device
messaging

IoT Central
IoT Hub,

IoT Hub DPS,
Digital Twins

Hot Path
Real-time

data
Processing

Stream Analytics,
Event Hub,
Functions,
Synapse,

Kafka,
Databricks

Cold Path
Batch

Processing

Data Lake,
Data Factory,

Synapse,
Databricks,

Azure DBaas

Warm Path
Small Batch
Processing

Data Lake,
Functions,

Data Factory,
Synapse,

Databricks,
Azure DBaas

Presentation

Reporting,
Dataset, APIs
Applications

Azure DBaas,
Power BI,
Synapse,
Azure App
services

Consumers

External
systems,
Report

Consumers,
Data

Integration

Ed
ge

Io
T

Ed
ge

,
Da

ta
bo

x
Ed

ge

NPTEL

Introduction to IoT platform: Things
Everything in the iot space starts with the things side of the internet of things.

When you talk to people about iot, people probably think about nest doorbells,
simplisafe appliances, different kinds of things that you can use in your house that
make your house smart.

All of these things are part of an IoT network so that's very familiar to most people
and that is true, it is the sensors that goes into making a device work.

On azure there's a couple of things that you can use to create these things.

One is azure sphere which is like a lightweight operating system that you can put on
a device and you can use this as an embedded system that will allow you to create
devices and also have the connected back up to azure and also secure the device
using that particular specialized operating system.

There's also the azure IoT SDK which is a specialized sdk for interacting with some
of these other services. But it can be embedded on many different systems and
supports a lot of different kinds of languages as well.

Things

Sensors
Automation

etc

Azure
Sphere

Azure Iot
Device
SDKNPTEL

Introduction to IoT platform: Cloud IoT
Things

Sensors
Automation

etc

Azure
Sphere

Azure Iot
Device
SDK

Cloud IoT
Device

Provision,
Device security,

Device
messaging

IoT Central
IoT Hub,

IoT Hub DPS,
Digital Twins

Hot Path
Real-time

data
Processing

Stream Analytics,
Event Hub,
Functions,
Synapse,

Kafka,
Databricks

Cold Path
Batch

Processing

Data Lake,
Data Factory,

Synapse,
Databricks,

Azure DBaas

Warm Path
Small Batch
Processing

Data Lake,
Functions,

Data Factory,
Synapse,

Databricks,
Azure DBaas

Presentation

Reporting,
Dataset, APIs
Applications

Azure DBaas,
Power BI,
Synapse,
Azure App
services

Consumers

External
systems,
Report

Consumers,
Data

Integration

Ed
ge

Io
T

Ed
ge

,
Da

ta
bo

x
Ed

ge

NPTEL

Introduction to IoT platform: Cloud IoT
Internet of things you also have the iot stack that typically exists on many
different iot deployments.

Basically with the iot stack you're going to be managing devices and also
brokering messages between devices and the cloud.

This is a management suite that allows you to scale devices and it provides a
lot of services for that so you can provision devices you can take devices
offline to provide security for devices it also provides a messaging
infrastructure so that you can send commands to devices and also receive
telemetry back from devices.

All of these endpoints and all of this management infrastructure is
encapsulated in a couple of different services.

Cloud IoT
Device Provision,
Device security,

Device messaging

IoT Central
IoT Hub,

IoT Hub DPS,
Digital Twins

NPTEL

Introduction to IoT platform: Cloud IoT
On azure iot central which is more a software–as-a-service offering that
encapsulates a lot of the functionality for ability to create applications in the
context of an iot central and that allows to have multi-tenancy with different
devices to scale not only the devices but also the downstream components of
things integrating with those devices are serving up.

IOT hub is ageneral purpose tool on azure for managing devices so it has
device provisioning services that need for scaling up devices, for putting
certificates on devices, generating those certificates for messaging from device
for messaging to a device ie low level and more functionally oriented.

Azure digital twins, digital twinning is the ability to manage device configuration
in a suite of software to integrate with azure IOT hub maintains some kind of
state information about devices in the cloud.

Cloud IoT
Device Provision,
Device security,

Device messaging

IoT Central
IoT Hub,

IoT Hub DPS,
Digital Twins

NPTEL

Introduction to IoT platform: Hot Path
Things

Sensors
Automation

etc

Azure
Sphere

Azure Iot
Device
SDK

Cloud IoT
Device

Provision,
Device security,

Device
messaging

IoT Central
IoT Hub,

IoT Hub DPS,
Digital Twins

Hot Path
Real-time

data
Processing

Stream Analytics,
Event Hub,
Functions,
Synapse,

Kafka,
Databricks

Cold Path
Batch

Processing

Data Lake,
Data Factory,

Synapse,
Databricks,

Azure DBaas

Warm Path
Small Batch
Processing

Data Lake,
Functions,

Data Factory,
Synapse,

Databricks,
Azure DBaas

Presentation

Reporting,
Dataset, APIs
Applications

Azure DBaas,
Power BI,
Synapse,
Azure App
services

Consumers

External
systems,
Report

Consumers,
Data

Integration

Ed
ge

Io
T

Ed
ge

,
Da

ta
bo

x
Ed

ge

NPTEL

Introduction to IoT platform: Hot Path
The data is routed to one of the three different paths.
ie the hot path or the cold path or the warm path

Hot path data is data that is processed in real time so as it comes off of the iot
hub It gets processed within seconds of that happening so the message hits
the hot path it's processed and then it's presented to something in the
consumption layer.

The consumption layer is able to consume tt data immediately once it's been
processed in the hot path.

You could write the output from a hotpath to a cold storage system that is
consumed by something like an api. The data is written in real time but the api
might be querying that data that was written an hour ago.

Processing data in real time such as a dashboard that is constantly monitoring
things in their present state as comes off of the hot path and into the
consumption layer.

Hot Path
Real-time

data
Processing

Stream
Analytics,

Event Hub,
Functions,
Synapse,

Kafka,
Databricks

NPTEL

Introduction to IoT platform: Hot Path
There are several offerings on azure for hotpath data is going to be event hubs the messaging
platform

Event hubs can also write messages to a cold storage that can be consumed by cold pass or warm
path but whatever you get out of event hubs can be wired up to all these other other kinds of
processors such as stream analytics which is a platform as a service offering that uses sql to
transform data aggregate data enrich it

Then you have functions which can be triggered by event hubs . Then there's azure synapse which
as synapse allows you to have a full suite of tools at your disposal that do all kinds of things related
to data processing that is streams.

You can also use kafka which is out of the apache space which is similar to stream analytics in that
you do real-time data processing but it's more specific in its implementation but it wires up directly
to event hubs.

Databricks is typically used for more batch style oriented workloads but you can use it for
streaming

Combining any number of these can do a lot of different kinds of hotpath aggregations
transformations queries filters whatever it might be they're all different tools that all do it very
similar functionality within the azure context.

Hot Path
Real-time

data
Processing

Stream
Analytics,

Event Hub,
Functions,
Synapse,

Kafka,
Databricks

NPTEL

Introduction to IoT platform: Cold Path
Things

Sensors
Automation

etc

Azure
Sphere

Azure Iot
Device
SDK

Cloud IoT
Device

Provision,
Device security,

Device
messaging

IoT Central
IoT Hub,

IoT Hub DPS,
Digital Twins

Hot Path
Real-time

data
Processing

Stream Analytics,
Event Hub,
Functions,
Synapse,

Kafka,
Databricks

Cold Path
Batch

Processing

Data Lake,
Data Factory,

Synapse,
Databricks,

Azure DBaas

Warm Path
Small Batch
Processing

Data Lake,
Functions,

Data Factory,
Synapse,

Databricks,
Azure DBaas

Presentation

Reporting,
Dataset, APIs
Applications

Azure DBaas,
Power BI,
Synapse,
Azure App
services

Consumers

External
systems,
Report

Consumers,
Data

Integration

Ed
ge

Io
T

Ed
ge

,
Da

ta
bo

x
Ed

ge

NPTEL

Introduction to IoT platform: Cold Path
Coldpath is more batch-oriented, hotpath will process the message as it hits the system
while coldpath really processes the messages as they accumulate on the system and
rather being triggered by the message itself what it allows for is data to be accumulated
over a period of time and then typically on a trigger that is timer based it will then take
whatever data has been accumulated and process that data in batch.

Then it will write the data back to some kind of cold storage whatever the processing on
that data might look like

This typically works as opposed to hot path where you have something like event hubs
that deliver a message to a processor what you typically do in this case is you land the
message that as it comes off of iot hub into some kind of what we call cold storage so
that's typically some kind of database or some kind of data retention system.

Now that could be something like a data lake which would be basically built on top of
blob storage, you can also do it with blob storage as well but fundamentally data lake is
built on top of blob storage in any case.

Cold Path
Batch

Processing
Data Lake,

Data Factory,
Synapse,

Databricks,
Azure DBaas

NPTEL

Introduction to IoT platform: Cold Path
Azure database as a service offering, use sql databases, use cosmos databases, use
postgres or mysql putting into some kind of data storage platform.

Then from there once it's accumulated in that cold storage then the trigger fires and it's
going to launch whatever processing capability is going to be a part of that and that's
where something like data data factory or azure synapse or or databricks

Data factory is software as a service or platform as a service gives the ability to visually
build workflows inside of data factory that can then take data out of a data lake or
database and process it in batches and then write the results back to some kind of
output.

Now synapse has similar functionality but it is integrated with the synapse suite on
azure

so databricks has the ability to scale and it also integrates with a lot of other different
offerings on azure including the databases data lakes and many of these other similar
things is more of a visual designer for building those kind of workflows.

Cold Path
Batch

Processing
Data Lake,

Data Factory,
Synapse,

Databricks,
Azure DBaas

NPTEL

Introduction to IoT platform: Warm Path
Things

Sensors
Automation

etc

Azure
Sphere

Azure Iot
Device
SDK

Cloud IoT
Device

Provision,
Device security,

Device
messaging

IoT Central
IoT Hub,

IoT Hub DPS,
Digital Twins

Hot Path
Real-time

data
Processing

Stream Analytics,
Event Hub,
Functions,
Synapse,

Kafka,
Databricks

Cold Path
Batch

Processing

Data Lake,
Data Factory,

Synapse,
Databricks,

Azure DBaas

Warm Path
Small Batch
Processing

Data Lake,
Functions,

Data Factory,
Synapse,

Databricks,
Azure DBaas

Presentation

Reporting,
Dataset, APIs
Applications

Azure DBaas,
Power BI,
Synapse,
Azure App
services

Consumers

External
systems,
Report

Consumers,
Data

Integration

Ed
ge

Io
T

Ed
ge

,
Da

ta
bo

x
Ed

ge

NPTEL

Introduction to IoT platform: Warm Path
Between the hot path and the cold path is warm path. It has some kind of
functionality that might seem similar to hot path and something that might
seem to similar to cold path.

Tools that are more in line with warmpath such as data lake, factory data,
factory synapse, databricks use azure functions.

Even use something like stream analytics or kafka for some smaller workloads

The distinction between hot path, warm path and cold path really isn't clear.

The takeaway from this is that hot path is real-time warm path is going to be
more often smaller workloads that are going to be rating on smaller time scales
like 5 minutes, 10 minutes, 15 minutes or an hour and cold path is going to be
larger workloads that are going to be operating over long periods of time. It
might be five minutes if there's a lot of data it could be an hour it could be a day
could be a week.

Warm Path
Small Batch
Processing

Data Lake,
Functions,

Data Factory,
Synapse,

Databricks,
Azure DBaasNPTEL

Introduction to IoT platform: Presentation
Things

Sensors
Automation

etc

Azure
Sphere

Azure Iot
Device
SDK

Cloud IoT
Device

Provision,
Device security,

Device
messaging

IoT Central
IoT Hub,

IoT Hub DPS,
Digital Twins

Hot Path
Real-time

data
Processing

Stream Analytics,
Event Hub,
Functions,
Synapse,

Kafka,
Databricks

Cold Path
Batch

Processing

Data Lake,
Data Factory,

Synapse,
Databricks,

Azure DBaas

Warm Path
Small Batch
Processing

Data Lake,
Functions,

Data Factory,
Synapse,

Databricks,
Azure DBaas

Presentation

Reporting,
Dataset, APIs
Applications

Azure DBaas,
Power BI,
Synapse,
Azure App
services

Consumers

External
systems,
Report

Consumers,
Data

Integration

Ed
ge

Io
T

Ed
ge

,
Da

ta
bo

x
Ed

ge

NPTEL

Introduction to IoT platform: Presentation
The data that was collected by way of things that originated in the iot layer i's
going to be an aggregated plus some enhancement of that data and some
filtering of that data. This is going to be things like api’s that are going to be
consumed by applications, it's going to be reports that people are going to be
looking at.

That could be some kind of dashboard like report where you're looking at
telemetry in real time or a query telemetry out of a data set or it could just be
the raw data itself that you're going to be providing by way of some kind of data
integration where you're taking some kind of export of the data and then taking
that into another data system for consumption in that system.

Regardless of whatever is the presentation of that data it's basically the output
of the data pipelines that you're employing either as hotpath warm path or cold
path and the presentation then can take that data and then just make it
available.

Presentation

Reporting,
Dataset, APIs
Applications

Azure DBaas,
Power BI,
Synapse,
Azure App
servicesNPTEL

Introduction to IoT platform: Presentation
So this is going to imply things like security, access controls and those kinds of things,
also a database as a service offering, so anything that would store the data, that would
be sql server, cosmos db, maria, azure data explorer there's a lot of different ways to
present data.

Then you have the reporting services such as power guide, which is kind of the one
tool that a lot of folks love to use for building dashboards in the microsoft context and it
can hook up to all kinds of data sources and then it can import those and then use data
sets that are manipulated inside of the rbi context itself.

You can use azure functions and azure app services for serving up api’s, so azure
functions gives you the ability to create http endpoints that can then query back into
whatever database a source that you want to use or other data sources.

Then azure app services if you want to just write something like an mpd application
that's going to be exposing some kind of data api that external applications then can
consume from that data source.

Presentation

Reporting,
Dataset, APIs
Applications

Azure DBaas,
Power BI,
Synapse,
Azure App
servicesNPTEL

Introduction to IoT platform: Consumers
Things

Sensors
Automation

etc

Azure
Sphere

Azure Iot
Device
SDK

Cloud IoT
Device

Provision,
Device security,

Device
messaging

IoT Central
IoT Hub,

IoT Hub DPS,
Digital Twins

Hot Path
Real-time

data
Processing

Stream Analytics,
Event Hub,
Functions,
Synapse,

Kafka,
Databricks

Cold Path
Batch

Processing

Data Lake,
Data Factory,

Synapse,
Databricks,

Azure DBaas

Warm Path
Small Batch
Processing

Data Lake,
Functions,

Data Factory,
Synapse,

Databricks,
Azure DBaas

Presentation

Reporting,
Dataset, APIs
Applications

Azure DBaas,
Power BI,
Synapse,
Azure App
services

Consumers

External
systems,
Report

Consumers,
Data

Integration

Ed
ge

Io
T

Ed
ge

,
Da

ta
bo

x
Ed

ge

NPTEL

Introduction to IoT platform: Consumers
Now we have consumers, this is not so much an explicit part of the system as
it is a more implicit part of the system.

Ultimately what ends up in the presentation layer is going to be determined by
what the external consumers of this data are going to want to be in that
presentation layer.

So whenever you're designing a system that is going to be presenting data,
you start with the api in mind and you kind of work back from that to the source
data and that's really why we have set it up this way.

The reason we included it is because you need to be cognizantly aware of how
you want this data to show up in whatever is going to be integrated with it
whether it be a report, whether it be an api or some kind of external data
integration.

Consumers

External systems,
Report Consumers,

Data Integration

NPTEL

Introduction to IoT platform: Edge
Things

Sensors
Automation

etc

Azure
Sphere

Azure Iot
Device
SDK

Cloud IoT
Device

Provision,
Device security,

Device
messaging

IoT Central
IoT Hub,

IoT Hub DPS,
Digital Twins

Hot Path
Real-time

data
Processing

Stream Analytics,
Event Hub,
Functions,
Synapse,

Kafka,
Databricks

Cold Path
Batch

Processing

Data Lake,
Data Factory,

Synapse,
Databricks,

Azure DBaas

Warm Path
Small Batch
Processing

Data Lake,
Functions,

Data Factory,
Synapse,

Databricks,
Azure DBaas

Presentation

Reporting,
Dataset, APIs
Applications

Azure DBaas,
Power BI,
Synapse,
Azure App
services

Consumers

External
systems,
Report

Consumers,
Data

Integration

Ed
ge

Io
T

Ed
ge

,
Da

ta
bo

x
Ed

ge

NPTEL

Introduction to IoT platform: Edge
On the edge of a network,a local area network a bunch of devices that are emitting elemetry and events and
doing all those kinds of things that they do and those are ultimately sent back to the cloud.

However, in some cases you might want to put some kind of preprocessor in place that will do some filtering
and aggregation and some other enhancements on the data closer to where the devices are.

So in a sense the edge is almost a microcosm of everything that happens in the cloud.

You will have things like message buses, data pipelines and other kinds of data enhancement tools that exist
in that context for the purpose of pre-processing that data before it goes over to the cloud side.

There are two services that are in this space on the edge, the first one is the iot edge.

IoT edge is a platform that is more of an operating system that you can install on an appliance and it's based
around docker containers. You can do things like stream analytics in that context, it also gives you the ability to
do message filtering and a number of other things that are a part of that ecosystem. Also the code that you
want to make and install it by way of a docker container on the iot edge.

Ed
ge

Io
T

Ed
ge

,
Da

ta
bo

x
Ed

ge

NPTEL

Introduction to IoT platform: Edge
It also offers a message proxy for sending messages from devices to the cloud so that you can basically
queue those messages up on the IoT edge.

In the event of an internet outage, you can then queue those messages up there and then when the internet is
restored, it will then forward those onto the cloud so it mitigates against things like losses of message.

There is local response to events in that particular context as well, so you can build an ML and other kind of
event management into the iot edge. It can quickly respond to something like a fire, for instance if a device
reports that there's a fire, you can have a command issued by the iot edge to put that fire out for instance.

Databox is a similar service but it's not as purpose-built as iot edge and it's basically bringing a lot more the
ML type workloads that you get in something like ML workspaces.

These kind of things are bringing to the edge as well, so it can do data ingestion and apply ML models.

In the context of an edge installation rather than having to ship all that data back up to the cloud you can do it
more intelligently on the edge and do it more quickly, so that you don't have to rely on an internet connection
and the latency that the cloud introduces.

Ed
ge

Io
T

Ed
ge

,
Da

ta
bo

x
Ed

ge

NPTEL

Summary: IoT platform

Devices Edge

Device
Registry

Data
Ingestion Stream

Analytics

Storage
&

Database

Batch
Processing

Machine
Learning

Message
Routing
Policies

Business
Intellige-

nce

On-premises

Public cloud

NPTEL

IoT platform: Things
On one end of the platform we have devices and these
devices are either sensors or actuators.

Sensors generate data, for example a temperature
sensor, a humidity sensor, pressure sensor and so on.
The generated data is going to be acquired and ingested
into the cloud.

Then there are actuators like switches and bulbs. These
are the things that you could switch on and switch off that
have electromechanical interface.

The devices are further connected to the edge and and
the edge acts as a gateway abstracting the devices that
are at the lowest level of the spectrum and that actually
connects to the public cloud.

Devices Edge

On-premises

NPTEL

IoT platform: Insight
Now on the cloud side we have two touch points for the edge or the devices.

One is the device registry that is primarily used for onboarding the devices and it is the
repository of devices.

Every device that is connected to the IOT platform has an identity within the device registry.

The authentication authorization and the metadata of the devices is stored in the device
registry.

Consider an enterprise corporate directory scenario where the device registry like an LDAP
of devices, you can query to get a lot of metadata and useful information about every device
connected to the platform.

The public cloud pass also called IOT pass exposes a data ingestion endpoint. This is the
high velocity, high throughput endpoint where the sensor data gets streamed.

Typically could be Kafka if you are doing it yourself or it could be as your event hubs or
Amazon kinases or Google cloud pub/sub so it is the pipe that basically acquires the data
and passes on to the data processing pipeline

Device
Registry

Data
IngestionNPTEL

IoT platform: Insight
Now both the device registry and data ingestion
endpoints are connected to a message routing policy.

A message routing policy which will define how this
data is going to be split between real-time processing
and batch processing and how the raw data is stored
and how the processed data is going to be stored.

This is the place where you actually create a rules
engine or you basically create some kind of policy that
is going to define how the data flows.

For example, some data needs to be batch process,
where you first collect and then process, in some
cases you need to perform real-time stream analytics.

Message
Routing
Policies

NPTEL

IoT platform: Insight
The batch processing layer which is also called as cold path analytics and
stream analytics layer which is also called as hot path analytics.

In other words, when you are performing queries on data as it comes that is
called the hot path analytics and if you are storing and processing the data over
a period of time it is called the cold path analytics.

Now both the raw data which is going or about to go to either batch processing
or stream analytics is first persisted in a time series database or an
unstructured database and even the output from the batch processing and
stream analytics gets persisted in the the same database.

Then we have storage and databases for persisting the raw sensor data and
also the process data

Stream
Analytics

Storage
&

Database

Batch
Processing

NPTEL

IoT platform: actions
Now from the same data store we apply machine learning
algorithms to basically find out anomaly detection and
predictive analytics from the data that is coming in.

Finally, all of that is fed into an enterprise Business
Intelligence Platform, where you can actually run dashboards
and alerts and the entire visualization happens on the data
warehousing or the business intelligence layer

These key building blocks of IOT platform you could actually
map this to Azure or AWS or Google or G predicts, Bosch
IOT, etc.

Every platform has a very similar architecture it's almost like
a blueprint for any public cloud-based IOT platform.

Machine
Learning

Business
Intellige-

nce

NPTEL

Lecture Summary

● Detail of components of IoT architecture.
● Concepts of IoT platform building blocks.

NPTEL

NPTEL

Time and Clock Synchronization in IoT

Dr. Rajiv Misra
Professor
Dept. of Computer Science & Engg.
Indian Institute of TechnologyPatna
rajivm@iitp.ac.in

Time and Clock Synchronization

mailto:rajivm@iitp.ac.in

Preface

Content of this Lecture:

• In this lecture, we will discuss the fundamentals of clock
synchronization in IoT and its different algorithms.

• To understand how clocks operate on IoT devices and how
they can be synchronized in an accurate and efficient
fashion.

Time and Clock Synchronization

Preface
Content of this Lecture:
• Internet of Things (IoT) devices that are wirelessly

connected in mesh networks often need mutual clock time
synchronization, to enable chronological ordering of sensor
events, coordination of asynchronous processes across
devices, or network-wide coordination of actuators.

• We will also discuss the causality and a general framework
of logical clocks and present two systems of logical time,
namely, lamport and vector, timestamps to capture
causality between distributed events of an Internet of things
as a distributed system.

Time and Clock Synchronization

Synchronizing clocks on Internet of Things (IoT) devices is
important for applications such as monitoring and real time
control.

You want to catch a bus at 9.05 am, but your watch is off by 15
minutes

What if your watch is Late by 15 minutes?
• You’ll miss the bus!

What if your watch is Fast by 15 minutes?
• You’ll end up unfairly waiting for a longer time than you

intended

Need of Synchronization

Time and Clock Synchronization

Time and Synchronization
(“There’s is never enough time…”)

Distributed Time
The notion of time is well defined (and measurable) at
each single location
But the relationship between time at different locations
is unclear

Time Synchronization is required for:
Correctness
Fairness

Time and Synchronization

Time and Clock Synchronization

Example: Cloud based airline reservation system:

Server X receives, a client request, to purchase the last ticket on
a flight, say PQR 123.
Server X timestamps the purchase using its local clock as
6h:25m:42.55s. It then logs it. Replies ok to the client.
That was the very last seat, Server X sends a message to Server Y
saying the “flight is full”.
Y enters, “Flight PQR 123 is full” + its own local clock value,
(which happens to read 6h:20m:20.21s).
Server Z, queries X's and Y's logs. Is confused that a client
purchased a ticket at X after the flight became full at Y.
This may lead to full incorrect actions at Z

Synchronization in an IoT

Time and Clock Synchronization

End-hosts in Internet based systems (like clouds)
Each have its own clock
Unlike processors (CPUs) within one server or
workstation which share a system clock.

Processes in internet based systems follow an
asynchronous model.

No bounds on
– Messages delays
– Processing delays

Unlike multi-processor (or parallel) systems which follow
a synchronous system model

Key Challenges

Vu PhamCloud Computing and Distributed Systems Time and Clock Synchronization

An asynchronous distributed system consists of a number of
processes.
Each process has a state (values of variables).
Each process takes actions to change its state, which may be
an instruction or a communication action (send, receive).
An event is the occurrence of an action.
Each process has a large clock – events within a process can
be assigned timestamps, and thus ordered linearly.
But- in a IoT system, we also need to know the time order
of events across different processes.

Definitions

Vu PhamCloud Computing and Distributed Systems Time and Clock Synchronization

Space-time diagram

Process
Message
send event

Internal
event

Message
receive event

Figure : The space-time diagram of a distributed execution.

Vu PhamCloud Computing and Distributed Systems Time and Clock Synchronization

Each process (running at some end host) has its own clock.
When comparing two clocks at two processes.

Clock Skew = Relative difference in clock values of two
processes.
• Like distance between two vehicles on road.

Clock Drift = Relative difference in clock frequencies (rates)
of two processes

• Like difference in speeds of two vehicles on the road.
A non-zero clock skew implies clocks are not synchronized
A non-zero clock drift causes skew increases (eventually).

If faster vehicle is ahead, it will drift away.
If faster vehicle is behind, it will catch up and then drift away.

Clock Skew vs. Clock Drift

Vu PhamCloud Computing and Distributed Systems Time and Clock Synchronization

Clocks that must not only be
synchronized with each other but also
have to adhere to physical time are
termed physical clocks.

Physical clocks are synchronized to an
accurate real-time standard like UTC
(Universal Coordinated Time).

However, due to the clock inaccuracy, a
timer (clock) is said to be working within
its specification if (where constant ρ is the
maximum skew rate specified by the
manufacturer)

1 − ρ ≤ ≤ 1 + ρ

Clock Inaccuracies

Figure: The behavior of fast, slow, and
perfect clocks with respect to UTC.

Vu PhamCloud Computing and Distributed Systems Time and Clock Synchronization

Maximum Drift rate (MDR) of a clock
Absolute MDR is defined to relative coordinated universal
Time (UTC). UTC is the correct time at any point of time.

• MDR of any process depends on the environment.

Maximum drift rate between two clocks with similar MDR
is 2*MDR.
Given a maximum acceptable skew M between any pair of
clocks, need to synchronize at least once every:
M/ (2* MDR) time units.

• Since time = Distance/ Speed.

How often to Synchronize

Vu PhamCloud Computing and Distributed Systems Time and Clock Synchronization

Consider a group of processes
External synchronization

Each process C(i)’s clock is within a bounded D of a well-
known clock S external to the group
|C(i)- S|< D at all times.
External clock may be connected to UTC (Universal
Coordinated Time) or an atomic clock.
Example: Christian’s algorithm, NTP

Internal Synchronization
Every pair of processes in group have clocks within bound D
|C(i)- C(j)|< D at all times and for all processes i,j.
Example: Berkley Algorithm, DTP

External vs Internal Synchronization

Vu PhamCloud Computing and Distributed Systems Time and Clock Synchronization

External synchronization with D => Internal
synchronization with 2*D.

Internal synchronization does not imply External
Synchronization.

• In fact, the entire system may drift away from the
external clock S!

External vs Internal Synchronization

Vu PhamCloud Computing and Distributed Systems Time and Clock Synchronization

Basic Fundamentals

Set clock to t

External time synchronization
All processes P synchronize with a time server S.

Time
P

What’s the time? Here’s the time t

S
Check local clock to find time t

What’s Wrong:
By the time the message has received at P, time has moved on.
P’s time set to t is in accurate.
Inaccuracy a function of message latencies.
Since latencies unbounded in an asynchronous system, the inaccuracy
cannot be bounded.

Vu PhamCloud Computing and Distributed Systems Time and Clock Synchronization

(i) Christians Algorithm

P
TimeSet clock to t

P measures the round-trip-time RTT of message exchange
Suppose we know the minimum P → S latency min1
And the minimum S → P latency min2
Ø Min1 and Min2 depends on the OS overhead to buffer messages, TCP

time to queue messages, etc.

The actual time at P when it receives response is between
[t+min2, t + RTT-min1]

RTT

Vu Pham

What’s the time?
Here’s the time t!

S

Check local clock to find time t
Cloud Computing and Distributed Systems Time and Clock Synchronization

Christians Algorithm

P
TimeSet clock to t

The actual time at P when it receives response is between
[t+min2, t + RTT-min1]
P sets its time to halfway through this interval

To: t + (RTT+min2-min1)/2
Error is at most (RTT- min2- min1)/2

Bounded
RTT

Vu Pham

What’s the time?
Here’s the time t!

S

Check local clock to find time t
Cloud Computing and Distributed Systems Time and Clock Synchronization

Error Bounds

Vu PhamCloud Computing and Distributed Systems Time and Clock Synchronization

Allowed to increase clock value but should never
decrease clock value

–May violate ordering of events within the same
process.

Allowed to increase or decrease speed of clock

If error is too high, take multiple readings and
average them

Error Bounds

Vu PhamCloud Computing and Distributed Systems Time and Clock Synchronization

Send request at 5:08:15.100 (T0)
Receive response at 5:08:15.900 (T1)
– Response contains 5:09:25.300 (Tserver)

Elapsed time isT1 -T0
5:08:15.900 - 5:08:15.100 = 800 msec

Best guess: timestamp was generated
400 msec ago

Set time toTserver+ elapsed time
5:09:25.300 + 400 = 5:09.25.700

Christians Algorithm: Example
If best-case message
time=200 msec
T0 = 5:08:15.100
T1 = 5:08:15.900
T server= 5:09:25:300
Tmin = 200msec

Vu PhamCloud Computing and Distributed Systems Time and Clock Synchronization

(ii) NTP: Network time protocol
(1991, 1992) Internet Standard, version 3: RFC 1305
NTP servers organized in a tree.
Each client = a leaf of a tree.
Each node synchronizes with its tree parent

Primary servers

Secondary servers

Tertiary servers

Client
Vu PhamCloud Computing and Distributed Systems Time and Clock Synchronization

NTP Protocol

Parent

Let’s start protocol
Message 1

Message 1 recv time tr1
Message 2 send time ts2

Time
Child

Message 2 recv time tr2

Message 1 send time ts1

Message 2
ts1, tr2

Vu PhamCloud Computing and Distributed Systems Time and Clock Synchronization

Offset o = (tr1-tr2 + ts2- ts1)/2
Let’s calculate the error.
Suppose real offset is oreal

Child is ahead of parent by oreal.
Parent is ahead of child by –oreal.

Suppose one way latency of Message 1 is L1.
(L2 for Message 2)
No one knows L1 or L2!
Then

tr1 = ts1 + L1 + oreal
tr2 = ts2 + L2 – oreal

Why o = (tr1-tr2 + ts2- ts1)/2 ?

Vu PhamCloud Computing and Distributed Systems Time and Clock Synchronization

Then
tr1 = ts1 + L1 + oreal.
tr2 = ts2 + L2 – oreal.

Subtracting second equation from first
oreal = (tr1-tr2 + ts2- ts1)/2 – (L2-L1)/2
=> oreal = o + (L2-L1)/2
=> |oreal – o|< |(L2-L1)/2| < |(L2+L1)/2|
• Thus the error is bounded by the round trip time (RTT)

Why o = (tr1-tr2 + ts2- ts1)/2 ?

Vu PhamCloud Computing and Distributed Systems Time and Clock Synchronization

Gusella & Zatti, 1989
Master poll’s each machine periodically

Ask each machine for time
– Can use Christian’s algorithm to compensate the network’s

latency.

When results are in compute,
Including master’s time.

Hope: average cancels out individual clock’s tendency to run
fast or slow
Send offset by which each clock needs adjustment to each
slave

• Avoids problems with network delays if we send a time-stamp.

(iii) Berkley’s Algorithm

Vu PhamCloud Computing and Distributed Systems Time and Clock Synchronization

Berkley’s Algorithm : Example

Vu PhamCloud Computing and Distributed Systems Time and Clock Synchronization

(iv) DTP: Datacenter Time Protocol

ACM SIGCOMM 2016

DTP uses the physical layer of network
devices to implement a decentralized clock
synchronization protocol.
Highly Scalable with bounded precision!

– ~25ns (4 clock ticks) between peers
– ~150ns for a datacenter with six hops
– No Network Traffic
– Internal Clock Synchronization

End-to-End: ~200ns precision!
Vu PhamCloud Computing and Distributed Systems Time and Clock Synchronization

DTP: Phases

(one-way delay)

Vu PhamCloud Computing and Distributed Systems Time and Clock Synchronization

INIT phase: The purpose of the INIT phase is to measure the one-way
delay between two peers. The phase begins when two ports are
physically connected and start communicating, i.e. when the link
between them is established.
Each peer measures the one-way delay by measuring the time between
sending an INIT message and receiving an associated INIT-ACK message,
i.e. measure RTT, then divide the measured RTT by two.

DTP: (i) Init Phase

Vu PhamCloud Computing and Distributed Systems Time and Clock Synchronization

DTP: (ii) Beacon Phase
BEACON phase: During the BEACON phase, two ports periodically exchange
their local counters for resynchronization. Due to oscillator skew, the offset
between two local counters will increase over time. A port adjusts its local
counter by selecting the maximum of the local and remote counters upon
receiving a BEACON message from its peer. Since BEACON messages are
exchanged frequently, hundreds of thousands of times a second (every few
microseconds), the offset can be kept to a minimum.

Vu PhamCloud Computing and Distributed Systems Time and Clock Synchronization

DTP Switch

Vu PhamCloud Computing and Distributed Systems Time and Clock Synchronization

DTP provides bounded precision and scalability

Bounded Precision in hardware
– Bounded by 4T (=25.6ns, T=oscillator tick is 6.4ns)
– Network precision bounded by 4TD

D is network diameter in hops

Requires NIC and switch modifications

DTP Property

Vu PhamCloud Computing and Distributed Systems Time and Clock Synchronization

We still have a non-zero error!

We just can’t seem to get rid of error
Can’t as long as messages latencies are non-zero.

Can we avoid synchronizing clocks altogether, and
still be able to order events ?

But Yet…

Vu PhamCloud Computing and Distributed Systems Time and Clock Synchronization

To order events across processes, trying to synchronize
clocks is an approach.
What if we instead assigned timestamps to events that
were not absolute time ?
As long as those timestamps obey causality, that would
work

If an event A causally happens before another event B, then
timestamp(A) < timestamp (B)
Example: Humans use causality all the time
• I enter the house only if I unlock it
• You receive a letter only after I send it

Ordering events in a distributed system

Vu PhamCloud Computing and Distributed Systems Time and Clock Synchronization

Proposed by Leslie Lamport in the 1970s.
Used in almost all distributed systems since then
Almost all cloud computing systems use some
form of logical ordering of events.

Leslie B. Lamport (born February 7, 1941) is an American computer
scientist. Lamport is best known for his seminal work in distributed
systems and as the initial developer of the document preparation
system LaTeX. Leslie Lamport was the winner of the 2013 Turing
Award for imposing clear, well-defined coherence on the seemingly
chaotic behavior of distributed computing systems, in which several
autonomous computers communicate with each other by passing
messages.

Logical (or Lamport) ordering

Vu PhamCloud Computing and Distributed Systems Time and Clock Synchronization

Lamport’s research contributions have laid the foundations of the theory of
distributed systems. Among his most notable papers are

“Time, Clocks, and the Ordering of Events in a Distributed System”, which received the PODC
Influential Paper Award in 2000,
“How to Make a Multiprocessor Computer That Correctly Executes Multiprocess Programs”,which
defined the notion of Sequential consistency,
“The Byzantine Generals' Problem”,
“Distributed Snapshots: Determining Global States of a Distributed System” and
“The Part-Time Parliament”.

These papers relate to such concepts as logical clocks (and the happened-before
relationship) and Byzantine failures. They are among the most cited papers in the
field of computer science and describe algorithms to solve many fundamental
problems in distributed systems, including:

the Paxos algorithm for consensus,
the bakery algorithm for mutual exclusion of multiple threads in a computer system that require
the same resources at the same time,
the Chandy-Lamport algorithm for the determination of consistent global states (snapshot), and
the Lamport signature, one of the prototypes of the digital signature.

Lamport’s research contributions

Vu PhamCloud Computing and Distributed Systems Time and Clock Synchronization

Logical (or Lamport) Ordering(2)

Define a logical relation Happens-Before among pairs of events
Happens-Before denoted as ®
Three rules:

1. On the same process: a ®b, if time(a) < time(b) (using the
local clock)

2. If p1 sends m to p2: send(m) ® receive(m)
3. (Transitivity) If a ®b and b ® c then a ® c

Creates a partial order among events
Not all events related to each other via®

Vu PhamCloud Computing and Distributed Systems Time and Clock Synchronization

Example 1:

P2

Time
P1

P3

Instruction or step

Message

A B C D E

E F G

H I J

Vu PhamCloud Computing and Distributed Systems Time and Clock Synchronization

Example 1: Happens-Before

P2

Time
P1

P3

Instruction or step

Message

A B C D E

E F G

H I J

• A à B
• B à F
• A à F

Vu PhamCloud Computing and Distributed Systems Time and Clock Synchronization

Example 2: Happens-Before

P2

Time
P1

P3

Instruction or step

Message

A B C D E

E F G

H I J

• H à G
• F à J
• H à J
• C à J

Vu PhamCloud Computing and Distributed Systems Time and Clock Synchronization

Lamport timestamps
Goal: Assign logical (Lamport) timestamp to each event
Timestamps obey causality
Rules

Each process uses a local counter (clock) which is an integer
• initial value of counter is zero

A process increments its counter when a send or an
instruction happens at it. The counter is assigned to the
event as its timestamp.
A send (message) event carries its timestamp

For a receive (message) event the counter is updated by

max(local clock, message timestamp) + 1

Vu PhamCloud Computing and Distributed Systems Time and Clock Synchronization

Example

P2

Time

Instruction or step

P1

P3

Vu Pham

Message

Time and Clock SynchronizationCloud Computing and Distributed Systems

P2

Time

Instruction or step

P1

P3

0

0

0

Initial counters (clocks)

Lamport Timestamps

Vu Pham

Message

Time and Clock SynchronizationCloud Computing and Distributed Systems

P2

Time

Instruction or step

P1

P3

ts = 1

ts = 1
Message send

Message carries
ts = 1

0

0

0

Lamport Timestamps

Vu Pham

Message

Time and Clock SynchronizationCloud Computing and Distributed Systems

P2

Time

Instruction or step

P1

P3

1

1

Message carries
ts = 1

ts = max(local, msg) + 1
= max(0, 1)+1

= 2

0

0

0

Lamport Timestamps

Vu Pham

Message

Time and Clock SynchronizationCloud Computing and Distributed Systems

P2

Time

Instruction or step

P1

P3

1

1

2
Message carries

ts = 2

2

max(2, 2)+1
=3

0

0

0

Lamport Timestamps

Vu Pham

Message

Time and Clock SynchronizationCloud Computing and Distributed Systems

P2

Time

Instruction or step

P1

P3

1

1

2

2 3 4

3

max(3, 4)+1
=5

0

0

0

Lamport Timestamps

Vu Pham

Message

Time and Clock SynchronizationCloud Computing and Distributed Systems

P2

Time

Instruction or step

P1

P3

1

1

2

2 3 4

3 5 6

72

0

0

0

Lamport Timestamps

Vu Pham

Message

Time and Clock SynchronizationCloud Computing and Distributed Systems

Obeying Causality

P2

Time

P1

P3

Instruction or step

Message

2

6

7

A

1

B
2

C

3

D E
5

• A à B :: 1 < 2
• B à F :: 2 < 3

E F
3

G
4

H

1
I J
2

0

0

0

Vu Pham

• A à F :: 1 < 3
Cloud Computing and Distributed Systems Time and Clock Synchronization

P2

Time

P1

P3

Instruction or step

Message

2

6

7

A

1

B
2

C

3

D E
5

E F
3

G
4

H

1

I J
2

H à G :: 1 < 4
F à J :: 3 < 7
H à J :: 1 < 7

0

0

0

Obeying Causality (2)

Vu Pham

C à J :: 3 < 7
Cloud Computing and Distributed Systems Time and Clock Synchronization

Not always implying Causality

P2

Time

P1

P3

Instruction or step

Message

2

2

6
A B

1

C

3

D E
5

E F
3

G
4

I J
7

H

1

• ? C à F ? :: 3 = 3
• ? H à C ? :: 1 < 3
• (C, F) and (H, C) are pairs of

concurrent events

2

0

0

0

Vu PhamCloud Computing and Distributed Systems Time and Clock Synchronization

Concurrent Events

A pair of concurrent events doesn’t have a causal path
from one event to another (either way, in the pair)
Lamport timestamps not guaranteed to be ordered or
unequal for concurrent events
Ok, since concurrent events are not causality related!

Remember:

E1 à E2 Þ timestamp(E1) < timestamp (E2), BUT
timestamp(E1) < timestamp (E2) Þ

{E1 à E2} OR {E1 and E2 concurrent}

Vu PhamCloud Computing and Distributed Systems Time and Clock Synchronization

Vector Timestamps

Used in key-value stores like Riak
Each process uses a vector of integer clocks
Suppose there are N processes in the group 1…N
Each vector has N elements
Process i maintains vector Vi [1…N]
jth element of vector clock at process i, Vi[j],
knowledge of latest events at process j

is i’s

Vu PhamCloud Computing and Distributed Systems Time and Clock Synchronization

Assigning Vector Timestamps

Incrementing vector clocks
1. On an instruction or send event at process i, it increments

only its ith element of its vector clock
2. Each message carries the send-event’s vector timestamp

Vmessage[1…N]
3. On receiving a message at process i:

Vi[i] = Vi[i] + 1

Vi[j] = max(Vmessage[j], Vi[j]) for j ≠ i

Vu PhamCloud Computing and Distributed Systems Time and Clock Synchronization

Example

P2

Time

P1

P3

Instruction or step

Message

A B C D E

E F G

H I J

Vu PhamCloud Computing and Distributed Systems Time and Clock Synchronization

Vector Timestamps

P2

Time

P1 (0,0,0)

(0,0,0)

P3
(0,0,0)

Initial counters (clocks)

Vu PhamCloud Computing and Distributed Systems Time and Clock Synchronization

(0,0,0) (1,0,0)

(0,0,0)

(0,0,0)
Message(0,0,1)
(0,0,1)

P2

Time

P1

P3

Vector Timestamps

Vu PhamCloud Computing and Distributed Systems Time and Clock Synchronization

Time

P1(0,0,0) (1,0,0)

P2
(0,0,0) (0,1,1)

P3
(0,0,0)

Message(0,0,1)
(0,0,1)

Vector Timestamps

Vu PhamCloud Computing and Distributed Systems Time and Clock Synchronization

P2

Time

P1
(0,0,0)

P3

(1,0,0) (2,0,0)
Message(2,0,0)

(0,0,0) (0,1,1) (2,2,1)

(0,0,0) (0,0,1)

Vector Timestamps

Vu PhamCloud Computing and Distributed Systems Time and Clock Synchronization

P1
(0,0,0) (1,0,0) (2,0,0) (3,0,0) (4,3,1) (5,3,1)

Time

P2
(0,0,0) (0,1,1) (2,2,1) (2,3,1)

P3
(0,0,0) (0,0,1) (0,0,2) (5,3,3)

Vector Timestamps

Vu PhamCloud Computing and Distributed Systems Time and Clock Synchronization

VT1 = VT2,
iff (if and only if)

VT1[i] = VT2[i], for all i = 1, … , N
VT1 ≤ VT2,

iff VT1[i] ≤ VT2[i], for all i = 1, … , N
Two events are causally related iff

VT1 < VT2, i.e.,
iff VT1 ≤ VT2 &

there exists j such that
1 ≤ j ≤ N & VT1[j] < VT2 [j]

Causally-Related

Vu PhamCloud Computing and Distributed Systems Time and Clock Synchronization

Two events VT1 and VT2are concurrent
iff

NOT (VT1 ≤ VT2) AND NOT (VT2 ≤ VT1)

We’ll denote this as VT2 ||| VT1

… or Not Causally-Related

Vu PhamCloud Computing and Distributed Systems Time and Clock Synchronization

Obeying Causality

• A à B :: (1,0,0) < (2,0,0)
• B à F :: (2,0,0) < (2,2,1)
• A à F :: (1,0,0) < (2,2,1)

P2

P1

P3

(1,0,0) (5,3,1)
Time

(0,0,0) (0,1,1)

(0,0,0)

A

(0,0,0)

B

(2,0,0)

C

(3,0,0)
D E

(4,3,1)

E F
(2,2,1)

G
(2,3,1)

H

(0,0,1)

I

(0,0,2)

J

(5,3,3)

Vu PhamCloud Computing and Distributed Systems Time and Clock Synchronization

P2

(5,3,1)
Time

P3

(0,0,0) (0,1,1)

(0,0,0)

A
P1 (0,0,0) (1,0,0)

B
(2,0,0)

C
(3,0,0)

D E
(4,3,1)

Obeying Causality (2)

E F
(2,2,1)

G
(2,3,1)

H
(0,0,1)

I
(0,0,2)

J
(5,3,3)

• H à G :: (0,0,1) < (2,3,1)
• F à J :: (2,2,1) < (5,3,3)
• H à J :: (0,0,1) < (5,3,3)
• C à J :: (3,0,0) < (5,3,3)

Vu PhamCloud Computing and Distributed Systems Time and Clock Synchronization

(5,3,1)
Time

P2
(0,0,0) (0,1,1)

P3
(0,0,0)

A
P1(0,0,0) (1,0,0)

B
(2,0,0)

C
(3,0,0)

D E
(4,3,1)

Identifying Concurrent Events

E F
(2,2,1)

G
(2,3,1)

H
(0,0,1)

I
(0,0,2)

J
(5,3,3)

• C & F :: (3,0,0) ||| (2,2,1)
• H & C :: (0,0,1) ||| (3,0,0)
• (C, F) and (H, C) are pairs of concurrent events

Vu PhamCloud Computing and Distributed Systems Time and Clock Synchronization

Internet of Things (IoT) devices that are wirelessly connected in
mesh networks often need mutual clock time synchronization, to
enable chronological ordering of sensor events, coordination of
asynchronous processes across devices, or network-wide
coordination of actuators.
Time synchronization:

Christian’s algorithm
Berkeley algorithm
NTP
DTP
But error a function of RTT

Can avoid time synchronization altogether by instead assigning
logical timestamps to events

Conclusion

Vu PhamCloud Computing and Distributed Systems Time and Clock Synchronization

Enabling Intelligence at Edge layer for IOT

Dr. Rajiv Misra
Professor, Dept. of Computer
Science & Engg. Indian Institute of
Technology Patna rajivm@iitp.ac.in

NPTEL

mailto:rajivm@iitp.ac.in

After Completion of this lecture you will knowing the following:

● Issues in traditional IoT platform
● How edge ML addresses the issues of IoT platform?
● Work flow of edge ML
● Advantages and applications of edge ML

NPTEL

Recapitulate: Internet of Things

NPTEL

Recapitulate: Traditional IoT platform

Once the edge device is connected to azure IoT hub service, different custom code modules are developed.
One to capture incoming data and send that to the custom vision module and another one to manage, control
and get the score out to display output of the model and the last one is a custom vision model which is used
to provide the insight.

NPTEL

Recapitulate: Limitation of traditional IoT platform

Poor internet connection, when the internet is down the system fails. For example, if a
smart fire alarm system just detect fires when internet connection is up, then it fails in
performing its task.

Data gravity, IoT devices create lots of data that demand more way to find the insights
locally on a device than shipping all of the data to the cloud. For example, a smart
doorbell, you don't want to stream video to the cloud 24-7 just to identify faces for the
two minutes that someone is in front of your door, you would rather do that, locally on
the smart doorbells.

Real time responses, as opposed to near real time responses that you cannot get by
sending data to the cloud finding insights and then sending the actions back down.NPTEL

ML on cloud

Remote monitoring and control

Merging remote data across multiple
IoT devices

Near Infinite storage to train machine
learning and other advanced ML
models

Low latency tight control loops require near real-
time response

Pre-process data on premise

Intelligence on edge

Offline operations

Data privacy and IP protection

ML on EdgeVs

NPTEL

Recapitulate: IOT-Edge: Bringing machine learning to edge for IoT

Once the IoT device fetches the workload description from cloud, then whenever the device receives his
deployment manifest from the IoT hub service, it understands that it should go fetch those two containers
i.e. action and things.

NPTEL

Enabling Intelligence at Edge layer for IOT
To manage the increasing amount of data that is generated by the devices, sensors, most of
the business logic is now applied at the edge instead of the cloud to achieve low-latency and
have faster response time for IOT devices using Machine learning at edge.

Edge layer is delivering three essential capabilities
1. local data processing,
2. filtered data transfer to the cloud and
3. faster decision-makingNPTEL

Enabling Intelligence at Edge layer for IOT
Local data processing:
● In order to deal with increasing amount of data generated by sensors, most of the

business logic is now deployed at the edge layer instead of cloud to ensure low-latency
and faster response time.

● Only a subset of the data generated by sensors is sent to the cloud after aggregating and
filtering the data at the edge.

Filtered data transfer to cloud:
● This Edge Computing approach significantly saves the bandwidth and cloud storage.

Faster decision-making:
● AI has enabled new capabilities for edge computing. Since most of the decision-making is

now taking advantage of artificial intelligence, the edge layer is becoming the perfect
destination for deploying machine-learning models trained in the cloud.

NPTEL

Performance vs Cost trade-off in IOT-Edge Platforms
ML implementation on edge heavily depends on specialized processors that complement the CPU.
There’s no conventional CPU can increase the speed of training ML model.

To bridge the gap between the cloud and edge, innovations in chip designs offers purpose-built
accelerator that speed up model inferencing significantly. Chip manufacturers such as Qualcomm,
NVIDIA and ARM have launched specialized chips that speed up the execution of ML-enabled
applications.

These modern processors GPUs assist the CPU of the edge devices by taking over the complex
mathematical calculations needed for running deep learning models, accelerate the inference
process.

This result in faster prediction, detection and classification of data ingested to the edge layer.

The solutions like Microsoft Azure IoT Edge runtime and the Qualcomm Neural Processing SDK for
ML makes it possible to take models trained in the cloud and run hardware-accelerated inference at
the intelligent edge.

NPTEL

Training: Involves the use of a
deep-learning framework (e.g.,
TensorFlow) and training
dataset. IoT data provides a
source of training data that data
scientists and engineers can
use to train machine learning
models for a variety of use
cases, from failure detection to
consumer intelligence.

Inference: Inference refers to
the process of using a trained
machine learning algorithm to
make a prediction. IoT data can
be used as the input to a
trained machine learning
model, enabling predictions that
can guide decision logic on the
device, at the edge gateway or
elsewhere in the IoT system.

NPTEL

While we may touch many aspects of
a general machine learning workflow.

This lecture session is not intended
as an in-depth introduction to
machine learning.

We intend to illustrate the process of
creating and using a viable model for
IoT data processing.

ML on edge IoT

NPTEL

The process begins by collecting training data.

In some cases, data has already been collected
and is available in a database, or in form of data
files.

In other cases, especially for IoT scenarios, the
data needs to be collected from IoT devices and
sensors and stored in the cloud.

ML on edge IoT: Collect training data

NPTEL

In most cases, the raw data as collected from devices
and sensors will require preparation for machine
learning.
This step may involve data clean up, data reformatting,
or preprocessing to inject additional information machine
learning can key off.
Data preparation involves calculating explicit label for
every data point in the sample based on the actual
observations on the data.
This information allows the machine learning algorithm
to find correlations between actual sensor data patterns
and the expected results. This step is highly domain-
specific.

ML on edge IoT: Prepare data & Experiment

NPTEL

Based on the prepared data, we can now
experiment with different machine learning
algorithms and parameterizations to train models
and compare the results to one another.
In this case, for testing we compare the predicted
outcome computed by the model with the real
outcome observed for a IOT Application.
In Azure Machine Learning, this be can done in the
different iterations of models that is created in a
model registry.

ML on edge IoT: Build a machine learning model

Build a machine learning model

NPTEL

Based on the prepared data, we can now
experiment with different machine learning
algorithms and parameterizations to train models
and compare the results to one another.
In this case, for testing we compare the predicted
outcome computed by the model with the real
outcome observed for a IOT Application.
In Azure Machine Learning, this be can done in the
different iterations of models that is created in a
model registry.

ML on edge IoT: Deploy the machine learning model

NPTEL

Our work is not done once the model is deployed. In many cases, we want to continue
collecting data and periodically upload that data to the cloud.
We can then use this data to retrain and refine our model, which we then can redeploy to IoT
Edge.

ML on edge IoT: Maintain and refine the model

NPTEL

Edge ML Platform (SaaS)

Once the edge device is connected to azure IoT hub service, two custom code modules are developed.

One to capture incoming data and send that to the custom vision module and another one to manage,
control and get the score out to display output of the model and the last one is a custom vision model which
is used to provide the insight.

NPTEL

Edge ML Platform: Insight-Container
Step 1: Package the data transform, insight and
action into containers.

Now, write those three modules and package them
as docker containers

NPTEL

Edge ML Platform: Docker
Step 2: Put the containers to container registry.

Push all those docker containers into container
registry

NPTEL

Edge ML Platform: Cloud IOT-HUB
Step 3: Define a workload description in the cloud.

Then, write a deployment manifest which is also
called as the workload description that deploy
those three modules.

NPTEL

Edge ML Platform: Edge Run-time Manifestation

Step 4: Target a IoT edge runtime on edge device.

The edge device is running its runtime that's
appear because it's right hooked up to specific
instance of it.

NPTEL

Edge ML Platform: Migrating Workload
Step 5: Shift the workload description to the target
IoT edge runtime on edge device.

Whenever the device receives his deployment
manifest from the IoT hub service, it understands
that it should go fetch those three containers.

NPTEL

Edge ML Platform: Enabling Edge
Step 6: The target IoT edge runtime download the
correct work load from the cloud and start them up
using container registry and runs on the edge
device.

That's a workload that it will bring down from the
cloud to the local device

NPTEL

Azure IoT Hub
Azure iot hub allows for bi-directional communication between the cloud and iot devices

Also, allows developers to take advantage of this information to provide insights monitoring
and develop custom solutions for their iot platform.

NPTEL

Azure IoT Hub: key characteristics
Manages service for bi-directional communication: it is a managed service for bi-directional
communication between the cloud and iot devices.

Platform as a service (Paas): it's a platform as a service offering in azure for iot development.

Highly secure, scalable and reliable: it's a highly secure, scalable and reliable service for iot
devices.

Integrates with lots of azure services: perfectly integrates with a lot of azure services.

Programmable SDK for popular languages: you do not need to learn any new language to take
advantage of iot hub for their development purposes.

Multiple protocols: it support for multiple common standards on the market when it comes to
communication protocols NPTEL

IoT-Edge: key characteristics
The Camera Capture Module handles scanning items using a camera. It then calls the Image Classification module to
identify the item, a call is then made to the “Text to Speech” module to convert item label to speech, and the name of
the item scanned is played on the attached speaker.

The Image Classification Module runs a Tensorflow machine learning model that has been trained with images of
fruit. It handles classifying the scanned items.

The Text to Speech Module converts the name of the item scanned from text to speech using Azure Speech Services.

A USB Camera is used to capture images of items to be bought.

A Speaker for text to speech playback.

Azure IoT Hub (Free tier) is used for managing, deploying, and reporting Azure IoT Edge devices running the solution.

Azure Speech Services (free tier) is used to generate very natural speech telling the shopper what they have just
scanned.

Azure Custom Vision service was used to build the fruit model used for image classification.

NPTEL

Services offered by IoT Edge:

NPTEL

Azure IoT Edge in Action

NPTEL

Azure IoT edge: Functionalities
● Target workload at the correct type of device

○ Once the workload description sent down to the edge, the run time will download the correct work
load from the cloud and start them up and running.

● Create workload which can include high value ML
○ This results in the custom code, machine learning model, and business logic all running locally

independent of cloud connection and also all of those values of edge analytics.

● Run those workload locally, in disconnected manner
○ The runtime is smart enough to detect if the workload is trying to send messages to the cloud while it

doesn't have internet connection, the runtime will catch those messages and sync them with the
cloud once the internet is up.

● Monitor the health of the workloads
○ Azure IoT edge ensures that the work loads continue to run and report status sent back to the cloud.

Reporting the status back to the cloud allows to understand if there is any issues issues in the
deployment and take preventive actions.

NPTEL

Advantages of Edge ML
Reduced latency: Transfer of data back & forth from the cloud takes time. Edge ML reduces
latency by processing data locally (at the device level).

Real-time analytics: Real-time analytics is a major advantage of Edge Computing. Edge ML
brings high-performance computing capabilities to the edge, where sensors and IoT devices are
located.

Higher speeds: Data is processed locally which significantly improves processing speed as
compared to cloud computing

Reduced bandwidth requirement: Edge ML processes the data locally on the device itself,
reducing the cost of internet bandwidth and cloud storage.

Improved data security: Edge ML systems perform the majority of data processing locally i.e. on
the edge device itself. This greatly reduces the amount of data that is sent to the cloud and other
external locations.

NPTEL

Advantages of Edge ML
Scalability: Edge ML typically processes large amounts of data. If you have to
process video image data from many different sources simultaneously,
transferring the data to a cloud service is not required.

Improved reliability: Higher levels of security combined with greater speed
produce greater the reliability of Edge ML System.

Reduced cost: ML processing is working on the edge of the device so it is
highly cost-cost efficient because only processed, data required or valuable
data is sent to the cloud.

Reduced power: Edge ML processes data at the device level so it saves
energy costs NPTEL

Applications of Edge ML
Manufacturing: rapid collection and analysis of data produced by edge-based devices and sensors.

Energy (Oil and Gas): real-time analytics with information processing in remote locations.

Industrial IoT: Inspection of devices/machines is done via ML algorithms instead of human beings
performing manual inspections can save time & money.

Autonomous Vehicles: fast data processing that could take milliseconds to perform which could
reduce collision.

Healthcare: to process all patient monitoring device data locally like glucose monitors, cardiac
trackers, blood pressure sensors, etc.

Smart Homes: data movement time can be reduced and also the sensitive information can be
processed only on edge. NPTEL

Lecture Summary
● Limitations of IoT platform
● How edge ML addresses the issues of IoT platform?
● Work flow of edge ML
● Advantages and applications of edge ML

NPTEL

NPTEL

ML-based Image Classifier at IoT-Edge

Dr. Rajiv Misra
Professor, Dept. of Computer
Science & Engg. Indian Institute of
Technology Patna rajivm@iitp.ac.in

NPTEL

mailto:rajivm@iitp.ac.in

After Completion of this lecture you will knowing the following:

● Basics of computer vision in ML
● Different techniques of computer vision like image classification,

detection, segmentation, etc
● Object detection models like RCNN, Fast RCNN, Faster RCNN,

SDD, YOLO
● Azure compute vision as SaaSNPTEL

Computer Vision: Introduction

Computer vision is a sub branch
of machine learning which deals
with giving computers the ability
to see and interpret and extract
information from images and
videos, videos can be seen as
collection of images. NPTEL

How Computer Vision Works?
To train a computer vision model, you essentially feed some thousands of images of cats and it's going to do
some complex mathematics and feature extraction etc in the background.

Based on that it learns some key understanding or properties that define cats.

Thousands of cats images

Input

Feature extraction Output

NPTEL

Computer Vision: Data Analytics View
With every machine learning model, the model is not
only the important part.

The fundamental fact that's going to determine how
good your model is the data you feed it.

Today, this is another point that we want to focus on is
the fact that your model is only as good as your data.

So one of the key things that we're going to focus on
today’s lecture is how to make sure that our data is
good when we're building computer vision models.NPTEL

Computer Vision: Techniques
Computer vision deals with all the problems related to images and videos. There's a lot of techniques,
fundamentals or problems that can be tackled with computer vision. A few of them includes image
classification, image detection, image segmentation, pattern detection and object localisation. So object
detection and image classification are the two things that we're going to talk about today and we're going to
go into some of the predictive model build for an object detection model.

NPTEL

Computer Vision: Architecture
A typical end-to-end pipeline of computer vision architecture is shown below.

Input data, the images that you want to train your model on, but those images might be coming from a lot of different sources.NPTEL

Computer Vision Architecture: Pre-processing
The second and important step is pre-processing of input data.

Machine learning depends on standardization, means you need to pre-process
input images to make sure that they're all of the same size.

There might be some noise in the images, all of that needs to be dealt with
before the image fed into the model.

If it's not done correctly, the model might learn noise or other features that are
not good features or it might learn from those that actually mean that your
model is going to be fundamentally flawed.

Therefore, pre-processing is essentially it's very important that need to be.NPTEL

Computer Vision Architecture: Data labeling
The third step is labeling your data.

For an object detection problem, you have images with different
objects, let's say if you have an image with a cat and a dog, you would
need to label that specific part of the image where there's a cat and a
dog.

This label or tags to that specific area where there's a dog or cat, so
this is essentially labeling and this needs to be done as well.

NPTEL

Computer Vision Architecture: Feature extraction and prediction

Then feature extraction and prediction part performed by a machine
learning model.

These are part of the model training, the model learns about what
features are present, it extracts the features.

And if features are relevant from the images, then those features are
learned along with the patterns and later the model uses it to build a
sort of rules for itself and these rules are used to predict the output.NPTEL

Computer Vision: Object Detection Models

The field of object detection is
not as new as it may seem. In
fact, object detection has
evolved over the past 20 years.
Popular deep learning algorithm
that achieved remarkable
results in this domain are:
● RCNN
● Fast RCNN
● Faster RCNN
● YOLO
● SSD (Single Shot Detector)

NPTEL

Object Detection Model: RCNN
R-CNN, or Region-based Convolutional Neural
Network, consisted of 3 simple steps:

1. Scan the input image for possible objects using
an algorithm called Selective Search,
generating ~2000 region proposals

2. Run a convolutional neural net (CNN) on top of
each of these region proposals

3. Take the output of each CNN and feed it into
a) an SVM to classify the region and b) a linear
regressor to tighten the bounding box of the
object, if such an object exists.

In other words, we first propose regions, then extract
features, and then classify those regions based on
their features. In essence, we have turned object
detection into an image classification problem. R-
CNN was very intuitive, but very slow.

NPTEL

Object Detection Model: Fast RCNN
As we can see from the image, we are now
generating region proposals based on the last
feature map of the network, not from the original
image itself. As a result, we can train just one CNN
for the entire image.

In addition, instead of training many different SVM’s
to classify each object class, there is a single
softmax layer that outputs the class probabilities
directly. Now we only have one neural net to train,
as opposed to one neural net and many SVM’s.

Fast R-CNN performed much better in terms of
speed. There was just one big bottleneck remaining:
the selective search algorithm for generating region
proposals.

NPTEL

Object Detection Model: Faster RCNN
The main insight of Faster R-CNN was to replace the slow
selective search algorithm with a fast neural net. Specifically, it
introduced the region proposal network (RPN).

Here’s how the RPN worked:

● At the last layer of an initial CNN, a 3x3 sliding window
moves across the feature map and maps it to a lower
dimension (e.g. 256-d)

● For each sliding-window location, it generates multiple
possible regions based on k fixed-ratio anchor boxes
(default bounding boxes)

● Each region proposal consists of a) an “objectness” score
for that region and b) 4 coordinates representing the
bounding box of the region

In other words, we look at each location in our last feature map
and consider k different boxes centered around it: a tall box, a
wide box, a large box, etc. For each of those boxes, we output
whether or not we think it contains an object, and what the
coordinates for that box are.

NPTEL

Object Detection Model: SSD

NPTEL

SSD stands for Single-Shot Detector. Like R-FCN, it provides enormous speed gains over Faster R-CNN,
but does so in a markedly different manner.

Our first two models performed region proposals and region classifications in two separate steps. First,
they used a region proposal network to generate regions of interest; next, they used either fully-connected
layers or position-sensitive convolutional layers to classify those regions. SSD does the two in a “single
shot,” simultaneously predicting the bounding box and the class as it processes the image.

Given an input image and a set of ground truth labels, SSD does the following:

● Pass the image through a series of convolutional layers, yielding several sets of feature maps at
different scales (e.g. 10x10, then 6x6, then 3x3, etc.)

● For each location in each of these feature maps, use a 3x3 convolutional filter to evaluate a small set
of default bounding boxes. These default bounding boxes are essentially equivalent to Faster R-
CNN’s anchor boxes.

● For each box, simultaneously predict a) the bounding box offset and b) the class probabilities
● During training, match the ground truth box with these predicted boxes based on IoU. The best

predicted box will be labeled a “positive,” along with all other boxes that have an IoU with the truth
>0.5.

Object Detection Model: SSD

NPTEL

Object Detection Model: YOLOv3
You Only Look Once or more popularly known as YOLO is one of the fastest real-time object
detection algorithm (45 frames per second) as compared to the R-CNN family (R-CNN, Fast R-CNN,
Faster R-CNN, etc.)

The R-CNN family of algorithms uses regions to localise the objects in images which means the
model is applied to multiple regions and high scoring regions of the image are considered as object
detected.

Instead of selecting some regions, YOLO approaches the object detection problem in a completely
different way.

It forwards the entire image to predict bounding boxes and their probabilities only once through the
neural network.

The authors have also improved the network by making it bigger and taking it towards residual
networks by adding shortcut connections.

NPTEL

Object Detection Model: YOLOv3
First, it divides the image into a 13×13 grid of cells. The size of these 169 cells varies depending on the input size. For a
416×416 input size, the cell size was 32×32. Each cell is responsible for predicting the number of boxes in image.

For each bounding box, the network also predicts the confidence that the bounding box actually encloses an object, and the
probability of the enclosed object being a particular class.

Most of these bounding boxes are eliminated because their confidence is low or because they are enclosing the same object
as another bounding box with a very high confidence score. This technique is called non-maximum suppression.

NPTEL

Object Detection Models: Performance Metric
An overview of the most popular metrics used to compare performance of different deep learning models:

Intersection Over Union (IOU)

Intersection Over Union (IOU) is a measure based on Jaccard Index that evaluates the overlap between two
bounding boxes. IOU is given by the overlapping area between the predicted bounding box and the ground
truth bounding box divided by the area of union between them:

NPTEL

Object Detection Models: Performance Metric
Precision:

Precision is the ability of a model to identify only the relevant objects. It is the percentage of correct positive
predictions and is given by:

Recall:

Recall is the ability of a model to find all the relevant cases (all ground truth bounding boxes). It is the
percentage of true positive detected among all relevant ground truths and is given by:

True Positive (TP): A correct detection. Detection with IOU ≥ threshold
False Positive (FP): A wrong detection. Detection with IOU < threshold
False Negative (FN): A ground truth not detected

NPTEL

Computer Vision: SaaS Architecture
A computer vision architecture can easily be taken up
by a cloud service that is running a computer vision
model in the cloud.

A SaaS is a software as a service that is offered by all
providers like azure, amazon aws, google cloud. All of
them offers some variation of these for computer vision
service.

In that architecture, all you need to do is you need to
have your images and upload them and tag them.
Tagging is vital because you as the domain expert
know what information is present in the images.

Once you've uploaded them in the cloud, the model
training and everything that is completely dependent on
the cloud provider and fully managed by the cloud
service provider.

NPTEL

Computer Vision: SaaS Architecture
It's extremely easy to scale up your dataset
and allow you to download the models that
you've built that can later be used offline.

Once you've trained and download the model,
simply use the rest API to query that model and
get the predictions which is extremely reliable
and simple.

The SaaS architecture provided by different
cloud provider offers similar services.

There might be fundamental differences in the
ui or how you are uploading images or the api
or how you're calling the services but under the
hood they're doing the same thing.

NPTEL

SaaS: Azure Custom Vision
Azure Custom Vision is a cloud service used to build and deploy
computer vision models.

Custom Vision uses a pretty interesting neural network technique
called transfer learning, which applies knowledge gained from
solving one problem to a different, but related situation. This can
substantially decrease the time needed for creating the models.

Features provided by Azure Custom Vision service:
● Train a computer vision model by simply uploading and

labeling few images.
● Build image classifier model using code-free and code-first

approach.
● Deploy the model in the cloud on-premise, or on edge

devices.

NPTEL

Azure Custom Vision on an IoT Edge device

● Build an image classifier with

Custom Vision.

● Develop an IoT Edge module

that queries the Custom

Vision web server on device.

● Send the results of the image

classifier to IoT Hub. NPTEL

Use Case: Creating an image recognition solution with
Azure IoT Edge and Azure Cognitive Services
Although there are lots of applications for image recognition but we had chosen
this application which is a solution for vision impaired people scanning fruit and
vegetables at a self-service checkout.

Required Components
Raspberry Pi 3B or better, USB Camera, and a Speaker.

Note, the solution will run on a Raspberry Pi 3A+, it has enough processing
power, but the device is limited to 512MB RAM. A Raspberry Pi 3B+ has 1GB of
RAM and is faster than the older 3B model. Azure IoT Edge requires an
ARM32v7 or better processor. It will not run on the ARM32v6 processor found in
the Raspberry Pi Zero.

Desktop Linux - such as Ubuntu 18.0

This solution requires USB camera pass through into a Docker container
as well as Azure IoT Edge support. So for now, that is Linux.

NPTEL

Guide for installing Raspberry Pi
Set up Raspbian Stretch Lite on Raspberry Pi: Be sure to configure the correct Country
Code in your wpa_supplicant.conf file.

Azure subscription: If you don’t already have an Azure account then sign up for a free
Azure account. If you are a student then sign up for an Azure for Students account, no
credit card required.

Create an Azure IoT Hub, and an Azure IoT Edge device: Install Azure IoT Edge runtime
on Raspberry Pi and download the deployment configuration file that describes the Azure
IoT Edge Modules and Routes for this solution. Open the deployment.arm32v7.json link
and save the deployment.arm32v7.json in a known location on your computer.

Install Azure CLI and Azure CLI command line tools: With CLI open a command line
console/terminal and change directory to the location where you saved the
deployment.arm32v7.json file.

Deploy edge Iot to device: The modules will now start to deploy to
your Raspberry Pi, the Raspberry Pi green activity LED will flicker
until the deployment completes. Approximately 1.5 GB of Dockers
modules will be downloaded and decompressed on the Raspberry
Pi. This is a one off operation.

NPTEL

Considerations and constraints for the solution
The solution should scale from a Raspberry Pi (running
Raspbian Linux) on ARM32v7, to my desktop development
environment, to an industrial capable IoT Edge device such
as those found in the Certified IoT Edge Catalog.

The solution needs camera input, uses a USB Webcam for
image capture as it was supported across all target devices.

The camera capture module needed Docker USB device
pass-through (not supported by Docker on Windows) so that
plus targeting Raspberry Pi meant that need to target Azure
IoT Edge on Linux.

To mirror the devices plus targeting, ir requires Docker
support for the USB webcam, so develop the solution on
Ubuntu 18.04 developer desktop.

NPTEL

Create Classification model using Azure Custom Vision
The Azure Custom Vision service is a simple way to create an image classification machine learning
model without having to be a data science or machine learning expert.

You simply upload multiple collections of labelled images. For example, you could upload a collection of
banana images and label them as ‘banana’.

It is important to have a good variety of labelled images so be sure to improve your classifier.

NPTEL

1. Create a project in custom vision service mentioning the project type, classification type and domains.
2. Gather initial data (images) and separate them in different folders.
3. Once data is uploaded, train your model by clicking “Train” button on the navigation bar.

1. When the training is ended, the performance metrics will be shown. Click on the “i” bubble to
see the meaning of each performance metric.

Create Custom Vision Classification model

NPTEL

5. Custom Vision offers fluent prediction thresholds adjustment to improve model performance. In our case
we prefer higher Recall over high Precision. It is important not to lower those thresholds too much as the
model performance will suffer significantly. E.g., having low probability threshold will lead to increased
number of false positives. If the model is supposed to be deployed in a production setting, we can’t be
stopping the production line for every false positive detection produced by the model.

For the problem that we are working with right now we decided to set our KPIs as follows:

● The main metric to optimize for is mAP – it cannot be any lower than 85%
● The Recall and Precision are equally important, and both should stay above 80%

Create Custom Vision Classification model

NPTEL

Export Custom Vision Classification model
Step 1: From the Performance tab of your Custom Vision project click Export.

NPTEL

Step 2: Select Dockerfile from the list of available options

Export Custom Vision Classification model

NPTEL

Step 3: Then select the Linux version of the Dockerfile.

Step 4: Download the docker file and unzip and you have a ready-made Docker solution with a Python Flask REST API. This
was how the Azure IoT Edge Image Classification module is created in this solution.

Export Custom Vision Classification model

NPTEL

Installing the solution
Step 1: Clone the repository for creating an image recognition solution with Azure IoT Edge and Azure
Cognitive Services.

Step 2: Install the Azure IoT Edge runtime on your Linux desktop or device (eg Raspberry Pi).

Step 3: Install the following software development tools.

Visual Studio Code
Plus, the following Visual Studio Code Extensions

Azure IoT Edge
JSON Tools useful for changing the “Create Options” for a module.

Docker Community Edition on your development machine

Step 4: With Visual Studio Code, open the IoT Edge solution you cloned to your developer desktop.
NPTEL

Building the Solution
Step 1: Pushing the image to a local Docker repository with specifying the localhost.

Step 2: Confirm processor architecture using the Visual Studio Code

NPTEL

Building the Solution
Step 3: Build and Push the solution to
Docker by right mouse clicking the
deployment.template.json file and select
“Build and Push IoT Edge Solution”.

NPTEL

Deploying the Solution

When the Docker Build and Push
process has completed select the Azure
IoT Hub device you want to deploy the
solution to. Right mouse click the
deployment.json file found in the config
folder and select the target device from
the drop-down list.

NPTEL

Monitoring the Solution on the IoT Edge Device

Once the solution has been deployed you can monitor it on the IoT Edge device itself using the
iotedge list command.

NPTEL

Monitoring the Solution on the IoT Edge Device
You can also monitor the state of the Azure IoT Edge module from the Azure IoT Hub blade on the
Azure Portal.

NPTEL

Monitoring the Solution on the IoT Edge Device
Click on the device from the Azure IoT Edge blade to view more details about the modules running
on the device.

NPTEL

Lecture Summary
● Computer Vision

○ Introduction
○ How it works?
○ Techniques
○ Architecture

● Objection detection models
○ RCNN
○ Fast-RCNN
○ Faster-RCNN
○ SSD
○ YOLO

● Azure compute vision as SaaS
● Usecase

NPTEL

NPTEL

Introduction to Docker Containers and Kubernetes

Dr. Rajiv Misra
Professor, Dept. of Computer
Science & Engg. Indian Institute of
Technology Patna rajivm@iitp.ac.in

NPTEL

mailto:rajivm@iitp.ac.in

After completion of this lecture you will be knowing the following:

● Introduction to Kubernetes
○ Containers
○ Orchestration

● Concepts of Dockers
● Power of kubernetes to deploy software on edge devices

NPTEL

Introduction to Kubernetes
Kubernetes is the greek word for helmsman or captain of a ship.

Kubernetes also known as k-8 was built by Google based on their
experience running containers in production

It is now an open source project and is one of the best and most
popular container orchestration technologies out there.

As applications grow to span multiple containers deployed across
multiple servers, operating them becomes more complex.

To manage this complexity, Kubernetes provides an open source API
that controls how and where those containers will run.

To understand kubernetes first we need to understand two things:

● Container and
● Orchestration NPTEL

Introduction to Kubernetes
Containers are isolated environments,
have their own processes, services,
networking interfaces, mounts similar to
virtual machines except the fact that they
all share the same operating system
kernel.

Orchestration consists of a set of tools and
scripts that can help host containers in a
production environment. An orchestration
consists of multiple container hosts that
can host containers, if one fails the
application is still accessible through the
others.

NPTEL

Introduction to Kubernetes
Kubernetes consists of one computer that gets designated as the
control plane, and lots of other computers that get designated as
worker nodes. Each of these has a complex but robust stack making
orchestration possible,

Kubernetes orchestrates clusters of virtual machines and schedules
containers to run on those virtual machines based on their available
compute resources and the resource requirements of each container.

Kubernetes also automatically manages service discovery,
incorporates load balancing, tracks resource allocation and scales
based on compute utilisation. And, it checks the health of individual
resources and enables apps to self-heal by automatically restarting or
replicating containers.

Now get familiar with each of the kubernetes components:

● Control plane component
● Worker node component

NPTEL

Kubernetes: Control plane Components
Etcd:

Etcd is a fast, distributed, and consistent key-value store used
as a backing store for persistently storing Kubernetes object
data such as pods, replication controllers, secrets, and services.

Etcd is the only place where Kubernetes stores cluster state
and metadata. The only component that talks to etcd directly is
the Kubernetes API server. All other components read and write
data to etcd indirectly through the API server.

Etcd also implements a watch feature, which provides an event-
based interface for asynchronously monitoring changes to keys.
Once you change a key, its watchers get notified. The API
server component heavily relies on this to get notified and move
the current state of etcd towards the desired state.

NPTEL

Kubernetes: Control plane Components
API Server:

The API server is the only component in Kubernetes that directly interacts with
etcd. All other components in Kubernetes must go through the API server to
work with the cluster state, including the clients (kubectl). The API server has
the following functions:

Provides a consistent way of storing objects in etcd.

Performs validation of those objects so clients can't store improperly
configured objects.

Provides a RESTful API to create, update, modify, or delete a resource.

Performs authentication and authorization of a request that the client sends.

Responsible for admission control if the request is trying to create, modify, or
delete a resource. For example, AlwaysPullImages, DefaultStorageClass, and
ResourceQuota.

NPTEL

Kubernetes: Control plane Components
Controller Manager:

In Kubernetes, controllers are control loops that watch the state
of your cluster, then make or request changes where needed.

Each controller tries to move the current cluster state closer to
the desired state. The controller tracks at least one Kubernetes
resource type, and these objects have a spec field that
represents the desired state.

Controller examples:

● Node controller
● Service controller
● Endpoints controller
● Namespace controller
● Deployment controller
● StatefulSet controller

NPTEL

Kubernetes: Control plane Components
Scheduler:

The Scheduler is a control plane process that assigns pods to
nodes. It watches for newly created pods that have no nodes
assigned.

For every pod that the Scheduler discovers, the Scheduler
becomes responsible for finding the best node for that pod to
run on.

Nodes that meet the scheduling requirements for a pod get
called feasible nodes. If none of the nodes are suitable, the pod
remains unscheduled until the Scheduler can place it.

Once it finds a feasible node, it runs a set of functions to score
the nodes, and the node with the highest score gets selected. It
then notifies the API server about the selected node. They call
this process binding.

NPTEL

Kubernetes: Worker node components
Kubelet:

Kubelet is an agent that runs on each node in the cluster and is
responsible for everything running on a worker node.

It ensures that the containers run in the pod.

The main functions of kubelet service are:

● Register the node it's running on by creating a node resource in
the API server.

● Continuously monitor the API server for pods that got scheduled
to the node.

● Start the pod's containers by using the configured container
runtime.

● Continuously monitor running containers and report their status,
events, and resource consumption to the API server.

● Run the container liveness probes, restart containers when the
probes fail and terminate containers when their pod gets deleted
from the API server (notifying the server about the pod
termination).

NPTEL

Kubernetes: Worker node components
Service proxy (kube-proxy) :
The service proxy (kube-proxy) runs on each node
and ensures that one pod can talk to another pod,
one node can talk to another node, and one
container can talk to another container.

It is responsible for watching the API server for
changes on services and pod definitions to
maintain that the entire network configuration is up
to date.

When a service gets backed by more than one
pod, the proxy performs load balancing across
those pods.

NPTEL

Kubernetes: Worker node components
Container runtime:

There are two categories of container runtimes:

Lower-level container runtimes: These focus on running containers
and setting up the namespace and cgroups for containers.

Higher-level container runtimes (container engine): These focus on
formats, unpacking, management, sharing of images, and providing
APIs for developers.

Container runtime takes care of:

● Pulls the required container image from an image registry if it's
not available locally.

● Prepares a container mount point.
● Alerts the kernel to assign some resource limits like CPU or

memory limits.
● Pass system call (syscall) to the kernel to start the container.

NPTEL

Introduction to Dockers
The most popular container technology out in the market is Docker
container.

Docker is an open platform for developing, shipping, and running
applications.

Docker enables you to separate your applications from your
infrastructure so you can deliver software quickly.

With Docker, you can manage your infrastructure in the same ways you
manage your applications.

By taking advantage of Docker’s methodologies for shipping, testing,
and deploying code quickly, you can significantly reduce the delay
between writing code and running it in production.

Docker provides the ability to package and run an application in a
loosely isolated environment called a container.

NPTEL

Docker Architecture
Docker uses a client-server architecture.

The Docker client talks to the Docker
daemon, which does the heavy lifting of
building, running, and distributing your
Docker containers.

The Docker client and daemon can run on
the same system, or you can connect a
Docker client to a remote Docker daemon.

The Docker client and daemon communicate
using a REST API, over UNIX sockets or a
network interface.

Another Docker client is Docker Compose,
that lets you work with applications consisting
of a set of containers.

NPTEL

Docker Architecture: Components
The Docker daemon:

The Docker daemon listens for Docker API requests and
manages Docker objects such as images, containers,
networks, and volumes. A daemon can also communicate
with other daemons to manage Docker services.

The Docker client:

The Docker client is the primary way that many Docker
users interact with Docker. When you use commands
such as docker run, the client sends these commands to
dockerd, which carries them out. The docker command
uses the Docker API. The Docker client can communicate
with more than one daemon.

NPTEL

Docker Architecture: Components
Docker registries:

A Docker registry stores Docker images. Docker Hub is a public
registry that anyone can use, and Docker is configured to look
for images on Docker Hub by default. You can even run your
own private registry.

Docker objects:

When you use Docker, you are creating and using images,
containers, networks, volumes, plugins, and other objects.

Docker Desktop:

Docker Desktop includes the Docker daemon, the Docker client,
Docker Compose, Docker Content Trust, Kubernetes, and
Credential Helper. For more information, see Docker Desktop.

NPTEL

Power of Kubernetes to deploy software on edge devices
Architecture diagram shows works flow from the
cloud through the virtual cubelet through the edge
provider down to all of your edge devices

First, the virtual cubelet project lets you create a
virtual node in your kubernetes cluster, a virtual
node is not a VM like most other nodes in the
kubernetes cluster instead it is an abstraction of a
kubernetes node that is provided by the virtual
cubelet.

Backing it, is an IOT hub, it can schedule
workloads to it and treat it like any other
kubernetes node.

NPTEL

Power of Kubernetes to deploy software on edge devices
When workloads are scheduled to this virtual node,
edge provider comes in and that's depicted.

The edge connector or the edge provider which
are working in tandem with the virtual cubelet it
takes the workload specification that comes in from
kubernetes and converts it into an IOT edge
deployment.

Then the IOT edge deployment is shipped back to
the backing IOT hub for this virtual node.

Lastly, the IOT hub in turn pushes this deployment
down to all the targeted devices.

NPTEL

Lecture Summary
● Understanding of Kubernetes including

○ Containers
○ Orchestration

● Concepts of Dockers
● Power of kubernetes to deploy software on edge devices

NPTEL

NPTEL

ML based Predictive Maintenance at IoT Edge

Dr. Rajiv Misra
Professor, Dept. of Computer
Science & Engg. Indian Institute of
Technology Patna rajivm@iitp.ac.in

NPTEL

mailto:rajivm@iitp.ac.in

Lecture Overview
● In this lecture, we combine the Machine Learning (ML) and IoT together.
● The primary objective of this lecture is to introduce the processing of IoT data with machine

learning, specifically on the edge.
● While we touch many aspects of a general machine learning workflow, this lecture is not intended

as an in-depth introduction to machine learning
● We do not attempt to create a highly optimized model for the use case, it just illustrates the

process of creating and using a viable model for IoT data processing.

NPTEL

ML Development at IoT Edge

NPTEL

Machine Learning: Background
Artificial intelligence (A.I.) is defined as the property of machines that mimic
human intelligence as characterized by behaviours such as cognitive ability,
memory, learning, and decision making.

Machine learning is a branch of artificial intelligence (AI) and computer
science which focuses on the use of data and algorithms to imitate the way
that humans learn, gradually improving its accuracy.

"Deep" machine learning can use labeled datasets, also known as
supervised learning, to inform its algorithm, but it doesn’t necessarily
require a labeled dataset.

Deep learning can ingest unstructured data in its raw form (e.g., text or
images), and it can automatically determine the set of features which
distinguish different categories of data from one another.

The “deep” in deep learning is just referring to the number of layers in a
neural network.

"Non-deep", machine learning is more dependent on human intervention to
learn. Human experts determine the set of features to understand the
differences between data inputs, usually requiring more structured data to
learn.

NPTEL

ML for Predictive Maintenance: Example

Using simple machine learning techniques we can create a simple model
of a machine with normal operating conditions for any application and
determine the values that fall outside of that normal area.

Example: Train a model for the motor vibration with two sensors namely
A and B, in normal operating conditions. That means, using normal data
points, model has good understanding of what the motor vibration value
could be approximately when the motor is operating in normal mode and
without any problems.

Now, let’s say, one day at a random point in time, model observes that
the value of sensor A is 8, and at the same time, the value for sensor B is
2. This is clearly an unusual value. The trained model can easily say that
this new value is not normal and can indicate that there might be
something wrong with the motor. This is how machine learning works to
detect the unusual behavior of a machine. NPTEL

Predictive Maintenance: Introduction
In the past, companies have used reactive maintenance,
which focused on preparing an asset once failures had
occurred.

Then they moved to preventive maintenance, also known
as the schedule-based or planned maintenance. This
refers to performing periodic maintenance based on
manufacturers' recommendation. The focus was on
reducing the failures by replacing parts based on worst
case lifetimes for critical pieces of manufacturing tooling.

Next came condition-based maintenance methods, which repairs or replaces equipment when they begin to show
signs of failure. However, this condition-based method requires an experienced maintenance team to inspect the
equipment at regular intervals.

With the explosion of computers and sensors, companies are now engaging in machine-led condition-based
maintenance to reduce costs while improving the uptime of factories. Predictive maintenance takes condition-based
maintenance a step father. In this methodology, machine learning analytics are used to predict a machine's failure
early by examining the real-time sensor data and detecting changes in machine health status.

NPTEL

Predictive Maintenance: Introduction
Predictive maintenance employs advanced analytics, on the machine data collected from end sensor nodes to draw meaningful
insights that more accurately predict machine failures. It is comprised of three steps; sense, compute, and act.

NPTEL

Predictive Maintenance: Introduction
Data is collected from sensors that are already available
in machines or by adding new sensors, or by using
control inputs.

Depending upon the machine types and the required
failure analysis, different sensor signals, such as
temperature, sound, magnetic field, current, voltage,
ultrasonic, vibration are analyzed to predict the failure.

The predicted information from sensor data analysis is
used to generate an event, work order, and notification.

The sensor data is also used to visualize the machine's
overall operating condition.

An action is taken when the event reports an anomaly, a
machine that is nearing the end of its useful life, or when
wear and tear is detected in machine parts.

NPTEL

Predictive Maintenance: Problems
Will this equipment fail in a given period of time?

What is the remaining useful life or the time to failure?

How to quantify wear and tear of expandable components.
● This is a subset of remaining useful life and focuses on shorter

living subsystems.
For detecting anomalies in equipment behavior.

● With further analysis, it can provide failure classification.
To optimize equipment settings. NPTEL

Machine Learning Workflow: Predictive Maintenance
A six-step process:

Define the problem and
the outcome

Prepare the data

Analyse the time series

Model the predict using
insight from the analysis

Deploy the predictive
model

Monitor the predictive
performance

NPTEL

Machine Learning Workflow: Define
As in any successful project, the first step is to clearly define
the problem.

This includes the motivation behind creating a predictive and
the intended goals and outcomes.

After this, you can decide how to tackle the task at hand,
including which software to use at each stage.

For example, we might use Excel for data preparation, R for
the analysis and modelling and Power BI for deployment.

NPTEL

Machine Learning Workflow: Prepare
It is essential to properly prepare and clean the data that will be
used to create the prediction.

Data cleansing might involve removing duplicated or inaccurate
records, or dealing with missing data points or outliers.

In the case of a predictive maintenance project, the data will take
the form of a time series.

Depending on what is being predicted, the observations might be
daily, weekly, monthly, quarterly or yearly.

NPTEL

Machine Learning Workflow: Analyse
Once the data has been prepared, the next step is to analyse it.

For a time series, this involves decomposing the series into its
constituent parts. These include trend and seasonal effects.

The trend is the long-term overall pattern of the data and is not
necessarily linear.

Seasonality is a recurring pattern of a fixed length which is
caused by seasonal factors.

NPTEL

Machine Learning Workflow: Modelelling
Predictions are created by combining the trend and seasonality components.

There are functions that can do this for you in Excel, or it can be done by hand in a
statistical package like R.

If modelling manually, refine the weightings of each component to produce a more
accurate model.

The model can be edited to account for any special factors that need to be included.

However, be careful to avoid introducing bias into the prediction and making it less
accurate.

Whether using Excel or R, your model will include prediction intervals (or confidence
intervals). These show the level of uncertainty in the prediction at each future point.

NPTEL

Machine Learning Workflow: Deploy
Once you are happy with your model, it's time to deploy it and make the
predictions live.

This means that decision makers within the business or organisation can utilise
and benefit from your predictions.

Deployment may take the form of a visualisation, a performance dashboard, a
graphic or table in a report, or a web application.

You may wish to include with the prediction intervals calculated in the previous
step.

These show the user the limits within which each future value can be expected
to fall between if your model is correct.

NPTEL

Machine Learning Workflow: Monitor
After the prediction goes live, it is important to monitor its performance.

A common way of doing this is to calculate the accuracy using an error
measurement statistic.

Popular measures include the mean absolute percentage error (MAPE)
and the mean absolute deviation (MAD).

Depending on what is being predicted, it may be possible to update your
model as new data becomes available.

This should also lead to a more accurate prediction of future values.
NPTEL

Machine Learning Methods: Predictive Maintenance
Problem definition: Classification and Regression approach

– Classification: Will it fail?
● Multi-class classification: Will it fail for reason X?

– Regression: After how long will it fail?

• Methods:
– Traditional machine learning:

● Decision trees: Random forests, gradient boosting trees, isolation forest
● SVM (Support Vector Machines)

– Deep learning approach:
● CNN (Convolution Neural Network)/Multilayer Perceptrons (MLPs)
● RNN (Recurrent Neural Network)/LGTM (Long Short Term Memory)/GRU (Gated Recurrent Unit)

– Hybrid of deep learning and Physics-Based Modeling (PBM):
● Use PBM to generate training data where lacking
● Use PBM to reduce the problem space (feature engineering)
● Use PBM to inform and validate DL models (e.g., to identify catastrophic failures, most notably in

scenarios with low amounts of training data and a high degree of mission criticality)

NPTEL

Deep Learning Methods
Deep learning has proven to show superior performance in certain domains such as
object recognition and image classification.

It has also gained popularity in domains such as finance where time-series data plays
an important role.

Predictive Maintenance is also a domain where data is collected over time to monitor
the state of an asset with the goal of finding patterns to predict failures which can also
benefit from certain deep learning algorithms.

Among the deep learning methods, Long Short Term Memory (LSTM) networks are
especially appealing to the predictive maintenance domain due to the fact that they are
very good at learning from sequences.

This fact lends itself to their applications using time series data by making it possible to
look back for longer periods of time to detect failure patterns.

NPTEL

Deep Learning Methods: Multilayer Perceptrons (MLPs)
Generally, neural networks like Multilayer Perceptrons or MLPs provide capabilities that are offered
by few algorithms, such as:

● Robust to Noise. Neural networks are robust to noise in input data and in the mapping function
and can even support learning and prediction in the presence of missing values.

● Nonlinear. Neural networks do not make strong assumptions about the mapping function and
readily learn linear and nonlinear relationships.

● Multivariate Inputs. An arbitrary number of input features can be specified, providing direct
support for multivariate forecasting.

● Multi-step Forecasts. An arbitrary number of output values can be specified, providing direct
support for multi-step and even multivariate forecasting.

For these capabilities alone, feedforward neural networks may be useful for time series forecasting.NPTEL

Deep Learning Methods: Convolutional Neural Networks (CNNs)

Convolutional Neural Networks or CNNs are a type of neural network that was designed to efficiently
handle image data.

The ability of CNNs to learn and automatically extract features from raw input data can be applied to
time series forecasting problems. A sequence of observations can be treated like a one-dimensional
image that a CNN model can read and distill into the most salient elements.

● Feature Learning. Automatic identification, extraction and distillation of salient features from
raw input data that pertain directly to the prediction problem that is being modeled.

CNNs get the benefits of Multilayer Perceptrons for time series forecasting, namely support for
multivariate input, multivariate output and learning arbitrary but complex functional relationships, but
do not require that the model learn directly from lag observations. Instead, the model can learn a
representation from a large input sequence that is most relevant for the prediction problem.NPTEL

Long Short Term Memory networks – usually just called “LSTMs” – are a special kind of RNN,
capable of learning long-term dependencies. They were introduced by Hochreiter & Schmidhuber
(1997), and were refined and popularized by different researchers.

LSTM add the explicit handling of order between observations when learning a mapping function
from inputs to outputs, not offered by MLPs or CNNs. They are a type of neural network that adds
native support for input data comprised of sequences of observations.

● Native Support for Sequences. Recurrent neural networks directly add support for input
sequence data.

This capability of LSTMs has been used to great effect in complex natural language processing
problems such as neural machine translation where the model must learn the complex
interrelationships between words both within a given language and across languages in translating
from one language to another.

● Learned Temporal Dependence. The most relevant context of input observations to the
expected output is learned and can change dynamically.

Deep Learning Methods: Long Short-Term Memory Networks (LSTMs)

NPTEL

The model both learns a mapping from inputs to outputs and learns what context from the input
sequence is useful for the mapping, and can dynamically change this context as needed.

LSTMs are explicitly designed to avoid the long-term dependency problem. Remembering information
for long periods of time is practically their default behavior.

All recurrent neural networks have the form of a chain of repeating modules of neural network. In
standard RNNs, this repeating module will have a very simple structure, such as a single tanh layer.

Deep Learning Methods: Long Short-Term Memory Networks (LSTMs)

NPTEL

LSTMs also have this chain like structure, but the repeating module has a different structure. Instead of
having a single neural network layer, there are four, interacting in a very special way.

In the below diagram, each line carries an entire vector, from the output of one node to the inputs of
others. The pink circles represent pointwise operations, like vector addition, while the yellow boxes are
learned neural network layers. Lines merging denote concatenation, while a line forking denote its
content being copied and the copies going to different locations.

Deep Learning Methods: Long Short-Term Memory Networks (LSTMs)

NPTEL

An LSTM has three of gates, to protect and control the cell state. The first part is called Forget gate, the
second part is known as the Input gate and the last one is the Output gate.

Forget Gate: The first step in our LSTM is to decide what information we’re going to throw away from
the cell state. This decision is made by a sigmoid layer called the “forget gate layer.” It looks at ht−1 and
xt, and outputs a number between 0 and 1 for each number in the cell state Ct−1.

A 1 represents “completely keep this” while a 0 represents “completely get rid of this.”

Deep Learning Methods: Long Short-Term Memory Networks (LSTMs)

NPTEL

Input Gate: The next step is to decide what new information we’re going to store
in the cell state. This has two parts. First, a sigmoid layer called the “input gate
layer” decides which values we’ll update. Next, a tanh layer creates a vector of
new candidate values, C̃t, that could be added to the state. In the next step, we’ll
combine these two to create an update to the state.

Deep Learning Methods: Long Short-Term Memory Networks (LSTMs)

NPTEL

Deep Learning Methods: Long Short-Term Memory Networks (LSTMs)

It’s now time to update the old cell state, Ct−1, into the new cell state Ct. The
previous steps already decided what to do, we just need to actually do it. We
multiply the old state by ft, forgetting the things we decided to forget earlier. Then
we add it∗C̃t. This is the new candidate values, scaled by how much we decided
to update each state value.

NPTEL

Deep Learning Methods: Long Short-Term Memory Networks (LSTMs)

Output gate: Finally, we need to decide what we’re going to output. This output will be based
on our cell state, but will be a filtered version. First, we run a sigmoid layer which decides what
parts of the cell state we’re going to output. Then, we put the cell state through tanh (to push
the values to be between −1 and 1) and multiply it by the output of the sigmoid gate, so that we
only output the parts we decided to.

NPTEL

The stationary R-squared is used in time series forecasting as a measure that
compares the stationary part of the model to a simple mean model. It is defined
as,

Where SSres denotes the sum of squared residuals from expected values and
SStot denotes the sum of squared deviations from the dependent variable’s
sample mean. It denotes the proportion of the dependent variable’s variance
that may be explained by the independent variable’s variance. A high R2 value
shows that the model’s variance is similar to that of the true values, whereas a
low R2 value suggests that the two values are not strongly related.

Performance Metric: R-squared

NPTEL

The MAE is defined as the average of the absolute difference between forecasted and true values.
Where yi is the expected value and xi is the actual value (shown below formula). The letter n
represents the total number of values in the test set.

The MAE shows us how much inaccuracy we should expect from the forecast on average. MAE = 0
means that the anticipated values are correct, and the error statistics are in the original units of the
forecasted values.

The lower the MAE value, the better the model; a value of zero indicates that the forecast is error-
free. In other words, the model with the lowest MAE is deemed superior when comparing many
models.

Performance Metric: Mean Absolute Error (MAE)

NPTEL

MAPE is the proportion of the average absolute difference between projected
and true values divided by the true value. The anticipated value is Ft, and the
true value is At. The number n refers to the total number of values in the test
set.

It works better with data that is free of zeros and extreme values because of the
in-denominator. The MAPE value also takes an extreme value if this value is
exceedingly tiny or huge.

Performance Metric: Mean Absolute Percentage Error (MAPE)

NPTEL

MSE is defined as the average of the error squares. It is also known as the metric
that evaluates the quality of a forecasting model or predictor. MSE also takes into
account variance (the difference between anticipated values) and bias (the distance
of predicted value from its true value).

Where y’i denotes the predicted value and yi denotes the actual value. The number n
refers to the total number of values in the test set. MSE is almost always positive,
and lower values are preferable. This measure penalizes large errors or outliers
more than minor errors due to the square term (as seen in the formula above).

Performance Metric: Mean Squared Error (MSE)

NPTEL

This measure is defined as the square root of mean square error and is an extension
of MSE. Where y’i denotes the predicted value and yi denotes the actual value. The
number n refers to the total number of values in the test set. This statistic, like MSE,
penalizes greater errors more.

This statistic is likewise always positive, with lower values indicating higher
performance. The RMSE number is in the same unit as the projected value, which is
an advantage of this technique. In comparison to MSE, this makes it easier to
comprehend.

Performance Metric: Root Mean Squared Error(RMSE)

NPTEL

Use Case: Prognostics and Health Management

A layout showing various modules and their
connections as modeled in the simulation

Simplified diagram of engine simulation

The objective of this use case is to build an LSTM model that can predict the
number of remaining operational cycles before failure in the test set, i.e., the
number of operational cycles after the last cycle that the engine will continue to
operate. Also provided a vector of true Remaining Useful Life (RUL) values for the
test data.

The data was generated using C-MAPSS, the commercial version of MAPSS
(Modular Aero-Propulsion System Simulation) software. This software provides a
flexible turbofan engine simulation environment to conveniently simulate the
health, control, and engine parameters.

The simulated aircraft sensor values is used to predict two scenarios, so that
maintenance can be planned in advance:

* Regression models: The question to ask is "Given these aircraft engine
operation and failure events history, can we predict when an in-service engine will
fail?"

* Binary classification: We re-formulate this question “Is this engine going to fail
within w1 cycles?”

NPTEL

LSTM model: Dataset

A layout showing various modules and their
connections as modeled in the simulation

Simplified diagram of engine simulation

Dataset consists of multiple multivariate time series, such data set is divided
into training and test subsets. Each time series is from a different engine.
The engine is operating normally at the start of each time series and
develops a fault at some point during the series.

In the training set, the fault grows in magnitude until system failure. In the
test set, the time series ends some time prior to system failure.
Public dataset (Nasa Turbo fan)

● Damage propagation for aircraft engine
● Run to failure simulation

Aircraft gas turbine. Dataset contains time series (cycles) for all
measurements of 100 different engines.

The data used in this use-case is taken from the
https://www.nasa.gov/intelligent-systems-division

NPTEL

LSTM model: Data Ingestion
We ingest the training, test and ground truth datasets.

The training data consists of multiple multivariate time series with "cycle" as the time unit, together with 21 sensor readings for
each cycle.

Each time series can be assumed as being generated from a different engine of the same type.

The testing data has the same data schema as the training data. The only difference is that the data does not indicate when the
failure occurs.

Finally, the ground truth data provides the number of remaining working cycles for the engines in the testing data.

NPTEL

LSTM model: Data Preparation and Feature Engineering
First step is to generate labels for the training data which are Remaining Useful Life (RUL), label1 and label2.

Each row can be used as a model training sample where the s_k columns are the features and the RUL is the model
target. The rows are treated as independent observations and the measurement trends from the previous cycles are
ignored. The features are normalized to μ = 0, σ = 1 and PCA is applied.

For the LSTM model, opt for more advanced feature engineering and chose to incorporate the trends from the previous
cycles. In this case, each training sample consists of measurements at cycle i as well as i-5, i-10, i-20, i-30, i-40. The
model input is a 3D tensor with shape (n, 6, 24) where n is the number of training samples, 6 is the number of cycles
(timesteps), and 24 is the number of principal components (features).

NPTEL

LSTM model: Modelling
When using LSTMs in the time-series domain, one important parameter to pick is the sequence length which is the
window for LSTMs to look back.

This may be viewed as similar to picking window_size = 5 cycles for calculating the rolling features which are rolling
mean and rolling standard deviation for 21 sensor values.

The idea of using LSTMs is to let the model extract abstract features out of the sequence of sensor values in the
window rather than engineering those manually. The expectation is that if there is a pattern in these sensor values
within the window prior to failure, the pattern should be encoded by the LSTM.

One critical advantage of LSTMs is their ability to remember from long-term sequences (window sizes) which is hard to
achieve by traditional feature engineering. For example, computing rolling averages over a window size of 50 cycles
may lead to loss of information due to smoothing and abstracting of values over such a long period, instead, using all
50 values as input may provide better results. While feature engineering over large window sizes may not make sense,
LSTMs are able to use larger window sizes and use all the information in the window as input. NPTEL

LSTM model: Modelling

Let's first look at an example of the
sensor values 50 cycles prior to the
failure for engine id 3.

We will be feeding LSTM network this
type of data for each time step for each
engine id.

LSTM layers expect an input in the
shape of a numpy array of 3
dimensions (samples, time steps,
features) where samples is the number
of training sequences, time steps is the
look back window or sequence length
and features is the number of features
of each sequence at each time step.

NPTEL

LSTM model: Network Configuration
The first layer is an LSTM layer with 100 units followed by another LSTM layer with 50 units.

Dropout is also applied after each LSTM layer to control overfitting.

Final layer is a Dense output layer with single unit with sigmoid activation for the binary classification problem and linear
activation for the regression problem.

Network for regression problemNetwork for binary classification problem

NPTEL

LSTM model: Model Evaluation

Results of Regression problem:

NPTEL

LSTM model: Model Evaluation

Results of Binary Classification problem:

NPTEL

Azure Time Series Insights (PaaS): Predictive Maintenance
Azure Time Series Insights (TSI) is a cloud-based service offered by Azure that can be
used to ingest, model, query and visualize fast-moving time-series data generated by IoT
devices.

It is a fully managed Platform as a Service(PaaS) soulution built in for IoT.

NPTEL

Azure Time Series Insights (PaaS): Predictive Maintenance
Real-time data in the form of a time-series can be generated by various devices like mobile devices,
sensors, satellites, medical devices etc.
Data from these devices can be fetched to the Azure environment using Azure IoT Hub. Azure IoT hub acts
as a data integration pipeline to connect to the source devices and then fetch data and deliver it to the TSI
platform.
Once the data is in the TSI, it can then be used for visualization purposes, and can be queried and
aggregated accordingly. Additionally, customers can also leverage existing analytics and machine learning
capabilities on top of the data available in TSI.
Data from TSI can be further processed using Azure Databricks and machine learning models can be
applied based on pre-trained models that will offer predictions in real-time. This is how an overall
architecture of Azure Time Series Insights can be enabled.NPTEL

Azure Time Series Insights (PaaS): Components
Azure TSI provides the following four components using which users can consume data from varied data
sources as follows.

● Integration – TSI provides an easy integration from data generated using IoT devices by allowing
connection between the cloud data gateways such as Azure IoT Hub and Azure Event Hubs. Data from
these sources can be easily consumed in JSON structures, cleaned and then stored in a columnar
store

● Storage – Azure TSI also takes care of the data that is to be retained in the system for querying and
visualizing the data. By default, data is stored on SSDs for fast retrieval and has a data retention policy
of 400 days. This supports querying historic data for up to a period of 400 days

● Data Visualization – Once the data is fetched from the data sources and stored in the columnar stores,
it can be visualized in the form of line charts or heat maps. The visuals are provided out of the box by
Azure TSI and can be leveraged for easy visual analysis

● Query Service – Although, visualizing the data will answer many questions, however, TSI also provides
a query service using which you can integrate TSI into your custom applications.

Usually, a time series data is indexed by timestamps. Therefore, you can build your applications by using TSI
as a backend service for integrating and storing the data and using the client SDK for Azure TSI for building
the frontend and display visuals like line charts and heat maps.

NPTEL

Predictive Maintenance: Steps
Step 1: Sensor data are collected from edge devices and are forwarded to Azure IoT Hub.
Step 2: Azure IoT hub then drives these gathered data to the TSI platform and Stream Analytics.
Step 3: At TSI, data can be visualised, queried and aggregated with other services.
Step 4: Azure machine learning service provides the training of ML model or using a pretrained model on top of
the data available in TSI.
Step 5: Once the training is completed, inference is provided using Azure IoT Hub and Iot Edge service.

NPTEL

Lecture Summary

● Understanding of predictive maintenance
● Machine learning models for predictive maintenance
● Use case of predictive maintenance using LSTM model
● Azure Time Series Insights

NPTEL

NPTEL

Deep Reinforcement Learning for
Cloud-Edge

Dr. Rajiv Misra
Professor
Dept. of Computer Science &Engg.
Indian InstituteofTechnologyPatna
rajivm@iitp.ac.in

Deep Reinforcement Learning for Cloud-Edge

NPTEL

mailto:rajivm@iitp.ac.in

Preface

Content of this Lecture:
• In this lecture, we will discuss how Collaborative cloud-edge

approaches can provide better performance and efficiency
than traditional cloud or edge approaches.

• To understand how resource allocation strategies can be
tailored to specific use cases and can evolve over time
based on user demand and network conditions.

Deep Reinforcement Learning for Cloud-Edge

NPTEL

The Collaborative Cloud-Edge Environment
Introduction:
• The "user-edge-cloud" model refers to a

distributed computing environment where
resources are allocated across user devices, edge
nodes, and cloud servers.

• Resource allocation is important for optimizing
system performance while ensuring efficient use of
resources.

• Collaborative cloud-edge approaches can be more
effective than traditional approaches that focus
solely on cloud or edge resources.

Deep Reinforcement Learning for Cloud-Edge

Cloud Services:
• Cloud services can be divided into private and public cloud.
• Private cloud is dedicated to a single organization and provides greater control and

security.
• Public cloud is shared by multiple organizations and provides more flexibility and

scalability.

NPTEL

The Collaborative Cloud-Edge Environment
Edge Nodes:
• Edge nodes are local computing resources that are

closer to the user than the cloud node.
• Edge nodes can provide low-latency, high-bandwidth

services to users and can offload some processing from

the cloud.

Deep Reinforcement Learning for Cloud-Edge

Resource Allocation Strategies:
• Cloud Resource allocation strategies can be based on various factors, such as user

demand, network conditions, and available resources.
• Collaborative cloud-edge approaches can use machine learning algorithms to optimize

resource allocation over time.
• Load balancing, task offloading, and caching are some common resource allocation

techniques that can be applied to both cloud and edge resources.

Multi-Edge-Node Scenario:
• Cloud In a multi-edge-node scenario, resource allocation becomes more complex as the

cloud and edge nodes must coordinate with each other to allocate resources effectively.
• Collaborative cloud-edge approaches can use communication protocols and data sharing

to enable effective coordination.

NPTEL

Public vs Private Cloud

Public Cloud Environment:
• In a public cloud environment, the cloud provider offers different pricing modes for

cloud services based on demand characteristics.
• Pricing modes have different cost structures that affect resource allocation strategies.
• Cloud service providers like Amazon, Microsoft, and Alicloud provide three different

pricing modes, each with different cost structures.
• The edge node must select the appropriate pricing mode and allocate user demands

to rented VMs or its own VMs.

Deep Reinforcement Learning for Cloud-Edge

Private Cloud Environment:
• In a private cloud environment, the edge node has its own virtual machines (VMs) to

process user demands.
• If the number of VMs requested exceeds the edge node's capacity, the edge node can

rent VMs from the cloud node to scale up.
• The cost of private cloud changes dynamically according to its physical computing cost,

so the edge node needs to allocate resources dynamically at each time slot according to
its policy.

• After allocating resources, the computing cost of the edge node and private cloud in this
time slot can be calculated and used to receive new computing tasks in the next time

slot.

NPTEL

User Settings
The	time	is	discretized	into T time	slots.	
We	assume	that	in	each	time	slot t,	the	demand	submitted	by	the	user	can	be	
defined	as	the	following:

D t=(d t , l t)
D t is	a	pair	of d tand l t ,	where d t is	the	number	of	VMs	requested	of D t ,	and l t is	the	
computing	time	duration	of D t .

Deep Reinforcement Learning for Cloud-Edge

Computing Resources and Cost of Edge Nodes:
• The total computing resources owned by the edge node are represented by E.
• As the resource is allocated to users, we use 𝒆𝒕 to represent the number of

remaining VMs of edge node in time slot t.
• The number of VMs provided by the edge node is expressed as 𝒅𝒕𝒆.
• The number of VMs provided by the cloud node is expressed as 𝒅𝒕𝑪 .
• It should be noted that if the edge node exhibits no available resources, it will

hand over all the arriving computing tasks to the cloud service for processing.
So, no. of VM provided by edge node in time t is given as:

𝒅𝒕𝒆 = $𝒅𝒕 − 𝒅𝒕
𝒄, 𝒆𝒕 ≥ 𝟎

𝟎, 𝒆𝒕 = 𝟎

NPTEL

Computing Resources and Cost of Edge Nodes:

Deep Reinforcement Learning for Cloud-Edge

• When the resource allocation is successfully performed on the edge node,
each demand processed by the edge node will generate an allocation record.

𝒉𝒕 = 𝒅𝒕𝒆, 𝒍𝒕
• When a new demand arrives and resource allocation is completed, an

allocation record will be generated and added to an allocation record list:
𝐻 =< ℎ%, ℎ&,…. ℎ' >

At the end of each time slot, the following actions are taken:
• The edge node traverses the allocation record list and subtracts one from the

remaining computing time of each record.
• If a record's remaining computing time reaches 0, it means that the demand

has been completed. The edge node releases the corresponding VMs and
deletes the allocation record from the list.

• The number of VMs waiting to be released at the end of time slot t is denoted
as η(.

η(= ∑𝒊*𝟏𝒎 𝒅𝒊𝒄
𝑠. 𝑡. 𝑙- = 0, ℎ- ∈ 𝐻

NPTEL

Computing Resources and Cost of Edge Nodes:

Deep Reinforcement Learning for Cloud-Edge

• The number of remaining VMs at the next time slot t+1 is calculated based on
the number of remaining VMs at the beginning of time slot t, the quantity
allocated in the end of time slot t, and the quantity released due to completion
of the computing task in time slot t. Then, the number of remaining VMs of the
edge node at the time slot t + 1 is

𝑒(.% = 𝑒(− 𝑑(/ + η(

• The cost of the edge node in time slot t is calculated as the sum of standby
cost (𝑒(𝑝/) and computing cost ((𝐸 − 𝑒()𝑝0).

𝐶(/ = 𝑒(𝑝/ + 𝐸 − 𝑒()𝑝0NPTEL

Cost of Collaborative Cloud-Side Computing

Deep Reinforcement Learning for Cloud-Edge

Cost in Private Cloud:
• In time slot t, the cost of collaborative cloud-edge in private cloud environment is the

following:
𝐶!
"#$ = 𝑑!%𝑝% + 𝐶!&

Where,
𝑑!%: number of VMs provided by cloud node
𝑝%: unit cost of VMs in private cloud
𝐶!&: cost of the edge node

Cost in Public Cloud:
• In time slot t, the cost of collaborative cloud-edge in public cloud environment includes the

computing cost of cloud nodes and the cost of edge node, which is the following:
𝐶!
"'(= 𝑋)𝑝*+𝑑!% + 𝑋,𝑝'"-#*.! + 𝑋/𝑝#&𝑑!% + 𝑋0𝑝!𝑑!% + 𝐶!&

𝑋$ = ' 𝟏,The service is used
𝟎, The service is not used

Where,
𝑋)𝑝*+𝑑!% : cost of on-demand instance
𝑋,𝑝'"-#*.! + 𝑋/𝑝#&𝑑!% : cost of reserved instance
𝑋0𝑝!𝑑!%: cost of spot instance

NPTEL

Goal

Deep Reinforcement Learning for Cloud-Edge

• The time is divided into T time slots, and at the beginning of each time
slot t, the user submits its demand to the edge node.

• The edge node allocates the demands to either cloud VMs or its own VMs
based on its resource allocation strategy.

• In a public cloud environment, the edge node determines the type of cloud
service to be used based on the allocation and the price of the corresponding
cloud service set by the cloud service provider.

• The cost of the current time slot t, denoted as 𝐶(, is calculated based on the
allocation and the price of the corresponding cloud service set by the cloud
service provider.

• The long-term cost of the system is minimized over the T time slots by
minimizing the sum of the costs over all time slots i.e.

>
(*%

1

𝐶(

NPTEL

Resource Allocation Algorithms: 1.Markov Decision Process

Deep Reinforcement Learning for Cloud-Edge

• The resource allocation problem is a sequential decision-making problem
• It can be modeled as a Markov decision process.
• Markov decision process is a tuple (S, A, P, r, γ), where S is the finite set of
states, A the finite set of actions, P is the probability of state transition, r and γ
are the immediate reward and discount factor, respectively.

• 𝒔𝒕 = (𝒆𝒕, 𝜼𝒕 − 𝟏, 𝑫𝒕, 𝑝!) ∈ 𝑆 ,is used to describe the state of the edge node at the
beginning of each time slot, where

et :number of remaining VMs of the edge node in t,
ηt−1 :number of VMs returned in the previous time slot
Dt :user’s demand information in t
pt :unit cost of VMs in private cloud in t.

• 𝒂𝒕 = (𝒙𝒆, 𝒙𝒌) ∈ 𝐴, where
xe :ratio of the number of VMs provided by the edge node to the total number of VMs.
xk :ratio of the number of VMs provided by the cloud node to the total number of VMs.
• 𝒓𝒕 = −𝑪𝒕𝒑𝒓𝒊 is the reward in each time slot Note :

We want to reduce the long-term operation
cost R = ∑$9): 𝑟(𝑠$, 𝑎$) therefore, the reward
function is set as a negative value of the cost.

NPTEL

2. Parameterized Action Markov Decision Process

Deep Reinforcement Learning for Cloud-Edge

• In the public cloud environment, first, the edge node needs to select the pricing mode of
cloud service to be used and then determine the resource segmentation between the
edge node and the cloud node in each time slot t.

• The resource allocation action can be described by parametric action.

• In order to describe this parameterized action sequential decision, parameterized action
Markov decision process (PAMDP) is used.

• Similar to Markov decision process, PAMDP is a tuple (S, A, P, r, γ).

• The difference with the Markov decision process is that A is the finite set of
parameterized actions.

• The specific modeling is as follows.

• st = (et, ηt−1, Dt, pt, ξt) ∈ S, where pt is the unit cost of spot instance in t, and ξt is the
remaining usage time of reserved instance. When the edge node does not use this type
of cloud service or it expires, this value is 0.

• at = (xe, (k, xk)) ∈ A, where K = {k1, k2, k3} is the set of all discrete actions, k1 is the on-
demand instance, k2 is the reserved instance, and k3 is the spot instance.

• 𝒓𝒕= −𝑪𝒕
𝒑𝒓𝒊 is the reward in each time slot.

NPTEL

3.Resource Allocation Based on Deep Deterministic Policy
Gradient

Deep Reinforcement Learning for Cloud-Edge

• The DDPG algorithm is the classical algorithm of the ActorCritic algorithm
• Actor generates actions based on policies and interacts with the environment
• Critic evaluates Actor’s performance through a value function that guides Actor’s
next action

• This improves its convergence and performance.

DDPG introduces the idea of DQN and contains four networks, where the main Actor
network selects the appropriate action a, according to the current state, s and interacts
with the environment:

𝑎 = 𝜋& 𝑆 +𝓝
where𝓝 is the added noise
For the Critic master network, the loss function is,

∇𝐽 𝜔 = '
(
:

)*'

(

𝑦,̇ − 𝑄 𝜙 𝑠) , 𝑎) , 𝜔
-

(1)

Where 𝑦,̇ is target Q value , calculated as ,

𝑦,̇ = 𝑟,̇ + 𝛾𝑄. 𝜙 𝑠.) , 𝜋& 𝜙 𝑠.) , 𝜔′ (2)

NPTEL

3.Resource Allocation Based on Deep Deterministic Policy
Gradient

Deep Reinforcement Learning for Cloud-Edge

For the Actor master network, the loss function is:

∇𝐽(𝜃) = '
(
C

)*'

(
∇/𝑄 |𝑠0 , 𝑎0 , 𝜔 1*1!,/*3" 1 ∇/ |𝜋&(𝑠) 1*1! (3)

The parameters ω of the Actor target network and the parameters θ of the Critic
target network are updated using a soft update:

𝜔'⃪𝜏𝜔 + 1 − 𝜏 𝜔.
𝜃.⃪𝜏 + 1 − 𝜏 𝜃. (4)NPTEL

Resource Allocation Algorithms

Deep Reinforcement Learning for Cloud-Edge

3. Resource Allocation Based on Deep
Deterministic Policy Gradient

• DDPG structure is shown in figure

• Input of the algorithm contains information about the user requests
demands Dt and the unit cost of VMs in private cloud

• At beginning of each iteration, the edge node first obtains state st of
the collaborative cloud-edge environment

• It then pass the state as the input of the neural network into the main
Actor network to obtain the action at.

• After the edge node gets the action, the number of demands to be
processed by the edge node and the number of demands to be
processed by the private cloud will be calculated by the action value,
i.e., 𝑑!"and 𝑑!#, respectively.

• Then, interaction with the environment based on 𝑑!"and 𝑑!#, to get the
next state, reward, and termination flag.

• Storing this round of experience to the experience replay pool

• CERAI will sample from the experience replay pool and calculate the
loss functions of Actor and Critic to update the parameters of the
master and target networks.

• After one round of iterative, the training will be continued to the
maximum number of training rounds set to ensure the convergence of
the resource allocation policy.

NPTEL

CERAI(Cost efficient resource allocation with private cloud) Algorithm

Deep Reinforcement Learning for Cloud-Edge

1. Initialize Actor main network and target network parameters 𝜃, 𝜃; Critic main network and target
network parameters 𝜔,𝜔;, . soft update coefficient 𝜏. number of samples for batch gradient
descent m, maximum number of iterations M, random noise𝓝 and experience replay pool K

2. For i = 1 to M do
3. Receive user task information and obtain the status s of collaborative cloud-edge

computing environment;
4. Actor main network selects actions according to s: 𝑎 = 𝜋< 𝑆 +𝓝;
5. The edge node performs action a and obtains the next satus s', reward r and termination flag

𝑖𝑠𝑒𝑛𝑑
6. The edge node generates an allocation record ℎ$ according to the allocation operation. Add it

to the allocation record H;
7. Add the state transition tuple (𝑠, 𝑎, 𝑟, 𝑠;, 𝑖𝑠𝑒𝑛𝑑) in the experience replay pool K;
8. Update status: s = s’;
9. Sample m samples from experience replay pool P calculate the target Q value y according to the

eq 2;
10. Calculate the loss function according to (1) and update the parameters of the Critic main

network;
11. Calculate the loss function according to (3) and update the parameters of the Actor main network;
12. update the parameters of the Critic and Actor target network according to (4)
13. Update allocation record H and release computing resources for completed tasks;
14. If s’ is terminated, complete the current round of iteration, otherwise goto step 3;
15. end.

NPTEL

4. Resource Allocation Based on P-DQN

Deep Reinforcement Learning for Cloud-Edge

The basic idea of P-DQN is as follows.

• For each action a ∈ A in the parametric action space, because
of xe + xk = 1, we can only consider k and xk in the action value
function, that is Q (s, a) = Q (s, k, xk), where s ∈ S, k ∈ K is the
discrete action selected in the time slot t, and xk ∈ Xk is the
parameter value corresponding to k.

• Similar to DQN, deep neural network Q (s, k, xk; ω) is used in
P-DQN to estimate Q (s, k, xk), where ω is the neural network
parameter.

• For Q (s, k, xk; ω), P-DQN uses the determined policy network
xk(·; θ): S → X k to estimate the parameter value 𝒙𝒌

𝑸 (s), where θ
is used to represent the policy network. That means the goal of
P-DQN is to find the corresponding parameters θ, when ω is
fixed. It can be written as the following

𝑸 𝒔 𝒌, 𝒙𝒌 𝒔; 𝜽 ;𝝎 ≈ 𝑸 𝒔, 𝒌, 𝒙𝒌; 𝝎 (5)
• Similar to DQN, the value of ω can be obtained by minimizing

the mean square error by gradient descent.
• In particular, step t, ωt and θt are the parameters of value

network and deterministic policy network, respectively.
• yt can be written as :
𝒚 = 𝒓 +𝒎𝒂𝒙

𝒌∈ 𝒌
𝑸 𝒔; 𝒌, 𝒙𝒌 𝒔', 𝜽𝒕 ; 𝝎𝒕 (6)

where s′ is the next state after taking the mixed action a = (k, xk).

NPTEL

4. Resource Allocation Based on P-DQN

Deep Reinforcement Learning for Cloud-Edge

The loss function of value network can be written as the following:

𝒍𝑸 𝝎 = 𝟏
𝟐
𝑸 𝒔, 𝒌, 𝒙𝒌; 𝒘 − 𝒚 𝟐 (7)

loss function of a policy network can be written as

𝒍𝜽 𝜽 = −∑𝒌,
𝒌 𝝁 𝒔, 𝒌, 𝒙𝒌 𝒔; 𝜽 ;𝝎 (8)

• P-DQN structure is shown in Figure .
• Cost Efficient Resource Allocation with public cloud (CERAU) is a resource allocation algorithm based on P-

DQN,. The input of the algorithm contains information about the user requests demands Dt and the unit cost of
spot instance in public cloud in time slot t pt.

• At the beginning of each iteration of the algorithm, the edge node first needs to obtain the state st of the
collaborative cloud-edge environment

• Then pass the state as the input of the neural network into the strategy network to obtain the parameter values
of each discrete action.

• After the edge node gets the action, it will select the appropriate public cloud instance type based on the
discrete values in the action and determine the number of public cloud instances to be used based on the
parameter values.

• Then, interaction with the environment occurs, to get the next state, reward, and termination flag.
• Storing this round of experience to the experience replay pool, CERAU will sample from the experience replay

pool and calculate the gradient of the value network and the policy network.
• Then, it will update the parameters of the corresponding networks.
• After one round of iterative, to ensure the convergence of the resource allocation policy, the training will be

continued to the maximum number of training rounds set.

NPTEL

CERAU Algorithm

Deep Reinforcement Learning for Cloud-Edge

Algorithm: Cost efficient resource allocation with public cloud (CERAU)
1. Initialize exploration parameters 𝜖, soft update coeficient 𝜏) and 𝜏, , number of samples for batch

gradient descent m, maximum number of iterations M, random noise 𝓝 and experience replay
pool P;

2. for i = 1 to M do
3. Receive user task information and obtain the status s of collaborative cloud-cdge computing

environment;
4. Calculate the parameter value of each instance type in the cloud service; 𝑥=⃪𝑥=(𝑠!,𝜃!) + 𝓝 ;
5. Selects discrete actions according to 𝜖 −greedy strategy:

a= '
𝑟𝑎𝑛𝑑𝑜𝑚 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝑎𝑐𝑡𝑖𝑜𝑛, 𝑟𝑛𝑑 > 𝜖

𝑘, 𝑥= , 𝑘 = 𝑎𝑟𝑔𝑚𝑎𝑥=∈ @ 𝑄 𝑠, 𝑘, 𝑥=; 𝜔 , 𝑟𝑛𝑑 ≥ 𝜖
6. The edge node performs action and obtains the next status s’, reward r and termination flag isend;
7. The edge node generates an allocation record ℎ$ according to the allocation operation. Add it to

the allocation record list H;
8. Add the state transition tuple (𝑠, 𝑎, 𝑟, 𝑠′ 𝑖𝑠𝑒𝑛𝑑) in the experience replay pool D;
9. Sample m samples from experience replay pool P, calculate the target Q value y according to (6);
10. Update satus: s = s’;
11. Calculate gradient 𝛻A𝑙B 𝜔 and 𝛻<𝑙< 𝜃 according to (7) and (8);
12. Update network parameters: 𝜔′ ← 𝜔 − 𝜏) 𝛻A𝑙B 𝜔 ,𝜃′ ← 𝜃 − 𝜏, 𝛻<𝑙< 𝜃
13. Update allocation record H and release computing resources for completed tasks:
14. If s’ is terminated, complete the current round of iteration. otherwise go to step 3:
15. end

NPTEL

Thank You

NPTEL

Deep Reinforcement Learning for
Cloud-Edge: Example

Dr. Rajiv Misra
Professor
Dept. of Computer Science &Engg.
Indian InstituteofTechnologyPatna
rajivm@iitp.ac.in

Deep Reinforcement Learning for Cloud-Edge

NPTEL

mailto:rajivm@iitp.ac.in

Preface

Content of this Lecture:
• In this lecture, we will discuss how Collaborative cloud-edge

approaches can provide better performance and efficiency
than traditional cloud or edge approaches with the help of
some examples

Deep Reinforcement Learning for Cloud-Edge

NPTEL

Example

Deep Reinforcement Learning for Cloud-Edge

Consider the resource allocation problem where a client submits the following demands in
three consecutive time slots:

Time-Slot (𝑡) Demand 𝐷! = (𝑑!, 𝑙!)

1 (30, 2)

2 (10, 1)

3 (20, 2)

where (𝑑!) represents the number of VMs requested and (𝑙!) represents the duration of
service request. Assume that time slot (1) is the starting slot such that no VMs have been
allocated a priori. There are 80 VMs available at the edge node.NPTEL

Example

Deep Reinforcement Learning for Cloud-Edge

The action (𝑥)* ∈ [0, 1]) represents the ratio of VMs allocated from the private cloud to the total VMs
requested by client at time slot t. The remaining VMs (1 − 𝑥)*) are allocated from the edge node.

Calculate the cost of collaborative cloud side computing (𝐶)
+,-) in the given private cloud setting at each of

the three time slots. Also, find out the number of VMs that will be available at the edge node at the
beginning of fourth time slot

Time-Slot (𝑡) Policy Action (𝑥!")

1 0.4

2 0.7

3 0.8

(a) Resource allocation using private cloud: Suppose that we have our own private cloud and
a policy has been deployed to allocate VMs as per client demands which outputs the following
actions at each timeslot:

Constant Value

Stand-by cost of a VM at the edge node (𝑝#) 0.03

Computing cost of a VM at the edge node (𝑝$) 0.20

Computing cost of a private cloud (𝑝%) 3.00

Given Constants: NPTEL

Example

Deep Reinforcement Learning for Cloud-Edge

where (𝑘) ∈ {0=on_demand,1=reserved,2=spot}) represents the type of public cloud instance that was
allocated. Calculate the cost of collaborative cloud side computing (𝐶)

+01) in the given public cloud setting at
each of the three time slot. Assume that the same demands were made by client as in part (a) and that no
customization is performed on reserved instances.

Additional Constants:

Time-Slot (𝑡) Policy Action (𝑘!, 𝑥!")

1 (1,0.4)

2 (0,0.7)

3 (2,0.8)

(b) Resource allocation using public cloud: Assume that we have replaced the private cloud
with a public cloud setting with a new policy that outputs the following actions at each
timeslot:

Constant Value

Unit price of on-demand instance in public cloud (𝑝&') 3.0

Unit price of reserved instance in public cloud (𝑝(#) 1.5

Customization price of reserved instance (𝑝)*$(&+!) 800

Unit price of spot instance in public cloud (𝑝!) 1.0

NPTEL

Example : Solution

Deep Reinforcement Learning for Cloud-Edge

Let (𝑒!) represent the number of VMs available at the edge node after allocation at time slot (t).

Assume 𝑒" = 𝐸 = 80

At time slot (t = 1):

Demand: 𝐷" = (𝑑", 𝑙") = (30, 2)

Action: 𝑥"# = 0.4

No of VMs allocated from cloud: 𝑑"$ = 𝑥"# ∗ 𝑑" = 0.4 ∗ 30 = 12

No of VMs allocated from edge node: 𝑑"% = 𝑑" − 𝑑"$ = 30 − 12 = 18

No of VMs remaining at the edge node: 𝑒" = 𝑒" − 𝑑"% = 80 − 18 = 62

Resources can be successfully allocated from edge node; hence, allocation record will be generated:

Allocation record: ℎ" = 𝑑"% , 𝑙" = (18, 2)

Allocation Record List 𝐻: < ℎ" > ∶ < 18, 2 >

Updated Allocation Record List 𝐻: < ℎ" > ∶ < 18, 1 >

Number of VMs waiting to be released: 𝑛" = 0

Number of VMs available at next time slot: 𝑒& = 𝑒" + 𝑛" = 62 + 0 = 62

Cost at the edge node: 𝐶"% = 𝑒"𝑝% + 𝐸 − 𝑒" 𝑝' = 62 ∗ 0.03 + (80 − 62) ∗ 0.2 = 1.86 + 3.6 = 5.46

Cost at the private cloud: 𝐶"
()* = 𝑑"$𝑝$ + 𝐶"% = 12 ∗ 3.0 + 5.46 = 41.46

Cost at the public cloud: 𝐶"
(+, = 𝑑"$𝑝)% + 𝐶"% = 12 ∗ 1.5 + 5.46 = 23.46

NPTEL

Example : Solution

Deep Reinforcement Learning for Cloud-Edge

At time slot (t = 2):

Demand: 𝐷& = (𝑑&, 𝑙&) = (10, 1)

Action: 𝑥&# = 0.7

No of VMs allocated from cloud: 𝑑&$ = 𝑥&# ∗ 𝑑& = 0.7 ∗ 10 = 7

No of VMs allocated from edge node: 𝑑&% = 𝑑& − 𝑑&$ = 10 − 7 = 3

No of VMs remaining at the edge node: 𝑒& = 𝑒& − 𝑑&% = 62 − 3 = 59

Resources can be successfully allocated from edge node; hence, allocation record will be generated:

Allocation record: ℎ& = 𝑑&% , 𝑙& = (3, 1)

Allocation Record List 𝐻: < ℎ", ℎ&> ∶ < 18, 1 , (3, 1) >

Updated Allocation Record List 𝐻: < ℎ", ℎ&> ∶ < 18, 0 , (3, 0) >

Number of VMs waiting to be released: 𝑛& = 18 + 3 = 21

Number of VMs available at next time slot: 𝑒- = 𝑒& + 𝑛& = 59 + 21 = 80

Cost at the edge node: 𝐶&% = 𝑒&𝑝% + 𝐸 − 𝑒& 𝑝' = 59 ∗ 0.03 + (80 − 59) ∗ 0.2 = 1.77 + 4.2 = 5.97

Cost at the private cloud: 𝐶&
()* = 𝑑&$𝑝$ + 𝐶&% = 7 ∗ 3.0 + 5.97 = 26.97

Cost at the public cloud: 𝐶&
(+, = 𝑑&$𝑝./ + 𝐶&% = 7 ∗ 3.0 + 5.97 = 26.97

NPTEL

Example : Solution

Deep Reinforcement Learning for Cloud-Edge

At time slot (t = 3):

Demand: 𝐷- = (𝑑-, 𝑙-) = (20, 2)

Action: 𝑥-# = 0.8

No of VMs allocated from cloud: 𝑑-$ = 𝑥-# ∗ 𝑑- = 0.8 ∗ 20 = 16

No of VMs allocated from edge node: 𝑑-% = 𝑑- − 𝑑-$ = 20 − 16 = 4

No of VMs remaining at the edge node: 𝑒- = 𝑒- − 𝑑-% = 80 − 4 = 76

Resources can be successfully allocated from edge node; hence, allocation record will be generated:

Allocation record: ℎ& = 𝑑-% , 𝑙- = (4, 2)

Allocation Record List 𝐻: < ℎ- > ∶ < (4, 2) >

Updated Allocation Record List 𝐻: < ℎ- > ∶ < (4, 1) >

Number of VMs waiting to be released: 𝑛- = 0

Number of VMs available at next time slot: 𝑒0 = 𝑒- + 𝑛& = 76 + 0 = 76

Cost at the edge node: 𝐶-% = 𝑒-𝑝% + 𝐸 − 𝑒- 𝑝' = 76 ∗ 0.03 + (80 − 76) ∗ 0.2 = 2.28 + 0.8 = 3.08

Cost at the private cloud: 𝐶-
()* = 𝑑-$𝑝$ + 𝐶-% = 16 ∗ 3.0 + 3.08 = 51.08

Cost at the public cloud: 𝐶-
()* = 𝑑-$𝑝! + 𝐶-% = 16 ∗ 1.0 + 3.08 = 19.08

NPTEL

Thank You

NPTEL

Public Cloud Services: Case Study of AWS
Services

Dr. Rajiv Misra
Professor
Dept. of Computer Science &Engg.
Indian InstituteofTechnologyPatna
rajivm@iitp.ac.in

Public Cloud Services: AWS Services

NPTEL

mailto:rajivm@iitp.ac.in

Contents of lecture

In this lecture, we will cover a Public Cloud Services,
a case study of AWS services

NPTEL

Reference Model

Public Cloud Services: AWS Services

We will use a reference model to explain AWS services systematically as 5-layered model Model

NPTEL

Global Infrastructure

Public Cloud Services: AWS Services

Reference Model

NPTEL

Global Footprint

Public Cloud Services: AWS Services

Reference Model

NPTEL

AWS Global Datacenter

Public Cloud Services: AWS Services

Reference Model

NPTEL

Region

Public Cloud Services: AWS Services

NPTEL

AWS Region

Public Cloud Services: AWS Services

NPTEL

Availability Zone(AZ)

Public Cloud Services: AWS Services

NPTEL

Availability Zone(AZ): Example

Public Cloud Services: AWS Services

NPTEL

AWS Data Center: Example

Public Cloud Services: AWS Services

NPTEL

AWS Security

Public Cloud Services: AWS Services

NPTEL

Virtual Private Cloud(VPC)

Public Cloud Services: AWS Services

NPTEL

Networking

Public Cloud Services: AWS Services

NPTEL

Region and Availability Zones

Public Cloud Services: AWS Services

NPTEL

Why Availability Zones

Public Cloud Services: AWS Services

NPTEL

AWS Account, Users and Service scope

Public Cloud Services: AWS Services

NPTEL

AWS Compute and Analytics Services

Public Cloud Services: AWS Services

NPTEL

Compute Services

Public Cloud Services: AWS Services

NPTEL

Elastic Compute Cloud (EC2)

Public Cloud Services: AWS Services

NPTEL

Compute : Auto-scaling

Public Cloud Services: AWS Services

NPTEL

Compute : Elastic Load Balancing

Public Cloud Services: AWS Services

NPTEL

Storage

Public Cloud Services: AWS Services

NPTEL

Storage

Public Cloud Services: AWS Services

NPTEL

Storage

Public Cloud Services: AWS Services

NPTEL

Database

Public Cloud Services: AWS Services

NPTEL

Application Services

Public Cloud Services: AWS Services

NPTEL

What is Amazon SES ?

Public Cloud Services: AWS Services

NPTEL

Application Services

Public Cloud Services: AWS Services

NPTEL

Deployment and Administration

Public Cloud Services: AWS Services

NPTEL

AWS Storage and Database Services

Public Cloud Services: AWS Services

NPTEL

AWS Network and Management Services

Public Cloud Services: AWS Services

NPTEL

AWS Application and Development Services

Public Cloud Services: AWS Services

NPTEL

Development and Test Environments

Public Cloud Services: AWS Services

NPTEL

Big Data

Public Cloud Services: AWS Services

NPTEL

High Performance Computing (HPC)

Public Cloud Services: AWS Services

NPTEL

Storage, Backup, and Archival

Public Cloud Services: AWS Services

NPTEL

Disaster Recovery

Public Cloud Services: AWS Services

NPTEL

Web, Mobile, and Social Apps

Public Cloud Services: AWS Services

NPTEL

fb.com

Public Cloud Services: AWS Services

NPTEL

fb.com on AWS

Public Cloud Services: AWS Services

NPTEL

Thank You

NPTEL

Mathematical formulations for
task-offloading in Edge-Cloud

Dr. Rajiv Misra
Professor
Dept. of Computer Science &Engg.
Indian InstituteofTechnologyPatna
rajivm@iitp.ac.in

Mathematical formulations for task-offloading in Edge-Cloud Environment

NPTEL

mailto:rajivm@iitp.ac.in

Preface

Mathematical formulations for task-offloading in Edge-Cloud Environment

Reference ModelContent of this Lecture:

• An Edge-Cloud system architecture that includes the required components
to support scheduling offloading tasks of IoT applications.

• An Edge-Cloud latency models that show the impact of different tasks’
offloading scenarios/schemes for time-sensitive applications in terms of
end-to-end service times.

• Evaluation of the offloading latency models that consider computation and
communication as key parameters with respect to offloading to the local
edge node, other edge nodes or the cloud..NPTEL

Introduction

• Internet of Things (IoT) technology has quickly evolved in recent years, where
the number of devices that are connected to the internet (IoT) has increased
massively.

• More than 50 billion devices will be connected to the internet , which will
produce a new set of applications such as Autonomous Vehicles, Augmented
Reality (AR), online video games and Smart CCTV.

• Thus, Edge Computing has been proposed to deal with the huge change in the
area of the distributed system.

Mathematical formulations for task-offloading in Edge-Cloud Environment

NPTEL

Motivation

• For enhancing customer experience and accelerating job execution, IoT task offloading
enables mobile end devices to release heavy computation and storage to the resource-
rich nodes in collaborative Edges or Clouds.

• Nevertheless, resource management at the Edge-Cloud environment is challenging
because it deals with several complex factors (e.g., different characteristics of IoT
applications and heterogeneity of resources).

• Different service architecture and offloading strategies quantitatively impact the end-
to-end service time performance of IoT applications .

• Consequently, the latency depends on the scheduling policy of applications offloading
tasks as well as where the jobs will be placed in order to meet the requirements of
latency-sensitive applications.

Mathematical formulations for task-offloading in Edge-Cloud Environment

NPTEL

System Architecture

Mathematical formulations for task-offloading in Edge-Cloud Environment

Reference ModelRecently, the number of Internet of Things (IoT)
devices connected to the Internet has increased
dramatically as well as the data produced by these
devices.
This would require offloading IoT tasks to release
heavy computation and storage to the resource-rich
nodes such as Edge Computing and Cloud
Computing.
Different service architecture and offloading
strategies have a different impact on the service time
performance of IoT applications.
An Edge-Cloud system architecture that supports
scheduling offloading tasks of IoT applications in
order to minimize the enormous amount of
transmitting data in the network.
Also, it introduces the offloading latency models to
investigate the delay of different offloading
scenarios/schemes and explores the effect of
computational and communication demand on each
one.

NPTEL

System Architecture

Mathematical formulations for task-offloading in Edge-Cloud Environment

Reference Model• The Edge-Cloud system from bottom to
the top consists of three layers/tiers: IoT
devices (end-user devices), multiple
Edge Computing nodes and the Cloud
(service provider).

• The IoT level is composed of a group of
connected devices (e.g., smartphones,
self driving cars, smart CCTV);

• These devices have different
applications where each application has
several tasks

• Difference in the given architecture is the
introduced layer between the edge
nodes and the cloud. This layer
responsible for managing and assign
offloading tasks to the edge nodes.

NPTEL

System Architecture: Edge Controller

Mathematical formulations for task-offloading in Edge-Cloud Environment

Reference Model• Edge Controller (EC) is also called Edge Orchestrator,
which is a centralized component responsible for
planning, deploying and managing application services
in the Edge-Cloud system.

• EC communicates with other components in the
architecture to know the status of resources in the
system (e.g., available and used), the number of IoT
devices, their applications’ tasks and where IoT tasks
have been allocated (e.g., Edge or Cloud).

• EC consists of the following components: Application
Manager, Infrastructure Manager, Monitoring and
Planner.

• The location of the Edge Controller can be deployed in
any layer between Edge and Cloud.

• For example, EC act as an independent entity in the
edge layer that manages all the edge nodes in its
control. It is also responsible for scheduling the
offloading tasks in order to satisfy applications’ users
and Edge-Cloud System requirements. The EC is
synchronizing its data with the centralized Cloud
because if there is any failure, other edge nodes can
take EC responsibility from the cloud .

NPTEL

System Architecture: Application Manager

Mathematical formulations for task-offloading in Edge-Cloud Environment

Reference Model• The application manager:

It is responsible for managing
applications running in the Edge-Cloud
system. This includes requirements of
application tasks, such as the amount of
data to be transferred, the amount of
computational requirement (e.g., required
CPU) and the latency constraints.
Besides, the number of application users
for each edge node

NPTEL

System Architecture: Infrastructure Manager

Mathematical formulations for task-offloading in Edge-Cloud Environment

Reference Model
• The Infrastructure Manager :

The role of the infrastructure
manager is to be in charge of the physical
resources in the entire Edge-Cloud
system. For instance, processors,
networking and the connected IoT
devices for all edge nodes.

Edge-Cloud is a virtualized
environment; thus, this component
responsible for the VMs as well. In this
context, this component provides the EC
with the utilization level of the VMs.

NPTEL

System Architecture: Monitoring and Planner

Mathematical formulations for task-offloading in Edge-Cloud Environment

Reference Model• The Infrastructure Manager :

The main responsibility of this
component is to monitoring application tasks (e.g.,
computational delay and communication delay)
and computational resources (e.g., CPU utilization)
during the execution of applications’ tasks in the
Edge-Cloud system. Furthermore, detecting the
tasks’ failures due to network issues or the
shortage of computational resources.

Planner:

The main role of this component is to
propose the scheduling policy of the offloading
tasks in the Edge-Cloud system and the location
where they will be placed (e.g., local edge, other
edges or the cloud). This offloading tasks works on
this component and passes its results to EC for
execution.

NPTEL

Latency Sensitive Applications

Mathematical formulations for task-offloading in Edge-Cloud Environment

Reference Model

NPTEL

Latency Sensitive Applications

Mathematical formulations for task-offloading in Edge-Cloud Environment

Reference Model• Latency-sensitive applications have high sensitivity to any delays accrue
in communication or computation during the interaction with the Edge-
Cloud system.

• For instance, the IoT device sends data to the point that processing is
complete at the edge node or the cloud in the back end of the network,
and the subsequent communications are produced by the network in
response to receive the results.

• For example, self-driving cars consist of several services, classified these
services in categories based on their latency-sensitivity, quality
constraints and workload profile (required communication and
computation).

• First, critical applications, which must be processed in the car’s
computational resources, for instance, autonomous driving and road
safety applications.

• Second, high-priority applications, which can be offloaded but with
minimum latency, such as image aided navigation, parking navigation
system and traffic control.

• Third, low-priority applications, which can be offloaded and not vital as
high-priority applications (e.g., infotainment, multimedia, and speech
processing).

NPTEL

Latency Sensitive Applications

Mathematical formulations for task-offloading in Edge-Cloud Environment

Reference Model

NPTEL

Latency Models

Mathematical formulations for task-offloading in Edge-Cloud Environment

Reference Model• Modelling the various offloading decisions for IoT tasks that can increase the Quality of Service (QoS).
• With the increasing number of IoT devices, the amount of produced data, the need for an autonomous

system that requires a real-time interaction as well as the lake of support from the central Cloud due to
network issues; service time has been considered as one of the most important factors to be handled
in Edge Computing.

• One of the main characteristics of Edge Computing is to reduce the latency level.
• Additionally, using Edge Computing will enhance application performance in terms of overall service

time comparing to the traditional Cloud system.
• However, different offloading decisions within the Edge-Cloud system can lead to various service time

due to the computational resources and communications types. The current real-world applications
measure the latency between the telecommunication service provider and the cloud services.

• Compare the latency between offloading to the edge or the cloud, latency between multiple edge
nodes that work collectively to process the offloading tasks. investigating the latency of the Edge-Cloud
system is an essential step towards developing an effective scheduling policy.

• Firstly, task allocation in the Edge-Cloud system is not only two choices (e.g., either at IoT device or in
the cloud), but could be on any edge nodes. Moreover, edge nodes connected in a loosely coupled
way on heterogeneous wireless networks (i.e., WLAN, MAN and WAN), making the process of
resource management and the offloading decision more sophisticated.

• Secondly, given that task processing is allocated among multiple edge nodes working collectively and
the cloud, it is challenging to make an optimal offloading decision. The latency models to investigate
the delay of different offloading scenarios/schemes.

NPTEL

Latency Models: Latency to Local Edge

Mathematical formulations for task-offloading in Edge-Cloud Environment

Reference ModelThis is known as a one-level offloading
system, which is basically offloading to
“Cloudlet” or “Local Edge”.
It aims to provide a micro-data center that
supports IoT devices within a specific area
such as a coffee shop, mall center and
airport .
Thus, IoT devices can offload their tasks
to be processed on the edge or cloud, as
an example.
This offloading scenario/scheme provides
ultra-low latency due to the avoidance of
network backhaul delays. The end-to-end
service time composed of two delays,
network delay and computational delay.
The network delay consists of the time of
sending the data to the edge and the time
to receive the output from the edge to the
IoT device.
The computation time is the time from
arriving the task to the edge node until the
processing has completed. Therefore, the
end-to-end service time latency is the sum
of communication delay and computational
delay, which can be calculated as follows:
• 𝑳𝑳𝒐𝒄𝒂𝒍_𝒆𝒈𝒅𝒆 = 𝒕𝒕𝒆_𝒖𝒑 + 𝒕𝒄𝒆 + 𝒕𝒕𝒆_𝒅𝒐𝒘𝒏

To clarify, IoT devices send their offloading
tasks through the wireless network, and
then the tasks will be processed by the
edge node and finally send the results to
IoT devices,

NPTEL

Latency Models: Latency to Local Edge with Cloud

Mathematical formulations for task-offloading in Edge-Cloud Environment

Reference ModelIn this offloading scenario/scheme, rather than
relying on only one Edge node, the IoT tasks can be
processed collaboratively between the connected
Edge node and the cloud servers.
This will combine the benefits of both Cloud and
Edge Computing, where the cloud has a massive
amount of computation resources, and the edge has
lower communication time.
In this scenario/scheme, the edge can do part of the
processing such as pre-processing, and the rest of
the tasks will be processed in the cloud.
IoT sends the computation tasks to the connected
edge and then part of these tasks forwarded to the
cloud.
Once the cloud finishes the computation, it will send
the result to the edge, and the edge will send it to the
IoT devices.
This scenario/scheme consists of communication
time (e.g., the time between the IoT device to the
edge node and the time between edge nodes to the
cloud) and computation time (e.g., processing time in
the edge and processing time in the cloud). Thus, the
end-to-end service time can be calculated as follows:
𝑳𝑳_𝑪 = 𝒕𝒕𝒆_𝒖𝒑 + 𝒕𝒄𝒆 + 𝒕𝒕𝒄_𝒖𝒑 + 𝒕𝒄𝒄 + 𝒕𝒕𝒄_𝒅𝒐𝒘𝒏 + 𝒕𝒕𝒆_𝒅𝒐𝒘𝒏

NPTEL

Latency Models: Latency to Multiple Edge Nodes with Cloud

Mathematical formulations for task-offloading in Edge-Cloud Environment

IoT sends the computation tasks to the connected edge
and then part of these tasks transferred to other
available resources in the edge level through the edge
controller and the rest to the cloud.

NPTEL

Latency Models: Latency to Multiple Edge Nodes with Cloud

Mathematical formulations for task-offloading in Edge-Cloud Environment

• This is known as a three-level offloading scenario/scheme that aims to utilize more resources at
the edge layer and support the IoT devices in order to reduce the overall service time.

• It adds another level by considering other available computation resources in the edge layer.
• Basically, it distributes IoT tasks over three levels: connected edge, other available edge nodes

and the cloud.
• The edge controller (edge orchestrator) controllers all edge servers by Wireless Local Area

Network (WLAN) or Metropolitan Area Network (MAN), which have low latency compared to Wild
Area Network (WAN).

• This will help to decrease the dependency of cloud processing as well as increase the utilization of
computing resources at the edge.

• This scenario/scheme consists of communication time (e.g., the time between the IoT device to the
edge node, the time between edge node to other collaborative edge node and the time between
edge nodes to the cloud) and computation time (e.g., processing time in the edge, processing time
in other collaborative edge node and processing time in the cloud). Thus, the end-to-end service
time can be calculated as follows:

• 𝐿01233_455 = 𝑡03_67 + 𝑡83 + 𝑡834 + 𝑡08_67 + 𝑡88 + 𝑡08_94:; + 𝑡034_94:; + 𝑡03_94:;
NPTEL

Experiment

Mathematical formulations for task-offloading in Edge-Cloud Environment

Assumptions:
• We have three edge nodes connected to the cloud.
• Each edge node has two servers, and each of them has four VMs with a similar configuration.
• The cloud contains an unlimited number of computational resources

Key parameters of the simulation environment :

Key parameters: Values
Simulation Time :30 min
Warm-up Period :3 min
Number of Iterations: 5
Number of IoT Devices: 100–1000
Number of Edge Nodes :3
Number of VM per Edge Server: 8
Number of VM in the Cloud :not limited
Average Data Size for Upload/Download (KB) :500/500NPTEL

Mathematical formulations for task-offloading in Edge-Cloud Environment

Results

NPTEL

Mathematical formulations for task-offloading in Edge-Cloud Environment

Summary

• We presents an Edge-Cloud system architecture that enables the offloading of
tasks for IoT applications.

• The architecture includes several components that interact with each other to
support task offloading, such as IoT devices, edge nodes, and cloud servers.

• Offloading latency models were explained that consider computation and
communication as key parameters for offloading tasks to different destinations,
including local edge nodes, other edge nodes, and the cloud.

•The experiments conducted on EdgeCloudSim to evaluate the latency models
for three different offloading scenarios .
. NPTEL

Thank You

NPTEL

Task Offloading Based on LSTM
Prediction and Deep Reinforcement

Learning

Dr. Rajiv Misra
Professor
Dept. of Computer Science &Engg.
Indian InstituteofTechnologyPatna
rajivm@iitp.ac.in

Task Offloading Based on LSTM Prediction and Deep Reinforcement Learning

mailto:rajivm@iitp.ac.in

Preface

Task Offloading Based on LSTM Prediction and Deep Reinforcement Learning

Reference ModelContent of this Lecture:

• A joint decision-making problem for cost minimization in IoT edge computing is
modeled, taking into account processing latency, energy consumption, and task
throw rate.

• The Online Predictive Offloading (OPO) algorithm is proposed based on Deep
Reinforcement Learning and Long Short-Term Memory.

• The algorithm predicts the edge server's load in real-time and allocates
resources in advance, improving the convergence accuracy and speed of the
offloading process.

Introduction

Task Offloading Based on LSTM Prediction and Deep Reinforcement Learning

Reference Model
• Modeling the problem of computing offloading in a multi-edge, multi-device

computing scenario as a nonlinear optimization problem.

• Moreover, the goal of task offloading is minimizing long-term costs in terms
of latency and energy consumption.

• By predicting the characteristics of tasks and edge server loads, tasks are
dynamically offloaded to the optimal edge server

• . In the decision model, the prediction is combined with task decision to
dynamically allocate resources for different tasks to further reduce latency
and improve service quality.

Motivation

Task Offloading Based on LSTM Prediction and Deep Reinforcement Learning

Reference Model•Task offloading can result in additional transmission delays and energy consumption.

•Task offloading problem is modelled as a joint decision-making problem for cost
minimization, considering processing latency, energy consumption, and task throw rate.

•The Online Predictive Offloading (OPO) algorithm based on Deep Reinforcement
Learning (DRL) and Long Short-Term Memory (LSTM) networks is used to solve the task
offloading problem.

•In the training phase, the OPO algorithm predicts the load of the edge server in real-time
with the LSTM algorithm, improving the convergence accuracy and speed of the DRL
algorithm in the offloading process.

•In the testing phase, the LSTM network predicts the characteristics of the next task, and
the DRL decision model allocates computational resources for the task in advance,
reducing the response delay and improving offloading performance.

System Model

Task Offloading Based on LSTM Prediction and Deep Reinforcement Learning

Reference Model• The model is built on a multi-terminal,
multi-edge network scenario

• Here the set of terminal layer devices are
denoted by 𝓜 = {1, 2, . . . , M}.

• On each MD (Mobile device), there exists
a task queue and a computation queue

• the task queue stores the tasks to be
decided for offloading

• the computation queue processes the
tasks that are executed locally.

• the set of edge layer servers are denoted
by 𝓝 = {1, 2, . . . , N}.

• Multiple computation queues are included
in each edge server for parallel
computation of transmission queue offload
tasks.

• Figure shows an illustration of EC system
with a mobile device and an edge node.

Task Model

Task Offloading Based on LSTM Prediction and Deep Reinforcement Learning

Reference Model• For any MD, the tasks generated in different time slots are identified by
𝓣 = {1, 2, . . . , 𝑇}.

• Each arriving task is first stored in corresponding MD task cache queue, and then
the decision model gives where the task will be offloaded to be executed.

• For t ∈ 𝓣, new task generated by the terminal device m ∈𝓜is denoted as

𝜆! 𝑡 = (𝐷!" , 𝜌!" , 𝜏!,!$%").

Where ,
𝐷!" : size of the task data
𝜌!" : computational resources required per bit
𝜏!,!$%" : maximum tolerated delay of the task

Decision Model

Task Offloading Based on LSTM Prediction and Deep Reinforcement Learning

Reference Model• When the terminal device m has a new task 𝜆!(𝑡) in time slot t the decision
model has to give the offloading scheme.

• 𝑥!" ∈ 0, 1 , indicates whether the current task is offloaded
• 𝑥!" = 0 indicates that the task is executed on the MD,
• 𝑥!" = 1 indicates that the task will be offloaded to an edge server for execution

• 𝑦!,&" ∈ {0, 1} represents the edge server to which the task is offloaded for
execution

• 𝑦!,&" = 1, the task is offloaded to the edge server n ∈ 𝓝 for execution
• The tasks in this model are atomic level tasks
• Each offloaded task can be executed in only one edge server, and the tasks

offloaded to the edge server for execution are constrained by

∑𝑛 ∈ 𝓝𝑦!,&" = 1,𝑚 ∈ 𝓜, 𝑡 ∈ 𝓣, 𝑥!" = 1

Computation model: Terminal Layer Computing Model

Task Offloading Based on LSTM Prediction and Deep Reinforcement Learning

Reference Model• The task generated by the t time slot must wait until the computation queue is free
to execute the computation.Then waiting delay is:

• 𝜏!,'$("" = max
"!){+,,,…,".,}

𝑙!
01!2 𝑡3 − 𝑡 + 1

4
(1)

Where,
𝑙!
01!2 𝑡 : completion time slot of the task

processing delay in the computational queue is
• 𝜏!,5%5" = 6"# 7"#

8"$%&'(%
(2)

Where,
𝑓!95:(05: processing capacity (bits/s) of the MD

By 1 and 2,
𝑙!
01!2 𝑡 = min{t + 𝜏!,'$("" , 𝜏!,,5%5" , 𝜏!,!$%" }

energy consumption 𝐸!95:(05 required for the task to be executed locally
𝐸!95:(05= 𝑃!5%5 𝜏!,5%5" + 𝑃!'$(" 𝜏!,'$(""

Computation model: Edge Layer Computing Model

Task Offloading Based on LSTM Prediction and Deep Reinforcement Learning

the processing latency of the task at the edge layer

𝜏!,#$#% = &!" '!"

(!#$%&'$

completion time for edge layer tasks
𝑙!,&
01!2 𝑡 = min{t + 𝜏!,'$("" +𝜏!,,&";$& +𝜏!,&,5%5!

" , t + 𝜏!,!$%" }
Total delay of task on edge server n,

𝜏!,)*+% = min{𝜏!,,-.%% , 𝜏!,,)%/-) , 𝜏!,&,5%53" , 𝜏!,!-$% }

Where ,
𝜏!,,-.%% :waiting delay in the local model
𝜏!,,)%/-):transmission delay
𝜏!,'$("" +𝜏!,,&";$& +𝜏!,&,5%5!

" : time slot required for a task to be offloaded from the endpoint to the edge
server and executed to completion
𝜏!,!-$% :maximum tolerated delay

energy consumption incurred when tasks are offloaded to the edge server
𝐸!,&
59<5= 𝑃!'$(" 𝜏!,'$("" + 𝑃!,&";$& 𝜏!,&";$& + 𝑃!,&5%5 𝜏!,&,5%5"

Where, 𝑃!'$(" 𝜏!,'$("" ,𝑃!,&";$& 𝜏!,&";$&, 𝑃!,&5%5 𝜏!,&,5%5" denote waiting energy consumption,
transmission consumption, and edge node computation consumption of the task,
respectively.

Goal

Task Offloading Based on LSTM Prediction and Deep Reinforcement Learning

Reference Model
• The overall model of the system is a trade-off between the time delay and energy

consumption of the task computation to create a minimization cost problem

• The solution goal is to minimize the total cost of the tasks generated in the system
over time.

Prediction Model: Task Prediction Model

Task Offloading Based on LSTM Prediction and Deep Reinforcement Learning

Reference Model• A decision process is required after task generation,
and there will be a certain time delay from task
generation to give a decision.

• Although task generation is a dynamic and random
process, considering the long-term nature of the
task, it will have a strong correlation with time.

• Therefore, based on the history of user devices, we
can predict the tasks that will be generated in the
next network time slot

• As shown in Figure, we can predict the information
of the future task by the prediction model, and
determine the decision and allocate computing
resources for the task.

• If the error between the real task and the predicted
task is within the allowed threshold, the task is
directly offloaded and computed according to the
assigned decision information.

• Otherwise, the offloading decision is given using
the decision model and the information of the new
task is added to the historical data as training
samples.

• By training the LSTM network, the weights and
biases of each gate in the network are updated to
improve the accuracy of the prediction model.

Prediction Model: Load Prediction Model

Task Offloading Based on LSTM Prediction and Deep Reinforcement Learning

Reference Model•Historical load sequence data is logged and
used to train an LSTM load prediction model.
•The predicted idle server (𝐻") is obtained
from the trained model using historical load
sequence data as input.
•The predicted idle server is used as the
offload computing node when training the
DRL.
•The DRL training process involves selecting
actions with a certain probability (ε).
•When a random action is selected, the size
comparison between a random value σ and
the probability ε is used to determine
whether it is a Random Action or a Prediction
Action.
•Using Prediction Action with the pre-
selected idle server can reduce the number
of explorations by the agent and improve
convergence speed of the algorithm.

Model Training

Task Offloading Based on LSTM Prediction and Deep Reinforcement Learning

Reference Model•The goal of DRL is to maximize the total reward by making optimal actions.
•DRL typically uses ε-greedy strategies for exploration and exploitation.
•Exploration involves random selection of any action with probability in expectation of a higher reward,
while exploitation selects the action with the largest action estimate.
•The stochastic strategy fully explores the environment state, but requires extensive exploration and low
data utilization.
•In the model, action selection is the offloading decision of the task, with the action space known whether
to execute locally or offload to an edge server.
•During stochastic exploration, LSTM is used to predict the load of the edge server and give an optimal
action.
•The optimal server at the next time slot is predicted based on historical load situation to obtain a higher
reward and avoid edge server load imbalance.

Offloading Decision

Task Offloading Based on LSTM Prediction and Deep Reinforcement Learning

Reference Model•Each MD generates different types of tasks at different time slots.
•There is a system response delay to the task's decision request and a waiting delay in the queue between
the generation of a task and giving a decision.
•The edge system processes data from MD and stores processed records.
•Based on historical records, feature information of the next arriving task can be predicted by LSTM.
•The predicted information is given to the reinforcement learning decision model to make an offloading
scheme for the predicted task.
•When the real task arrives, the offloading decision is given directly if the error between the real task and
predicted task is within the allowed range.
•If the error is not within the allowed range, the decision is made according to the real task using the
decision model.
•Predicting the task's information can reduce the task's response and waiting delay in the system.

Algorithm Design: DQN(Deep Q Network)

Task Offloading Based on LSTM Prediction and Deep Reinforcement Learning

Reference Model• A typical DQN model is composed of agent, state, action, and reward
• the policy is generated as a mapping π : S → A of states to actions to obtain a

reward 𝑅, 𝑟" 𝑠" , 𝑎" , denotes the reward that can be obtained by choosing
action 𝑎" in state 𝑠"

• 𝑅+
= = ∑("?+)A 𝛾"𝑟" 𝑠" , 𝑎" , is the long-term reward

• when the state space and action space dimensions are large, it is difficult to put all
state-action pairs into Q-table.

• To solve this problem, the DQN model in DRL combines deep neural networks and
Q-learning algorithms, and it transforms the Q-table tables into the Q-networks and
uses neural networks to fit the optimal Q-functions.

• There are two neural networks with the same structure but different parameters in
DQN, i.e., the target network and the main network.

• When iteratively updating the network, the algorithm first uses the target network to
generate the target Q-value as the label f(t), and uses the loss function Loss(θ) to
update the parameters of the main network.

• After the introduction of the target network, the target Q value generated by the
target network remains constant in time j, which can reduce the correlation between
the current Q value and the target Q value and improve the stability of the
algorithm.

Algorithm Design: Replay Memory

Task Offloading Based on LSTM Prediction and Deep Reinforcement Learning

• In order to break the correlation within the data, DQN uses the experience replay
method to solve this problem.

• After interacting with the environment, the agent is stored in the replay buffer in the
form of (𝑠" , 𝑎", 𝑟" , 𝑠"4,).

• When executing valuation updates, the agent randomly selects a small set of
experience tuples (𝑠" , 𝑎", 𝑟" , 𝑠"4,) from the replay buffer at each time step

• Then the algorithm updates the network parameters by optimizing the loss function

• Using experience replay can not only make training more efficient, but also reduce
the problem overfitting that generated by the training process

Algorithm Design: Double DQN

Task Offloading Based on LSTM Prediction and Deep Reinforcement Learning

• Double DQN is proposed to solve the overestimation problem.
• DQN takes the maximum value with max each time, and the difference between

this maximum value and the weighted average value introduces an error,
• this will lead to overestimation after a long time accumulation.
• The Double DQN is composed of two networks, QA and QB ,
• it utilizes these two networks to proceed the state valuation and the action output

alternatively.
• That is, one network is used to select out the action, and the other network is used

to update the Q value according to the selected action.
• The Double DQN makes the learning process more stable and reliable by

separating the two steps of selecting the action corresponding to the Q value and
evaluating the Q value corresponding to the action,

• this eliminates the overestimation brought by the greedy algorithm and obtains a
more accurate Q estimation.

• Instead of finding the label value of parameter update directly from the target
network, Double DQN finds the action corresponding to the maximum Q value in
QA and then uses this selected action to compute the target value of parameter
update in QB .

Algorithm Design: Dueling DQN

Task Offloading Based on LSTM Prediction and Deep Reinforcement Learning

• Compared with DQN, Dueling DQN considers the Q network into two parts

the first part is only related to the state S, and the specific action A to be
adopted has nothing to do with this part is called the value function part, noted as
𝑉B (s),

second part is related to both the state S and action A, this part is called the
action advantage function, noted as 𝐴B (s, a), the final value function can be
expressed as

𝑄B s, a = 𝐴B 𝑠, 𝑎 + 𝑉B (s)

Algorithm Design: Decision Model Elements

Task Offloading Based on LSTM Prediction and Deep Reinforcement Learning

• Agent:
1.Each MD is considered as an agent that selects the next action according to the
current state of the environment and improves the ability of the agent to make
decisions by continuously interacting with the environment.
2.The goal of the agent is to make the optimal action in any state, thus minimizing the
total cost in the edge computing system.

• State:
1.At the beginning of each time slot, each agent observes the state of the environment
2.It includes the properties of the MD task, the waiting queue state, the transmission
queue state, bandwidth information, and the real-time load of the edge nodes, all the
states are closely related to the action to be selected by the agent.

• Action:
1. Based on the current state, the agent first decides whether the newly generated

task needs to be offloaded for computation.
2. if it needs to be offloaded, it chooses which server to offload
3. It also chooses the appropriate transmission power when offloading the

transmission

Algorithm Design: Decision Model Elements

Task Offloading Based on LSTM Prediction and Deep Reinforcement Learning

• Reward:
1. After observing the state at time slot t, the agent takes an action according to

the policy and then receives a reward at time slot t + 1 while updating the
scheduling policy network to make an optimal decision in the next time slot.

2. The goal of each agent is to maximize its long-term discounted reward by
optimizing the mapping from states to actions so that the agent tends to make
optimal decisions in its continuous interaction with the environment.

3. The reward function is shown below,

𝔼 Q
"?+

A

𝛾"𝑟"(𝑠" , 𝑎")

Algorithm: Online Predictive Offloading Algorithm

Task Offloading Based on LSTM Prediction and Deep Reinforcement Learning

1:Input: input different tasks in each time slots
2: Output: Optimal offloading decision and total cost
3: Initialize 𝑄C, 𝑄D and s
4: Initialize replay memory D to capacity N;
5: for episode = 1, M do
6: Initialize sequence s, and preprocessed sequence
7: for t = 1, T do
8: With probability 1 − ε select a random action or LSTM predict action
9: Generate another random number σ
10: if σ > ε then
11: 𝑎" = Random Action Selection(𝑠")
12: end if
13: if σ < ε then
14: 𝑎" = Prediction Action Selection(𝑠")
15: end if
16: Otherwise select a by 𝑎∗ = 𝑎𝑟𝑔𝑚𝑎𝑥$𝑄C(s,a) or 𝑏∗ = 𝑎𝑟𝑔𝑚𝑎𝑥$𝑄C(s,a)
17: Execute action 𝑎" and receive 𝑟" and 𝑠"4,
18: Store (𝑠" , 𝑎" , 𝑟" , 𝑠"4,) into D

Algorithm: Online Predictive Offloading Algorithm

Task Offloading Based on LSTM Prediction and Deep Reinforcement Learning

19: Randomly sample a mini-batch of experience from D
20: Preform a gradient descent step on Loss(θ) with respect to the
network parameters
21: Choose a, based on 𝑄C(s, •) and 𝑄D (s, •), observe r,s’
22: if UPDATE(A) then
23: 𝑄C((s, a) ← 𝑄C((s, a) + ρ[r + γ 𝑚𝑎𝑥$3 𝑄D (s’ , a∗) − 𝑄C (s, a)
24: else if UPDATE(B) then
25: 𝑄D(s, a) ← 𝑄D(s, a) + ρ[r + γ𝑚𝑎𝑥$3 𝑄C (s’ , b∗) − 𝑄D (s, a)
26: end if
27: end for
28: end for
29: Repeat

Experiment

Task Offloading Based on LSTM Prediction and Deep Reinforcement Learning

Assume,
• We use a dataset from Google Cluster, which includes information about the arrival

time, data size, processing time, and deadline of the tasks.
• Each type of task processing density, task processing time and the size of data

volume are related
• preprocess the raw data according to the characteristics of the data and make the

data size compatible with the established model by normalization and
denormalization

• Considering following Simulation parameters.

Experiment: Task Prediction

Task Offloading Based on LSTM Prediction and Deep Reinforcement Learning

• A T times history window is used to predict the task at T + 1 times.
• Set the history window to 50
• Set different thresholds for the optimization target |𝐷" − 𝐷"~ |.
• The experimental results are shown in Figure .
Observations:
• When the threshold value is set small, the LSTM prediction model describes the

historical data volume with higher accuracy and can fully explore the changing
pattern of the data volume

• However, it will introduce a larger prediction overhead, such as will increase the
training time of the LSTM model.

Effect of threshold size on LSTM prediction task features. (a)
Threshold size = 0.5 M; (b) Threshold size = 0.1 M.

Experiment: Training Process of LSTM & DRL

Task Offloading Based on LSTM Prediction and Deep Reinforcement Learning

• When performing training on the DRL offload decision model, it takes a longer time
to explore and select the better result due to the initial random selection action of
the agent.

• We predict the server load based on the edge server record history data
• Based on the prediction results, the server predicted to be non-idle is selected with

a certain probability as the offload choice for the next moment
• This solution allows the agent to effectively avoid selecting servers with high loads,

thus reducing task processing latency and task dropping rates.
• We use LSTM for load prediction and compare the impact of decisions with load

prediction (LSTM & DRL) and without load prediction (DRL) on offloading
performance.

• As result, DRL is significantly slower than the LSTM & DRL for load prediction in the
early stages of training decision making

• after certain training, the average delay, energy consumption, and the number of
task throw volumes is reduced rapidly by using LSTM for load prediction

Experiment: Results

Task Offloading Based on LSTM Prediction and Deep Reinforcement Learning

Impact of the Tasks Number
• We use different time slots to verify the impact of the number of tasks on the

system cost, average task delay, and task discard rate.
• Set the time slots in the dataset to T = 100, 200, 500, 1000, and compare the

performance of DQN, double DQN, dueling DQN, and OPO under different time
slots

• As the running time of the system increases (i.e., the number of tasks increases),
OPO reduces at least 6.25% of the average latency, 25.6% of the offloading cost,
and 31.7% of the task drop rate compared to other algorithms in terms of cost,
average latency, and task dropped rate.

Impact of the Learning Rate
• We study the convergence of the algorithm at different learning rates (denoted as lr)
• when lr = 0.001, the algorithm is able to achieve a relatively fast convergence rate

and a small convergence cost
• As the learning rate decreases (i.e., below 0.0001), the convergence is slower and

takes longer to reach a better value.
• When the learning rate is larger, the convergence cost increases and may even be

higher than that of the stochastic strategy.

LSTM Prediction: Numerical

Task Offloading Based on LSTM Prediction and Deep Reinforcement Learning

Suppose you are managing a data center that provides cloud computing services to
customers. You want to use an LSTM model to forecast the hourly CPU utilization of the
data center for the next 24 hours in order to optimize resource allocation and minimize
energy consumption.
You have a dataset with hourly CPU utilization data for the past year, which contains 8,760
data points. You decide to use the first 7,000 data points for training and the remaining
1,760 data points for validation. You set the batch size to 64 and the number of epochs to
50.
Assuming the model takes 5 seconds to process one batch of data on a GPU, how long will it
take to train the model?
Note: This question assumes that the data has already been preprocessed and formatted for
input into the LSTM model.

LSTM Prediction: Numerical

Task Offloading Based on LSTM Prediction and Deep Reinforcement Learning

Solution:

The time it will take to train the model can be calculated as follows:
• Batch size = 64
• Number of training data points = 7,000
• Number of epochs = 50
• Number of iterations per epoch = Number of training data points / Batch size = 7,000 / 64

= 109.375 = ~109 (rounded down to nearest integer)
Total number of iterations = Number of epochs x Number of iterations per epoch = 50 x 109

= 5,450
Time taken to process one batch of data on a GPU = 5 seconds

Total time taken to train the model = Time taken per iteration x Total number of iterations =
(5 seconds x Batch size) x Total number of iterations

= (5 seconds x 64) x 5,450 = 1,760,000 seconds = ~20.4 days (rounded to 1 decimal
place)

Therefore, it will take approximately 20.4 days to train the LSTM model using the given
dataset, batch size, and number of epochs.

Summary

Task Offloading Based on LSTM Prediction and Deep Reinforcement Learning

• The lecture considers the computational offloading problem in edge computing.
• The optimization objective is to minimize long-term cost by jointly optimizing task latency,

energy consumption, and discard rate.
• The model combines the prediction method of LSTM networks and the decision method

of DQN.
• An OPO algorithm based on deep reinforcement learning is proposed, combining the

advantages of Double DQN and Dueling DQN.
• The training speed and accuracy of the DRL model are improved using LSTM's prediction

capability.
• The proposed algorithm reduces the offloading decision delay of tasks in the actual

inference process.
• Future research will migrate the method to experimental testing and combine the latest

algorithms and techniques to improve its performance in real IoT application scenarios.

Thank You

Vertical and Horizontal Offloading for
Cloud-Edge

Dr. Rajiv Misra
Professor
Dept. of Computer Science &Engg.
Indian InstituteofTechnologyPatna
rajivm@iitp.ac.in

Workload Optimization for Cloud-Edge

NPTEL

mailto:rajivm@iitp.ac.in

Preface

Content of this Lecture:

• In this lecture, we will discuss a generic architecture of
cloud-edge computing with the aim of providing both
vertical and horizontal offloading between service nodes.

• An approximation algorithm which applies a branch-and-
bound method to obtain optimal solutions iteratively.

Workload Optimization for Cloud-Edge

NPTEL

Cloud-Edge Computing Environment
Introduction:

• Edge computing is a paradigm that enables virtualized computational and
communication resources to be deployed near the source of service workloads
instead of relying on massive data centers.

• This allows for a reduction in end-to-end delay for accessing these resources, and
makes it more suitable for real-time or delay-sensitive services.

• Additionally, edge computing enables virtualized resources to be geographically
distributed which can address the requirements of mobility and geo-distribution of
mobile and IoT services.

Workload Optimization for Cloud-Edge

Cloud- Edge Computing:
• Cloud-edge computing can efficiently accommodate different types of services,

with end devices and network edges suitable for real-time and delay-sensitive
services and central offices and data centers able to handle services which require a
large amount of computing capacity.

• Integration of cloud and edge computing is proposed to take advantage of the
benefits both technologies offer.

NPTEL

Cloud-Edge Computing Environment

Example:

• A smart home system that utilizes edge computing could provide a more secure,
efficient, and cost-effective solution for controlling and monitoring devices such as
lights, thermostats, cameras, and door locks.

• The system would have a gateway device, such as a router, that would provide a
local connection for each device.

• The gateway would run a virtualized instance of a cloud application, allowing for
local processing of data and commands.

• This would reduce the latency for any commands sent to the devices, providing a
more responsive system.

• Additionally, all data would be stored on the local gateway, providing a more secure
solution than if the data were stored in a cloud.

Workload Optimization for Cloud-Edge

NPTEL

Cloud-Edge Computing Environment

• The concept of cloud-edge computing is an effective way to manage and guarantee
the quality of services while efficiently managing capital and operating expenses.
Research has been conducted to address the requirements of cloud-edge computing
in order to meet the increasing demand for service workloads.

• Cloud-edge computing should consider both vertical and horizontal offloading
between service nodes.

Workload Optimization for Cloud-Edge

Vertical Offloading :
• Vertical offloading refers to the process of transferring tasks or services from cloud or

datacenters to edge nodes in order to reduce latency or increase efficiency. It is also
known as cloud-edge computing and is used to reduce the burden on the cloud.

Horizontal Offloading :
• Horizontal offloading, on the other hand, is the process of transferring tasks or services

between edge nodes in order to reduce latency or increase efficiency. It is used to
improve the capacity of edge nodes and can also be used to reduce the load on the
cloud.

NPTEL

Architecture of Collaborative Cloud-Edge Computing

Workload Optimization for Cloud-Edge

The novel aspect of the design
is that it deploys virtualized
communication and computation
services to four different hierarchical
tiers.
1. First Tier:
• The first tier of the hierarchy is
composed of end devices, such as
smartphones, IP cameras and IoT
sensors, which directly receive
service workloads from their sources.
• A device can by itself locally
process a fraction of the input
workloads or horizontally offload
some of the other workloads to
neighboring devices, using various
short-range wireless transmission
techniques such as LTE D2D, Wi-Fi
Direct, ZigBee, and Bluetooth.

NPTEL

Architecture of Collaborative Cloud-Edge Computing

Workload Optimization for Cloud-Edge

2. Second Tier:
The second tier comprises access network
technologies such as Ethernet, Wi-Fi, and
4G/5G. The edge nodes are capable of
processing part of the workloads.

3. Third Tier:
The third tier consists of horizontal and
vertical offloading from the edge nodes to
the central offices.

4. Fourth Tier:
The fourth tier consists of horizontal
offloading from the central offices to
neighboring central offices and vertical
offloading to a remote federated data
center. The data center is the top-most tier
of the cloud-edge computing hierarchy and
is responsible for processing the remaining
workloads.

NPTEL

Architecture of Collaborative Cloud-Edge Computing

Workload Optimization for Cloud-Edge

This generic architecture is designed to provide a framework for building and
deploying different types of services.

For example:
In the case of a vehicle congestion avoidance service in a smart city:
• IP cameras are used to monitor traffic and detect abnormal behavior that might
indicate an emergency event.
• The data captured by the cameras is then sent to an edge server for further
analysis and processing.
• The server can then send the refined data to drivers or news outlets throughout
the city.
• If there is a lack of computational power, the data can be redirected to other edge
servers or even to a remote data center.

The proposed architecture is designed to be flexible and customizable, allowing
service nodes to be merged or removed as needed. This flexibility allows for specific
architectures to be built and deployed, such as Edge server, Coordinate device, and
Device cloud. These architectures are designed to accommodate different types of
cloud-edge services and applications.

NPTEL

Architecture of Collaborative Cloud-Edge Computing

Workload Optimization for Cloud-Edge

1) Workload Model:
Let f ∈ F denote an offered service of a cloud-edge computing system. Each
service f has a computation size ZSf which is the number of mega CPU cycles
required to process a request for service f. Also, communication size ZNf indicates
the data size of the request in megabytes.
Let Iα, Iβ, Iγ, and Iδ be the sets of devices, network edges, central offices and data
centers of the system, respectively. A service node i ∈ I could process a set of
services Fi ⊆ F, where I is the set of all service nodes of the system,
i.e., I = Iα ∪ Iβ ∪ Iγ ∪ Iδ .

a) Local processing:
Let pf

i denote the workload (in requests per second) of a service f which is locally
processed by a node i. We have

pfi ={
.

≥ 0, if f ∈ Fi , ∀i ∈ I
= 0, if f ∉ Fi , ∀i ∈ I

NPTEL

Architecture of Collaborative Cloud-Edge Computing

Workload Optimization for Cloud-Edge

b) Sibling node and horizontal offloading:
The set of siblings Hi of a node i∈I consists of service nodes which are located in the
same tier as i, and to which i can horizontally offload its workloads. Also, let xfi,j be the
workload of a service f which is horizontally offloaded from i to a service node j ∈ Hi .

Similarly, let uf
j ,i be the workload of a service f which is horizontally offloaded from j ∈ Hi

to i. Here, we assume that a service node i can offload the workload of a service f to a
sibling node j on condition that j is able to process
f, i.e., f ∈ Fj . In addition, to prevent loop situations, a node cannot receive the workloads
of a service f from its siblings if it already horizontally offloads this type of workload.
Thus, we have

xfi,j = {
ufj ,I = {

≥ 0, if f ∈ Fj , ∀ j ∈ Hi , ∀i ∈ I ,
= 0, if f ∉ Fj , ∀j ∈ Hi , ∀i ∈ I ,

≥ 0, if f ∈ Fj , ∀ j ∈ Hi , ∀i ∈ I ,
= 0, if f ∉ Fj , ∀j ∈ Hi , ∀i ∈ I ,

NPTEL

Architecture of Collaborative Cloud-Edge Computing

Workload Optimization for Cloud-Edge

c) Parent/child node and vertical offloading:
The set of parents Vi of a service node i ∈ I consists of the nodes located in the next tier up
with i, and to which i can vertically offload its workloads. Let yfi ,j be the workload of a
service f which is vertically offloaded from i to a node j ∈ Vi .
The set of children Ki of i consists of the nodes which are located in the right lower tier with
i, and from which i receives incoming workloads. Let vfj ,i denote the workload of a service f
which is vertically offloaded from j ∈ Ki to i. Since a device i∈Iα directly receives service
workloads from external sources, it has no child nodes, i.e., Ki = ∅, ∀i ∈ Iα.
Similarly, a data center i ∈ Iδ is in the most-top tier of the system, and hence has no parent
nodes, i.e., Vi = ∅, ∀i ∈ Iδ.
Opposed to horizontal offloading, a service node can carry out vertical offloading for all
services f ∈ F. In other words, it can dispatch all types of workloads to its parents. Thus, we
have

yfi ,j ≥ 0, ∀ f ∈ F, ∀ j ∈ Vi , ∀ i ∈ Iα ∪ Iβ ∪ Iγ

vfj ,i ≥ 0, ∀ f ∈ F, ∀ j ∈ Ki , ∀ i ∈ Iβ ∪ I γ ∪ Iδ.

Let λfi denote the submitted workload of a service f from external sources to a device i ∈
Iα. We have

λfi ≥ 0, ∀ f ∈ F, ∀ i ∈ Iα.

NPTEL

Architecture of Collaborative Cloud-Edge Computing

Workload Optimization for Cloud-Edge

2) Computation and Communication Delay:

Computation and Communication Delay consists of:
a) Computation delay of device and edge nodes
b) Computation delay of central office and data center Nodes
c) Communication delay of network connections
d) Computation and communication delay of the cloud-edge computing system

3) System total cost:

The total system cost C of a cloud-edge computing is defined as
C = CS + CN

Where CS is Computation cost of service nodes and CN is Communication cost of
network connections.
Since we aim to minimize the total cost of the cloud-edge computing system while
guaranteeing its delay constraints, we hence have an optimization problem.

NPTEL

Algorithm: Branch-and-Bound With Parallel Multi-Start Search Points

Workload Optimization for Cloud-Edge

• We try to solve a problem (P) which has variables that are integers and nonlinear
delay constraints.

• This type of problem is usually very hard to solve, so we are using the Branch-and-
bound algorithm.

•We search the tree looking for solutions with integers and when we find one, we use it
as an upper bound for the original problem.

•We keep searching until all the nodes of the tree have been solved or the search
conditions have been met. NPTEL

ALGORITHM DESIGN - BRANCH-AND-BOUND WITH PARALLEL MULTI-
START SEARCH POINTS

Workload Optimization for Cloud-Edge

1. Attempt to find an initial solution by applying a Feasibility Pump relaxation heuristic

2. If a feasible solution C*(N*,O*) is reached, set it to the current optimal solution C(N,O)

3. Add an NLP sub-problem SP, generated by removing the integrality conditions of variables
ni of the problem P, to the tree data structure T

4. Start the branch-and-bound procedure iteratively solve the sub-problem SP using
Interior/Direct algorithm with parallel multiple initial searching points

5. If a feasible solution C*(N*,O*) is smaller than the current optimal solution C(N,O) and N*
are integers, set C*(N*,O*) to the current optimal solution and prune the node SP, removing
it and its sub-nodes from T

6. If N* is not an integer, perform a branching operation on a variable ni ∈ N* creating two
new sub-problems SSP1 and SPP2 of SP, added to T using the Pseudo-cost branching method

7. If C*(N*,O*)i >= C(N,O), or there is not a feasible solution, prune the node SP

8. Repeat the branch-and-bound procedure until all nodes of T have been resolved

NPTEL

ALGORITHM DESIGN - BRANCH-AND-BOUND WITH PARALLEL MULTI-
START SEARCH POINTS

Workload Optimization for Cloud-Edge

NPTEL

Experiment:

Workload Optimization for Cloud-Edge

1. Summarize the cloud-edge computing system and its parameters.

2. Compare the cloud-edge computing system with a traditional design (NH) which does not
support horizontal offloading.

3. Adjust the arrival rate to generate workloads whose total demanded computation
capacity is 10%, 50%, and 100% of the maximum capacity of all service nodes.

4. Optimize the system to minimize the total system cost C which consists of the
computation cost of service nodes and the communication cost of network connections.

5. Present results of other metrics such as computation capacity allocation, workload
allocation, and horizontal offloading workloads.NPTEL

Analysis of the result:

Workload Optimization for Cloud-Edge

1. Evaluate performance of cloud-edge computing architecture design and traditional
design in unbalanced and balanced workload scenarios.

Unbalanced Workload:

• Unbalanced input workload scenarios refer
to scenarios where incoming workloads are
not evenly distributed across cloud
computing and edge computing resources.

• This could occur due to a sudden spike in
requests from one geographical location or
due to a particular type of workload that is
more suited to being processed locally at
the edge.

• In such cases, the cloud resources may be
overloaded, leading to degraded
performance, while the edge resources
may be underutilized.

NPTEL

Analysis of the result:

Workload Optimization for Cloud-Edge

Balanced Workload:

• Balanced input workload scenarios, on the
other hand, refer to scenarios where
incoming workloads are evenly distributed
across cloud computing and edge computing
resources.

• This can be achieved through careful
planning, careful monitoring of incoming
workloads and the use of intelligent
algorithms to route the workloads to the
most appropriate resources.

• This ensures that both cloud and edge
resources are being utilized efficiently,
leading to improved performance and cost
savings.

NPTEL

Analysis of the result:

Workload Optimization for Cloud-Edge

2. Test two service allocation strategies: homogeneous and heterogeneous.

A. Homogeneous Service Allocation Scenario:

• In a homogeneous service allocation scenario, services are allocated to the same type of
cloud-edge computing environment and resources.

• This means that the same type of hardware and software is used across all the cloud-edge
sites.

• This type of scenario is useful when the same types of applications are running across
multiple sites or when the same types of services need to be provided.

• For example, if the same type of virtual machine is allocated to different tasks on the
cloud and edge, then it would be a homogeneous service allocation scenario.

NPTEL

Analysis of the result:

Workload Optimization for Cloud-Edge

B. Heterogeneous Service Allocation Scenario:

• In a heterogeneous service allocation scenario, services are allocated to different types of
cloud-edge computing environments and resources.

• This means that different types of hardware and software are used across different cloud-
edge sites.

• This type of scenario is useful when different types of applications are running across
multiple sites or when different types of services need to be provided.

• This type of scenario also allows for more flexibility in the types of resources that can be
used, allowing for a more customized experience for each site.

• For example, if different types of virtual machines are allocated to different tasks on the
cloud and edge, then it would be a heterogeneous service allocation scenario.

NPTEL

Analysis of the result:

Workload Optimization for Cloud-Edge

3. Observe impact of different computation capacity costs on cloud-edge computing
architecture design and traditional design:

• The impact of different computation capacity costs on cloud-edge computing architecture
design and traditional design is largely based on the cost efficiency of the solution.

• Cloud-edge computing architectures typically provide more cost-efficient solutions than
traditional designs, as they leverage the cost-effectiveness of the cloud while providing
more localized processing power.

• For example, if computation capacity costs are high, cloud-edge computing architectures
can be more cost-effective by utilizing the cloud for its cost-effectiveness and leveraging
localized processing power for more efficiency.

• This allows for cost savings in both cloud and edge compute costs, as cloud capacity is
leveraged for less expensive compute and edge compute resources can be used as
needed to meet performance and latency requirements.

NPTEL

Thank You

NPTEL

Vu Pham

Global State and Snapshot
Recording Algorithms

Dr. Rajiv Misra, Professor
Dept. of Computer Science & Engg.
Indian Institute of Technology Patna
rajivm@iitp.ac.in

Global State and Snapshot

Vu Pham

Preface

Content of this Lecture:

In this lecture, we will discuss about the Global
states (i.e. consistent, inconsistent), Models of
communication and Snapshot algorithm i.e. Chandy-
Lamport algorithm to record the global snapshot.

Global State and Snapshot

Vu Pham

Snapshots

Global State and Snapshot

Google Images

Here’s Snapshot: Collect at a place Distributed Snapshot
How do you calculate a
“global snapshot” in this
distributed system?
What does a “global
snapshot” even mean?

Vu Pham

In the Cloud: Global Snapshot

In a cloud each application or service is running on
multiple servers
Servers handling concurrent events and interacting with
each other
The ability to obtain a “global photograph” or “Global
Snapshot” of the system is important
Some uses of having a global picture of the system

Checkpointing: can restart distributed application on failure
Garbage collection of objects: objects at servers that don’t have any other
objects (at any servers) with pointers to them
Deadlock detection: Useful in database transaction systems
Termination of computation: Useful in batch computing systems

Global State and Snapshot

Vu Pham

Global State: Introduction
Recording the global state of a distributed system on-the-fly is an

important paradigm.

The lack of globally shared memory, global clock and unpredictable
message delays in a distributed system make this problem non-trivial.

This lecture first defines consistent global states and discusses issues
to be addressed to compute consistent distributed snapshots.

Then the algorithm to determine on-the-fly such snapshots is
presented.

Global State and Snapshot

Vu Pham

System Model

The system consists of a collection of n processes p1, p2, ..., pn
that are connected by channels.

There are no globally shared memory and physical global clock
and processes communicate by passing messages through
communication channels.
Cij denotes the channel from process pi to process pj and its

state is denoted by SCij .
The actions performed by a process are modeled as three types

of events: Internal events, the message send event and the
message receive event.

For a message mij that is sent by process pi to process pj ,
let send (mij) and rec(mij) denote its send and receive events.

Global State and Snapshot

Vu Pham

System Model
At any instant, the state of process pi , denoted by LSi , is a result

of the sequence of all the events executed by pi till that instant.
For an event e and a process state LSi , e∈LSi iff e belongs to the

sequence of events that have taken process pi to state LSi .
For an event e and a process state LSi , eÏLSi iff e does not

belong to the sequence of events that have taken process pi to
state LSi .

For a channel Cij , the following set of messages can be defined
based on the local states of the processes pi and pj
Transit: transit(LSi , LSj) = {mij |send (mij) ∈ LSi rec(mij) Ï LSj }

Global State and Snapshot

Vu Pham

Consistent Global State

The global state of a distributed system is a collection of the local
states of the processes and the channels.

Notationally, global state GS is defined as,
GS = {U i LSi , Ui,j SCij }

A global state GS is a consistent global state iff it satisfies the
following two conditions :

C1: send(mij)∈LSi ⇒ mij∈SCij ⊕ rec(mij)∈LSj
(⊕ is Ex-OR operator)

C2: send(mij)ÏLSi ⇒ mijÏSCij ∧ rec(mij)ÏLSj

Global State and Snapshot

Vu Pham

Global State of a Distributed System

In the distributed execution of Figure 6.2:
A global state GS1 consisting of local states {LS11 , LS23 , LS33 , LS42} is
inconsistent because the state of p2 has recorded the receipt of
message m12, however, the state of p1 has not recorded its send.
On the contrary, a global state GS2 consisting of local states
{LS12 , LS24 , LS34 , LS42} is consistent; all the channels are empty except
c21 that contains message m21.

Global State and Snapshot

Vu Pham

A global state GS = {Ui LSi
xi , Uj,k SCjk

yj,zk } is transitless iff
∀i , ∀ j : 1 ≤ i, j ≤ n : : SCjk

yj,zk = Ø
Thus, all channels are recorded as empty in a transitless global state.
A global state is strongly consistent iff it is transitless as well as
consistent. Note that in figure 6.2, the global state of local states
{LS12 , LS23 , LS34 , LS42} is strongly consistent.
Recording the global state of a distributed system is an important
paradigm when one is interested in analyzing, monitoring, testing, or
verifying properties of distributed applications, systems, and algorithms.
Design of efficient methods for recording the global state of a distributed
system is an important problem.

Global State of a Distributed System

Global State and Snapshot

Vu Pham

P2

P3

P4

P1

e1
1 e1

2 e1
3 e1

4

e2
1 e2

2 e2
3 e2

4

e3
1 e3

2 e3
3 e3

4 e3
5

e4
1 e4

2

m12 m21

Example:

Figure 6.2: The space-time diagram of a distributed execution.

Time

GS1 = {LS1
1 , LS2

3 , LS3
3 , LS4

2} is inconsistent
GS2 = {LS1

2 , LS2
4 , LS3

4 , LS4
2} is consistent

GS3 ={LS1
2 , LS2

3 , LS3
4 , LS4

2} is strongly consistent.

Global State and Snapshot

Vu Pham

Issues in Recording a Global State
The following two issues need to be addressed:

I1: How to distinguish between the messages to be recorded in
the snapshot from those not to be recorded.
-Any message that is sent by a process before recording its
snapshot, must be recorded in the global snapshot (from C1).
-Any message that is sent by a process after recording its snapshot,
must not be recorded in the global snapshot (from C2).

I2: How to determine the instant when a process takes its snapshot.

-A process pj must record its snapshot before processing a message
mij that was sent by process pi after recording its snapshot.

Global State and Snapshot

Vu Pham

Example of Money Transfer

Let S1 and S2 be two distinct sites of a distributed system which
maintain bank accounts A and B, respectively. A site refers to a process
in this example. Let the communication channels from site S1 to site S2
and from site S2 to site S1 be denoted by C12 and C21, respectively.
Consider the following sequence of actions, which are also illustrated in
the timing diagram of Figure 6.3:
Time t0: Initially, Account A=$600, Account B=$200, C12 =$0, C21 =$0.
Time t1: Site S1 initiates a transfer of $50 from Account A to Account B.
Account A is decremented by $50 to $550 and a request for $50 credit
to Account B is sent on Channel C12 to site S2. Account A=$550,
Account B=$200, C12 =$50, C21 =$0.

Global State and Snapshot

Vu Pham

Time t2 : Site S2 initiates a transfer of $80 from Account B to
Account A.
Account B is decremented by $80 to $120 and a request for $80
credit to Account A is sent on Channel C21 to site S1. Account
A=$550, Account B=$120, C12 =$50, C21 =$80.
Time t3: Site S1 receives the message for a $80 credit to Account
A and updates Account A.
Account A=$630, Account B=$120, C12 =$50, C21 =$0.
Time t4: Site S2 receives the message for a $50 credit to Account
B and updates Account B.
Account A=$630, Account B=$170, C12 =$0, C21 =$0.

Global State and Snapshot

S2: B

S1: A

$200 $200 $120 $120 $170

$600 $630$550$550 $630

$50

$80

t0 t1 t2 t3 t4

$0 $50$50$50 $0C12

$0 $0$80$0 $0C21

T3: Site S1 receives the message for a
$80 credit to Account A and updates

T4: Site S2 receives the message for a $50
credit to Account B and updates Account B

Global State and Snapshot

Vu Pham

Suppose the local state of Account A is recorded at time t0 to show
$600 and the local state of Account B and channels C12 and C21 are
recorded at time t2 to show $120, $50, and $80, respectively. Then
the recorded global state shows $850 in the system. An extra $50
appears in the system.
The reason for the inconsistency is that Account A’s state was

recorded before the $50 transfer to Account B using channel C12

was initiated, whereas channel C12’s state was recorded after the
$50 transfer was initiated.
This simple example shows that recording a consistent global state
of a distributed system is not a trivial task. Recording activities of
individual components must be coordinated appropriately.

Global State and Snapshot

Vu Pham

Model of Communication

Recall, there are three models of communication: FIFO, non-FIFO, and
Co.

In FIFO model, each channel acts as a first-in first-out message queue
and thus, message ordering is preserved by a channel.

In non-FIFO model, a channel acts like a set in which the sender process
adds messages and the receiver process removes messages from it in a
random order.

A system that supports causal delivery of messages satisfies the
following property: “For any two messages mij and mkj ,

if send (mij) → send (mkj), then rec(mij)→ rec(mkj)”

Global State and Snapshot

Vu Pham

Snapshot algorithm for FIFO channels
Chandy-Lamport algorithm:

The Chandy-Lamport algorithm uses a control message,
called a marker whose role in a FIFO system is to separate
messages in the channels.
After a site has recorded its snapshot, it sends a marker,

along all of its outgoing channels before sending out any
more messages.
A marker separates the messages in the channel into those to

be included in the snapshot from those not to be recorded in
the snapshot.
A process must record its snapshot no later than when it

receives a marker on any of its incoming channels.

Global State and Snapshot

Vu Pham

Chandy-Lamport Algorithm

The algorithm can be initiated by any process by executing the
“Marker Sending Rule” by which it records its local state and
sends a marker on each outgoing channel.
A process executes the “Marker Receiving Rule” on receiving a

marker. If the process has not yet recorded its local state, it
records the state of the channel on which the marker is received
as empty and executes the “Marker Sending Rule” to record its
local state.
The algorithm terminates after each process has received a

marker on all of its incoming channels.
All the local snapshots get disseminated to all other

processes and all the processes can determine the global state.

Global State and Snapshot

Vu Pham

Chandy-Lamport Algorithm
Marker Sending Rule for process i
1) Process i records its state.
2) For each outgoing channel C on which a marker has not been sent,
i sends a marker along C before i sends further messages along C.

Marker Receiving Rule for process j
On receiving a marker along channel C:

if j has not recorded its state then
Record the state of C as the empty set
Follow the “Marker Sending Rule”

else
Record the state of C as the set of messages
received along C after j ’s state was recorded
and before j received the marker along C

Global State and Snapshot

Vu Pham

Properties of the recorded global state

The recorded global state may not correspond to any of the
global states that occurred during the computation.

Consider two possible executions of the snapshot
algorithm (shown in Figure 6.4) for the previous money
transfer example .

Global State and Snapshot

S2: B

S1: A

$200 $200 $120 $120 $170

$600 $630$550$550 $630

$50

$80

t0 t1 t2 t3 t4

$0 $50$50$50 $0C12

$0 $0$80$0 $0C21

Figure 6.4: Timing diagram of two possible
executions of the banking example

Execution

Message

Markers

(1st example)

Markers

(2nd example)
Figure 6.4: Timing diagram of two possible executions of the banking example

Global State and Snapshot

Vu Pham

Properties of the recorded global state

1. (Markers shown using red dashed-and-dotted arrows.)

Let site S1 initiate the algorithm just after t1. Site S1 records
its local state (account A=$550) and sends a marker to site
S2. The marker is received by site S2 after t4. When site S2
receives the marker, it records its local state (account
B=$170), the state of channel C12 as $0, and sends a marker
along channel C21. When site S1 receives this marker, it
records the state of channel C21 as $80. The $800 amount in
the system is conserved in the recorded global state,

A = $550, B = $170, C12 = $0, C21 = $80

Global State and Snapshot

S2: B

S1: A

$200 $200 $120 $120 $170

$600 $630$550$550 $630

$50

$80

t0 t1 t2 t3 t4

Figure 6.4: Timing diagram of two possible executions of the banking example

B = $170A = $550 C12 = $0 C21 = $80

The $800 amount in the system is conserved in the recorded global state

Global State and Snapshot

Vu Pham

Properties of the recorded global state

2. (Markers shown using green dotted arrows.)

Let site S1 initiate the algorithm just after t0 and before sending the
$50 for S2. Site S1 records its local state (account A = $600) and
sends a marker to site S2. The marker is received by site S2 between
t2 and t3. When site S2 receives the marker, it records its local state
(account B = $120), the state of channel C12 as $0, and sends a
marker along channel C21. When site S1 receives this marker, it
records the state of channel C21 as $80. The $800 amount in the
system is conserved in the recorded global state,

A = $600, B = $120, C12 = $0, C21 = $80

Global State and Snapshot

S2: B

S1: A

$200 $200 $120 $120 $170

$600 $630$550$550 $630

$50

$80

t0 t1 t2 t3 t4

Figure 6.4: Timing diagram of two possible executions of the banking example

B = $120A = $600 C12 = $0 C21 = $80

The $800 amount in the system is conserved in the recorded global state

Global State and Snapshot

Vu Pham

Properties of the recorded global state

In both these possible runs of the algorithm, the recorded global
states never occurred in the execution.

This happens because a process can change its state asynchronously
before the markers it sent are received by other sites and the other sites
record their states.

But the system could have passed through the recorded global states in
some equivalent executions.
The recorded global state is a valid state in an equivalent execution and
if a stable property (i.e., a property that persists) holds in the system
before the snapshot algorithm begins, it holds in the recorded global
snapshot.

Therefore, a recorded global state is useful in detecting stable
properties.

Global State and Snapshot

Vu Pham

Conclusion
Recording global state of a distributed system is an
important paradigm in the design of the distributed systems
and the design of efficient methods of recording the global
state is an important issue.

This lecture first discussed a formal definition of the global
state of a distributed system and issues related to its
capture; then we have discussed the Chandy-Lamport
Algorithm to record a snapshot of a distributed system.

Global State and Snapshot

Vu Pham

Hot Data Analytics for Real-Time
Streaming in IoT Platform

Dr. Rajiv Misra, Professor,
Dept. of Computer Science & Engg.
Indian Institute of Technology Patna
rajivm@iitp.ac.in

Hot Data Analytics

Vu Pham

Preface
Content of this Lecture:

• In this lecture, we will discuss Real-time data processing
in IoT edge platform with Spark Streaming and Sliding
Window Analytics.

• We will also discuss a case study based on Twitter
Sentiment Analysis using Streaming.

Spark Streaming

Vu Pham

Things

Sensors
Automation

etc

Azure
Sphere

Azure Iot
Device
SDK

Cloud IoT

Device
Provision,

Device security,
Device

messaging

IoT Central
IoT Hub,

IoT Hub DPS,
Digital Twins

Hot Path

Real-time
data

Processing

Stream Analytics,
Event Hub,
Functions,
Synapse,

Kafka,
Databricks

Cold Path

Batch
Processing

Data Lake,
Data Factory,

Synapse,
Databricks,

Azure DBaas

Warm Path

Small Batch
Processing

Data Lake,
Functions,

Data Factory,
Synapse,

Databricks,
Azure DBaas

Presentation

Reporting,
Dataset, APIs
Applications

Azure DBaas,
Power BI,
Synapse,
Azure App
services

Consumers

External
systems,
Report

Consumers,
Data

Integration

Ed
ge

Io
T

Ed
ge

,
D

at
ab

ox
 E

dg
e

IoT platform: Overview
Data Flow

Hot Data Analytics

Vu Pham

Hot Path

Real-time
data

Processing

Stream Analytics,
Event Hub,
Functions,
Synapse,

Kafka,
Databricks

Cold Path

Batch
Processing

Data Lake,
Data Factory,

Synapse,
Databricks,

Azure DBaas

Warm Path

Small Batch
Processing

Data Lake,
Functions,

Data Factory,
Synapse,

Databricks,
Azure DBaas

IoT platform: Data Flow
Data FlowThe data is routed to one of the three different paths i.e. the hot

path or the cold path or the warm path.

Hot path data is the data that is processed in real time. It gets
processed within seconds of that happening, so when the message
hits the hot path it's processed and then it's presented to something
in the consumption layer. The consumption layer consume that data
immediately once it's been processed in the hot path.

The output from a hot path to a cold storage system can be written
that is consumed by an api. The data is written in real time but the
api might be querying that data that was written an hour ago.

The main thing about hotpath is that you're processing data in real
time as it's happening however what's consuming that might be
querying old data that was processed an hour ago. It could be
something that's processing it and then presenting it in real time such
as a dashboard that is constantly monitoring things in their present
state as comes off of the hot path and into the consumption layer.

Hot Data Analytics

Vu Pham

IoT platform: Traditional Stream Processing

● Streaming data is received from
data sources (e.g. live logs, system
telemetry data, IoT device data,
etc.) into some data ingestion
system like Apache Kafka, Amazon
Kinesis, etc.

● The data is then processed in
parallel on a cluster.

● Results are given to downstream systems like HBase, Cassandra, Kafka, etc.
● There is a set of worker nodes, each of which runs one or more continuous

operators. Each continuous operator processes the streaming data one record at a
time and forwards the records to other operators in the pipeline.

● Data is received from ingestion systems via Source operators and given as output to
downstream systems via sink operators.

● Continuous operators are a simple and natural model. However, this traditional
architecture has also met some challenges with today’s trend towards larger scale
and more complex real-time analytics

Hot Data Analytics

Vu Pham

Traditional Stream Processing: Limitations
● Fast Failure and Straggler Recovery In real time, the system must be able to

fastly and automatically recover from failures and stragglers to provide results
which is challenging in traditional systems due to the static allocation of
continuous operators to worker nodes.

● Load Balancing In a continuous operator system, uneven allocation of the
processing load between the workers can cause bottlenecks. The system
needs to be able to dynamically adapt the resource allocation based on the
workload.

● Unification of Streaming, Batch and Interactive Workloads In many use
cases, it is also attractive to query the streaming data interactively, or to
combine it with static datasets (e.g. pre-computed models). This is hard in
continuous operator systems which does not designed to new operators for
ad-hoc queries. This requires a single engine that can combine batch,
streaming and interactive queries.

● Advanced Analytics with Machine learning and SQL Queries Complex
workloads require continuously learning and updating data models, or even
querying the streaming data with SQL queries. Having a common abstraction
across these analytic tasks makes the developer’s job much easier.

Hot Data Analytics

Vu Pham

Big Streaming Data Processing

Hot Data Analytics

Vu Pham

• Scales to hundreds of nodes
• Achieves low latency
• Efficiently recover from failures
• Integrates with batch and interactive processing

How to Process Big Streaming Data

Spark Streaming

Vu Pham

• Build two stacks – one for batch, one for streaming
• Often both process same data

• Existing frameworks cannot do both
• Either, stream processing of 100s of MB/s with low

latency
• Or, batch processing of TBs of data with high latency

What people have been doing?

Hot Data Analytics

Vu Pham

• Extremely painful to maintain two different stacks
• Different programming models
• Doubles implementation effort
• Doubles operational effort

What people have been doing?

Hot Data Analytics

Vu Pham

• Traditional processing model
• Pipeline of nodes
• Each node maintains mutable state
• Each input record updates the state

and new records are sent out

• Mutable state is lost if node fails

• Making stateful stream processing fault-
tolerant is challenging!

Fault-tolerant Stream Processing

Hot Data Analytics

Vu Pham

• Data Streaming is a technique for transferring data so that
it can be processed as a steady and continuous stream.

• Streaming technologies are becoming increasingly
important with the growth of the Internet.

What is Streaming?

Hot Data Analytics

Vu Pham

Spark Ecosystem

Hot Data Analytics

Vu Pham

• Extends Spark for doing big data stream processing
• Project started in early 2012, alpha released in Spring 2017 with Spark 0.7
• Moving out of alpha in Spark 0.9
• Spark Streaming has support built-in to consume from Kafka, Flume,

Twitter, ZeroMQ, Kinesis, and TCP/IP sockets.
• In Spark 2.x, a separate technology based on Datasets, called Structured

Streaming, that has a higher-level interface is also provided to support
streaming.

What is Spark Streaming?

Hot Data Analytics

Vu Pham

What is Spark Streaming?
• Framework for large scale stream processing

• Scales to 100s of nodes
• Can achieve second scale latencies
• Integrates with Spark’s batch and interactive

processing
• Provides a simple batch-like API for implementing

complex algorithm
• Can absorb live data streams from Kafka, Flume,

ZeroMQ, etc.

Hot Data Analytics

Vu Pham

• Receive data streams from input sources, process
them in a cluster, push out to databases/ dashboards

• Scalable, fault-tolerant, second-scale latencies

What is Spark Streaming?

Hot Data Analytics

Vu Pham

• Many big-data applications need to process large data
streams in realtime

Why Spark Streaming ?

Website monitoring
Fraud detection

Ad monetization

Hot Data Analytics

Vu Pham

Why Spark Streaming ?
▪ Many important applications must process large streams of live data

and provide results in near-real-time
- Social network trends
- Website statistics
- Intrustion detection systems
- etc.

▪ Require large clusters to handle workloads

▪ Require latencies of few seconds

Hot Data Analytics

Vu Pham

• We can use Spark Streaming to stream real-time data
from various sources like Twitter, Stock Market and
Geographical Systems and perform powerful analytics to
help businesses.

Why Spark Streaming ?

Hot Data Analytics

Vu Pham

Need a framework for big data
stream processing that

Why Spark Streaming?

Website monitoring
Fraud detection

Ad monetization
Scales to hundreds of nodes

Achieves second-scale latencies

Efficiently recover from failures

Integrates with batch and interactive processing

Hot Data Analytics

Vu Pham

• Scaling: Spark Streaming can easily scale to hundreds of nodes.
• Speed: It achieves low latency.
• Fault Tolerance: Spark has the ability to efficiently recover from

failures.
• Integration: Spark integrates with batch and real-time processing.
• Business Analysis: Spark Streaming is used to track the behavior of

customers which can be used in business analysis

Spark Streaming Features

Hot Data Analytics

Vu Pham

Requirements

▪ Scalable to large clusters

▪ Second-scale latencies

▪ Simple programming model

▪ Integrated with batch & interactive processing

▪ Efficient fault-tolerance in stateful computations

Hot Data Analytics

Vu Pham

Batch Processing
• Ability to process and analyze data at-rest (stored data)
• Request-based, bulk evaluation and short-lived processing
• Enabler for Retrospective, Reactive and On-demand Analytics

Stream Processing
• Ability to ingest, process and analyze data in-motion in real- or near-

real-time
• Event or micro-batch driven, continuous evaluation and long-lived

processing
• Enabler for real-time Prospective, Proactive and Predictive

Analytics for Next Best Action
Stream Processing + Batch Processing = All Data Analytics

real-time (now) historical (past)

Batch vs Stream Processing

Hot Data Analytics

Vu Pham

• Many environments require processing same data in live
streaming as well as batch post-processing

• Existing frameworks cannot do both
• Either, stream processing of 100s of MB/s with low latency
• Or, batch processing of TBs of data with high latency

• Extremely painful to maintain two different stacks
• Different programming models
• Double implementation effort

Integration with Batch Processing

Hot Data Analytics

Vu Pham

• Traditional model

• Mutable state is lost if node fails

• Making stateful stream processing fault tolerant is
challenging!

Stateful Stream Processing

– Processing pipeline of nodes
– Each node maintains mutable state
– Each input record updates the state

and new records are sent out

mutable state

node 1

node 3

input
records

node 2

input
records

Hot Data Analytics

Vu Pham

Modern Data Applications approach to Insights

Hot Data Analytics

Vu Pham

• Storm
• Replays record if not processed by a node
• Processes each record at least once
• May update mutable state twice!
• Mutable state can be lost due to failure!

• Trident – Use transactions to update state
• Processes each record exactly once
• Per-state transaction to external database is slow

Existing Streaming Systems

27Hot Data Analytics

Vu Pham

Run a streaming computation as a series of very small,
deterministic batch jobs

How does Spark Streaming work?

28

Spark

Spark
Streaming

batches of X seconds

live data stream

processed results

▪ Chop up the live stream into
batches of X seconds

▪ Spark treats each batch of data as
RDDs and processes them using
RDD operations

▪ Finally, the processed results of
the RDD operations are returned
in batches

Hot Data Analytics

Vu Pham

Run a streaming computation as a series of very small,
deterministic batch jobs

How does Spark Streaming work?

29

▪ Batch sizes as low as ½ second,
latency of about 1 second

▪ Potential for combining batch
processing and streaming
processing in the same system Spark

Spark
Streaming

batches of X seconds

live data stream

processed results

Hot Data Analytics

Vu Pham

Word Count with Kafka

Hot Data Analytics

Vu Pham

Any Spark Application

Hot Data Analytics

Vu Pham

Spark Streaming Application: Receive data

Hot Data Analytics

Vu Pham

Spark Streaming Application: Process data

Hot Data Analytics

Vu Pham

• Micro batch architecture.
• Operates on interval of time
• New batches are created at

regular time intervals.
• Divides received time batch

into blocks for parallelism
• Each batch is a graph that

translates into multiple jobs
• Has the ability to create

larger size batch window as
it processes over time.

Spark Streaming Architecture

Hot Data Analytics

Vu Pham

Spark Streaming Workflow

Hot Data Analytics

• Spark Streaming workflow has four high-level stages. The first is to stream
data from various sources. These sources can be streaming data sources like
Akka, Kafka, Flume, AWS or Parquet for real-time streaming. The second type
of sources includes HBase, MySQL, PostgreSQL, Elastic Search, Mongo DB and
Cassandra for static/batch streaming.

• Once this happens, Spark can be used to perform Machine Learning on the
data through its MLlib API. Further, Spark SQL is used to perform further
operations on this data. Finally, the streaming output can be stored into
various data storage systems like HBase, Cassandra, MemSQL, Kafka, Elastic
Search, HDFS and local file system.

Vu Pham

Spark Streaming Workflow

Hot Data Analytics

Vu Pham

val tweets = ssc.twitterStream()

Example 1 – Get hashtags from Twitter

DStream: a sequence of RDDs representing a stream of data

batch @ t+1batch @ t batch @ t+2

tweets DStream

stored in memory as an RDD
(immutable, distributed)

Twitter Streaming API

Hot Data Analytics

Vu Pham

val tweets = ssc.twitterStream()
val hashTags = tweets.flatMap(status => getTags(status))

Example 1 – Get hashtags from Twitter

flatMap flatMap flatMap

…

transformation: modify data in one DStream to create another DStream new DStream

new RDDs created
for every batch

batch @ t+1batch @ t batch @ t+2

tweets DStream

hashTags Dstream
[#cat, #dog, …]

Hot Data Analytics

Vu Pham

val tweets = ssc.twitterStream()
val hashTags = tweets.flatMap(status => getTags(status))
hashTags.saveAsHadoopFiles("hdfs://...")

Example 1– Get hashtags from Twitter

output operation: to push data to external storage

flatMap flatMap flatMap

save save save

batch @ t+1batch @ t batch @ t+2
tweets DStream

hashTags DStream

every batch
saved to HDFS

Hot Data Analytics

Vu Pham

val tweets = ssc.twitterStream()
val hashTags = tweets.flatMap(status => getTags(status))
hashTags.foreach(hashTagRDD => { ... })

Example 1 – Get hashtags from Twitter

foreach: do whatever you want with the processed data

flatMap flatMap flatMap

foreach foreach foreach

batch @ t+1batch @ t batch @ t+2
tweets DStream

hashTags DStream

Write to a database, update analytics
UI, do whatever you want

Hot Data Analytics

Vu Pham

Scala
val tweets = ssc.twitterStream()
val hashTags = tweets.flatMap(status => getTags(status))
hashTags.saveAsHadoopFiles("hdfs://...")

Java

JavaDStream<Status> tweets = ssc.twitterStream()
JavaDstream<String> hashTags = tweets.flatMap(new Function<...> { })
hashTags.saveAsHadoopFiles("hdfs://...")

Java Example

Function object

Hot Data Analytics

Vu Pham

Fault-tolerance
▪ RDDs are remember the

sequence of operations that
created it from the original
fault-tolerant input data

▪ Batches of input data are
replicated in memory of
multiple worker nodes,
therefore fault-tolerant

▪ Data lost due to worker
failure, can be recomputed
from input data

input data
replicated
in memory

flatMap

lost partitions
recomputed on
other workers

tweets
RDD

hashTags
RDD

Hot Data Analytics

Vu Pham

Key concepts
• DStream – sequence of RDDs representing a stream of data

• Twitter, HDFS, Kafka, Flume, ZeroMQ, Akka Actor, TCP
sockets

• Transformations – modify data from on DStream to another
• Standard RDD operations – map, countByValue, reduce,

join, …
• Stateful operations – window, countByValueAndWindow, …

• Output Operations – send data to external entity
• saveAsHadoopFiles – saves to HDFS
• foreach – do anything with each batch of results

Hot Data Analytics

Vu Pham

Example 2 – Count the hashtags

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)
val hashTags = tweets.flatMap (status => getTags(status))
val tagCounts = hashTags.countByValue()

flatMa
p

map

reduceByKey

flatMa
p

map

reduceByKey

…

flatMa
p

map

reduceByKey

batch @
t+1batch @ t batch @

t+2

hashTags

tweets

tagCounts
[(#cat, 10), (#dog, 25), ...]

Hot Data Analytics

Vu Pham

DStream of data

val tweets = ssc.twitterStream()
val hashTags = tweets.flatMap(status => getTags(status))
val tagCounts = hashTags.window(Minutes(1),
Seconds(5)).countByValue()

Example 3 – Count the hashtags over last 10 mins

sliding window
operation window length sliding interval

window length

sliding interval

Hot Data Analytics

Vu Pham

tagCounts

Example 3 – Counting the hashtags over last 10 mins

val tagCounts = hashTags.window(Minutes(10), Seconds(1)).countByValue()

hashTag
s

t-1 t t+1 t+2 t+3

sliding window

countByValu
e count over all

the data in the
window

Hot Data Analytics

Vu Pham

?

Smart window-based countByValue

val tagCounts = hashtags.countByValueAndWindow(Minutes(10), Seconds(1))

hashTag
s

t-1 t t+1 t+2 t+3

+
+
–

countByValu
e add the counts

from the new
batch in the

window
subtract the
counts from
batch before
the window

tagCounts

Hot Data Analytics

Vu Pham

Smart window-based reduce

• Technique to incrementally compute count generalizes
to many reduce operations

• Need a function to “inverse reduce” (“subtract” for
counting)

• Could have implemented counting as:
hashTags.reduceByKeyAndWindow(_ + _, _ - _,
Minutes(1), …)

48

Hot Data Analytics

Vu Pham

Specify function to generate new state based on
previous state and new data

• Example: Maintain per-user mood as state, and update it
with their tweets

def updateMood(newTweets, lastMood) => newMood

moods = tweetsByUser.updateStateByKey(updateMood _)

Arbitrary Stateful Computations

Hot Data Analytics

Vu Pham

Inter-mix RDD and DStream operations!
• Example: Join incoming tweets with a spam HDFS file to

filter out bad tweets

tweets.transform(tweetsRDD => {
tweetsRDD.join(spamHDFSFile).filter(...)

})

Arbitrary Combinations of Batch and Streaming
Computations

Hot Data Analytics

Vu Pham

Spark Streaming-Dstreams, Batches and RDDs

• These steps repeat for each batch.. Continuously

• Because we are dealing with Streaming data. Spark
Streaming has the ability to “remember” the previous
RDDs…to some extent.

Hot Data Analytics

Vu Pham

• Online machine learning
• Continuously learn and update data models

(updateStateByKey and transform)

• Combine live data streams with historical data
• Generate historical data models with Spark, etc.
• Use data models to process live data stream (transform)

• CEP-style processing
• window-based operations (reduceByWindow, etc.)

DStreams + RDDs = Power

Hot Data Analytics

Vu Pham

• Every interval, an RDD graph is computed from the DStream
graph

• For each output operation, a Spark action is created
• For each action, a Spark job is created to compute it

From DStreams to Spark Jobs

Hot Data Analytics

Vu Pham

• Out of the box, we provide
• Kafka, HDFS, Flume, Akka Actors, Raw TCP sockets,

etc.

• Very easy to write a receiver for your own data source

• Also, generate your own RDDs from Spark, etc. and
push them in as a “stream”

Input Sources

Hot Data Analytics

Vu Pham

Current Spark Streaming I/O

Hot Data Analytics

Vu Pham

• Different classes for
different languages
(Scala, Java)

• Dstream has 36 value
members

• Multiple types of
Dstreams

• Separate Python API

Dstream Classes

Hot Data Analytics

Vu Pham

Spark Streaming Operations

Hot Data Analytics

Vu Pham

• Batches of input data are replicated in memory for fault-
tolerance

• Data lost due to worker failure, can be recomputed from
replicated input data

Fault-tolerance

input data
replicated
in memory

flatMap

lost partitions
recomputed on
other workers

tweets
RDD

hashTags
RDD

▪ All transformations are fault-
tolerant, and exactly-once
transformations

Hot Data Analytics

Vu Pham

Fault-tolerance

Hot Data Analytics

Vu Pham

Can process 60M records/sec (6 GB/sec) on
100 nodes at sub-second latency

Performance

0

0.5

1

1.5

2

2.5

3

3.5

0 50 100

Cl
us

te
r T

hr
ou

gh
pu

t (
G

B/
s)

Nodes in Cluster

WordCount

1 sec

2 sec
0

1

2

3

4

5

6

7

0 50 100

Cl
us

te
r T

hh
ro

ug
hp

ut
 (G

B/
s)

Nodes in Cluster

Grep

1 sec

2 sec

Hot Data Analytics

Vu Pham

Higher throughput than Storm
• Spark Streaming: 670k records/sec/node
• Storm: 115k records/sec/node
• Commercial systems: 100-500k records/sec/node

Comparison with other systems

0

10

20

30

100 1000

Th
ro

ug
hp

ut
 p

er
 n

od
e

(M
B/

s)

Record Size (bytes)

WordCount

Spark

Storm

0

20

40

60

100 1000

Th
ro

ug
hp

ut
 p

er
 n

od
e

(M
B/

s)

Record Size (bytes)

Grep

Spark

Storm

Hot Data Analytics

Vu Pham

Recovers from faults/stragglers within 1 sec

Fast Fault Recovery

Hot Data Analytics

Vu Pham

Traffic transit time estimation using online machine
learning on GPS observations

Real time application: Mobile Millennium Project

0

400

800

1200

1600

2000

0 20 40 60 80
G

PS
 o

bs
er

va
tio

ns
 p

er
 s

ec
Nodes in Cluster

▪ Markov-chain Monte Carlo
simulations on GPS
observations

▪ Very CPU intensive, requires
dozens of machines for useful
computation

▪ Scales linearly with cluster size

Hot Data Analytics

Vu Pham

Vision - one stack to rule them all

Hot Data Analytics

Vu Pham

Spark program vs Spark Streaming program

Spark Streaming program on Twitter stream
val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)
val hashTags = tweets.flatMap (status => getTags(status))
hashTags.saveAsHadoopFiles("hdfs://...")

Spark program on Twitter log file
val tweets = sc.hadoopFile("hdfs://...")
val hashTags = tweets.flatMap (status => getTags(status))
hashTags.saveAsHadoopFile("hdfs://...")

Hot Data Analytics

Vu Pham

• Explore data
interactively to
identify problems

• Use same code in
Spark for processing
large logs

• Use similar code in
Spark Streaming for
realtime processing

Advantage of an unified stack

$./spark-shell
scala> val file = sc.hadoopFile(“smallLogs”)
...
scala> val filtered = file.filter(_.contains(“ERROR”))
...
scala> val mapped = filtered.map(...)
...object ProcessProductionData {

def main(args: Array[String]) {
val sc = new SparkContext(...)
val file = sc.hadoopFile(“productionLogs”)
val filtered = file.filter(_.contains(“ERROR”))
val mapped = filtered.map(...)
...

}
} object ProcessLiveStream {

def main(args: Array[String]) {
val sc = new StreamingContext(...)
val stream = sc.kafkaStream(...)
val filtered = stream.filter(_.contains(“ERROR”))
val mapped = filtered.map(...)
...

}
}

Hot Data Analytics

Vu Pham

• Spark 0.8.1
• Marked alpha, but has been quite stable
• Master fault tolerance – manual recovery

• Restart computation from a checkpoint file saved to HDFS

• Spark 0.9 in Jan 2014 – out of alpha!
• Automated master fault recovery
• Performance optimizations
• Web UI, and better monitoring capabilities

• Spark v2.4.0 released in November 2, 2018

Roadmap

Hot Data Analytics

Vu Pham

Sliding Window Analytics

Hot Data Analytics

Vu Pham

Spark Streaming Windowing Capabilities
• Parameters

• Window length: duration of the window
• Sliding interval: interval at which the window operation is

performed
• Both the parameters must be a multiple of the batch interval

• A window creates a new DStream with a larger batch size

Hot Data Analytics

Vu Pham

Spark Window Functions for DataFrames and SQL

Introduced in Spark 1.4, Spark window functions improved the expressiveness of
Spark DataFrames and Spark SQL. With window functions, you can easily calculate a
moving average or cumulative sum, or reference a value in a previous row of a
table. Window functions allow you to do many common calculations with
DataFrames, without having to resort to RDD manipulation.

Aggregates, UDFs vs. Window functions

Window functions are complementary to existing DataFrame operations:
aggregates, such as sum and avg, and UDFs. To review, aggregates calculate one
result, a sum or average, for each group of rows, whereas UDFs calculate one result
for each row based on only data in that row. In contrast, window functions calculate
one result for each row based on a window of rows. For example, in a moving
average, you calculate for each row the average of the rows surrounding the current
row; this can be done with window functions.

Spark Window Functions

Hot Data Analytics

Vu Pham

• Let us dive right into the moving average example. In this example
dataset, there are two customers who have spent different amounts
of money each day.

• // Building the customer DataFrame. All examples are written in
Scala with Spark 1.6.1, but the same can be done in Python or SQL.

val customers = sc.parallelize(List(("Alice", "2016-05-01", 50.00),
("Alice", "2016-05-03", 45.00),
("Alice", "2016-05-04", 55.00),
("Bob", "2016-05-01", 25.00),
("Bob", "2016-05-04", 29.00),
("Bob", "2016-05-06", 27.00))).

toDF("name", "date", "amountSpent")

Moving Average Example

Hot Data Analytics

Vu Pham

// Import the window functions.
import org.apache.spark.sql.expressions.Window
import org.apache.spark.sql.functions._

// Create a window spec.
val wSpec1 =
Window.partitionBy("name").orderBy("date").rowsBetween(-1, 1)

• In this window spec, the data is partitioned by customer. Each
customer’s data is ordered by date. And, the window frame is
defined as starting from -1 (one row before the current row) and
ending at 1 (one row after the current row), for a total of 3 rows in
the sliding window.

Moving Average Example

Hot Data Analytics

Vu Pham

// Calculate the moving average
customers.withColumn("movingAvg",

avg(customers("amountSpent")).over(wSpec1)).show()

This code adds a new column, “movingAvg”, by applying the avg
function on the sliding window defined in the window spec:

Moving Average Example

Hot Data Analytics

Vu Pham

• As shown in the above example, there are two parts to applying a window function: (1)
specifying the window function, such as avg in the example, and (2) specifying the
window spec, or wSpec1 in the example. For (1), you can find a full list of the window
functions here:

• https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.function
s$

• You can use functions listed under “Aggregate Functions” and “Window Functions”.

• For (2) specifying a window spec, there are three components: partition by, order by, and
frame.

1. “Partition by” defines how the data is grouped; in the above example, it was by
customer. You have to specify a reasonable grouping because all data within a group will
be collected to the same machine. Ideally, the DataFrame has already been partitioned by
the desired grouping.

2. “Order by” defines how rows are ordered within a group; in the above example, it
was by date.

3. “Frame” defines the boundaries of the window with respect to the current row; in the
above example, the window ranged between the previous row and the next row.

Window function and Window Spec definition

Hot Data Analytics

Vu Pham

Next, let us calculate the cumulative sum of the amount spent per customer.
// Window spec: the frame ranges from the beginning (Long.MinValue) to
the current row (0).
val wSpec2 =
Window.partitionBy("name").orderBy("date").rowsBetween(Long.MinValue, 0)
// Create a new column which calculates the sum over the defined window
frame.
customers.withColumn("cumSum",
sum(customers("amountSpent")).over(wSpec2)).show()

Cumulative Sum

Hot Data Analytics

Vu Pham

In the next example, we want to see the amount spent by the customer
in their previous visit.
// Window spec. No need to specify a frame in this case.
val wSpec3 = Window.partitionBy("name").orderBy("date")

// Use the lag function to look backwards by one row.
customers.withColumn("prevAmountSpent",
lag(customers("amountSpent"), 1).over(wSpec3)).show()

Data from previous row

Hot Data Analytics

Vu Pham

• In this example, we want to know the order of a customer’s
visit (whether this is their first, second, or third visit).

// The rank function returns what we want.
customers.withColumn("rank", rank().over(wSpec3)).show()

Rank

Hot Data Analytics

Vu Pham

Case Study: Twitter Sentiment
Analysis with Spark Streaming

Hot Data Analytics

Vu Pham

• Trending Topics can be used to create campaigns and attract
larger audience. Sentiment Analytics helps in crisis management,
service adjusting and target marketing.

• Sentiment refers to the emotion behind a social media mention
online.

• Sentiment Analysis is categorising the tweets related to particular
topic and performing data mining using Sentiment Automation
Analytics Tools.

• We will be performing Twitter Sentiment Analysis as an Use Case
or Spark Streaming.

Case Study: Twitter Sentiment Analysis

Hot Data Analytics

Vu Pham

• To design a Twitter Sentiment Analysis System where we
populate real-time sentiments for crisis management, service
adjusting and target marketing.

Sentiment Analysis is used to:
• Predict the success of a movie
• Predict political campaign success
• Decide whether to invest in a certain company
• Targeted advertising
• Review products and services

Problem Statement

Hot Data Analytics

Vu Pham

Importing Packages

Hot Data Analytics

Vu Pham

Twitter Token Authorization

Hot Data Analytics

Vu Pham

DStream Transformation

Hot Data Analytics

Vu Pham

Results

Hot Data Analytics

Vu Pham

Sentiment for Trump

Hot Data Analytics

Vu Pham

• As we have seen from our Sentiment Analysis demonstration,
we can extract sentiments of particular topics just like we did
for ‘Trump’. Similarly, Sentiment Analytics can be used in crisis
management, service adjusting and target marketing by
companies around the world.

• Companies using Spark Streaming for Sentiment Analysis have
applied the same approach to achieve the following:

1. Enhancing the customer experience
2. Gaining competitive advantage
3. Gaining Business Intelligence
4. Revitalizing a losing brand

Applying Sentiment Analysis

Hot Data Analytics

Vu Pham

• https://spark.apache.org/streaming/

• Streaming programming guide –
spark.incubator.apache.org/docs/latest/streaming-
programming-guide.html

• https://databricks.com/speaker/tathagata-das

References

Hot Data Analytics

https://spark.apache.org/streaming/
http://spark.incubator.apache.org/docs/latest/streaming-programming-guide.html
http://spark.incubator.apache.org/docs/latest/streaming-programming-guide.html

Vu Pham

▪ Stream processing framework that is ...

- Scalable to large clusters
- Achieves second-scale latencies
- Has simple programming model
- Integrates with batch & interactive workloads
- Ensures efficient fault-tolerance in stateful

computations

Conclusion

Hot Data Analytics

Vu Pham

Introduction to MQTT and Kafka
in IoT Platform

Dr. Rajiv Misra, Professor
Dept. of Computer Science & Engg.
Indian Institute of Technology Patna
rajivm@iitp.ac.in

Introduction to MQTT and Kafka

NPTEL

Vu Pham

Preface
Content of this Lecture:

Define MQTT and Kafka

Integration of MQTT and Kafka

Describe the Kafka data model

Describe Kafka architecture

List the types of messaging systems

Explain the importance of brokers

Introduction to MQTT and Kafka

NPTEL

Vu Pham

Introduction: Internet of Things with MQTT
MQTT (Message Queuing Telemetry Transport):

MQTT is a widely used ISO standard (ISO/IEC PRF 20922) client-
server messaging protocol.

The protocol is lightweight and implements a publish/subscribe
communication pattern.

MQTT is stable in unreliable environments of high latency and
low network bandwidth which makes it a perfect match for
Internet of Things scenarios like connected cars or smart homes.

MQTT has many implementations of client libraries and brokers
like Mosquitto, HiveMQ, JoramMQ, etc and its primary purpose
is to connect millions of devices — especially in the IoT context.

Introduction to MQTT and Kafka

NPTEL

Vu Pham

Introduction: Internet of Things with MQTT
MQTT (Message Queuing Telemetry Transport):

Introduction to MQTT and Kafka

NPTEL

Vu Pham

Introduction: Internet of Things Streaming using Kafka

Introduction to MQTT and Kafka

• Kafka was initially created by LinkedIn and later distributed on the
Apache License. Kafka is still open-source. Additionally, a company
named Confluent is offering Confluent Platform with Kafka as a
managed service providing several additional features around like
Schema Registry, REST & MQTT Proxies, and specific connectors.

• Kafka implements an own protocol under the hood, following a
publish/subscribe pattern which structures communication into
topics — similar to MQTT. However, that's the only thing both have
in common. NPTEL

Vu Pham

Introduction: Internet of Things Streaming using Kafka

Introduction to MQTT and Kafka

• Kafka is designed to be deployable as a cluster of multiple
nodes which makes it excellent for scaling. Additionally, it
offers persistent storage of messages and integration to
business on-premise or cloud data canters and
applications.

• Its main use cases are distributed event streaming and
storage/consumption of massive amounts of data as
messages.

• It makes Kafka a perfect match for scenarios that require
high-performance, scalable data pipelines, or data
integration across multiple systems.

NPTEL

Vu Pham

Introduction: Internet of Things Streaming using Kafka

Introduction to MQTT and Kafka

NPTEL

Vu Pham

Kafka is a high-performance, real-time messaging
system. It is an open source tool and is a part of Apache
projects.

The characteristics of Kafka are:

1. It is a distributed and partitioned messaging system.
2. It is highly fault-tolerant
3. It is highly scalable.
4. It can process and send millions of messages per second

to several receivers.

Introduction to MQTT and Kafka

Introduction: Internet of Things Streaming using Kafka

NPTEL

Vu Pham

Kafka can be used for various purposes in an organization,
such as:

Kafka Use Cases

Introduction to MQTT and Kafka

NPTEL

Vu Pham

Apache Kafka: a Streaming Data Platform

Ø Most of what a business does can be thought as event
streams. They are in a

• Retail system: orders, shipments, returns, …
• Financial system: stock ticks, orders, …
• Web site: page views, clicks, searches, …
• IoT: sensor readings, …

and so on.

Introduction to MQTT and Kafka

NPTEL

Vu Pham

Why using both MQTT and Kafka?

If you need to build performant data pipelines, store massive amounts
of messages, or integrate different business applications or data
centers in real-time — use Kafka.

If you have lots of small applications or devices, running in unwired or
unstable environments, exchanging messages in real-time on
numerous different channels/topics — use MQTT.

There are two things that make it quite obvious to combine the two
technologies:
• the communication structure in topics and
• the publish/subscribe message exchange pattern.
But in which scenarios would you use both Kafka and MQTT together?
Lets see in further slides.

Introduction to MQTT and Kafka

NPTEL

Vu Pham

Use Case: Why using both MQTT and Kafka?

The most popular use case is probably the integration of MQTT devices with backend
applications for monitoring, control, or analytics running in the companies' data centers
or the cloud.

Imagine you want to send data from different IoT devices to a backend application for
machine learning based pattern recognition or analytics. At the same time, the backend
application should send back messages to control the IoT device based on the central
insights (e.g. send control messages to avoid a device from overheating, …).

Consequently, MQTT and Kafka are a perfect combination for end-to-end IoT
integration from the edge to the business applications and data centers.

The IoT/edge devices can connect to the MQTT broker via MQTT protocol (with all the
advantages it has in these environments).

The messages are then forwarded to Kafka to distribute them into the subscribing
business applications and the other way around.

Introduction to MQTT and Kafka

NPTEL

Vu Pham

Integration between MQTT and Kafka

1. IoT device to publish two messages
2. Build an MQTT Bridge to Kafka
3. Connect to Kafka via MQTT proxy
4. Connect MQTT Broker to Kafka via Kafka Connect
5. Connect MQTT Broker to Kafka via MQTT Broker extension

Introduction to MQTT and Kafka

NPTEL

Vu Pham

Integration between MQTT and Kafka

Introduction to MQTT and Kafka

IoT device to publish two messages:

NPTEL

Vu Pham

Integration between MQTT and Kafka

Introduction to MQTT and Kafka

IoT device to publish two messages:

The IoT device can publish two messages — one to the topic of the MQTT
broker and a second one to the topic of the Kafka broker. This has several
drawbacks:
• The IoT device needs to check the delivery guarantees of both protocols and

it must be ensured that the message is received by both or not at all. A lot
of investment in error handling must be done.

• Additionally, most IoT devices are lightweight. Sending two messages with
two different protocols is a huge overhead. Most IoT devices might have not
even the possibility to connect to Kafka natively.

• Kafka is not designed to handle a massive amount of different topics with
millions of different devices. A full-blown IoT scenario with this integration
option could lead to issues on the Kafka broker side.

NPTEL

Vu Pham

Integration between MQTT and Kafka

Introduction to Kafka

Scenario 1: Build an MQTT Bridge to Kafka
Another alternative of connecting Kafka and MQTT is building a custom application as a
bridge between the MQTT and Kafka broker. This application needs to use an MQTT client
library to connect to the MQTT broker and a Kafka client library to connect to the Kafka broker
and consequently subscribe to the relevant topics and publish the messages in the desired
direction.

In this context resilience and fault tolerance are very important, but hard to reach, especially
if an end-to-end guaranty of at least once or exactly once message delivery is required. The
custom bridge application can only acknowledge the MQTT receipt if it successfully forwarded
the message to the Kafka broker or need to buffer the messages in case something goes
wrong. A significant development effort in error handling and functionality similar to
technology already found in Kafka an/or MQTT broker is necessary.NPTEL

Vu Pham

Integration between MQTT and Kafka

Introduction to MQTT and Kafka

Scenario 2: Connect to Kafka via MQTT proxy

If the only requirement is to persist MQTT messages or integrate them with legacy
systems, this option could be a good fit. In this case, the Confluent Kafka MQTT
proxy can be used by the IoT devices to directly publish the messages to Kafka. An
MQTT broker would be additional overhead and would be simply removed from the
picture.

NPTEL

Vu Pham

Integration between MQTT and Kafka

Introduction to MQTT and Kafka

Scenario 3: Connect MQTT Broker to Kafka via Kafka Connect
Kafka Connect is an extension framework providing different connectors for data
ingestion to or data query from Kafka for multiple technologies or software vendors.
Kafka Connect provides an MQTT connector out of the box which represents an
MQTT client that can subscribe to the MQTT brokers topics.

NPTEL

Vu Pham

Integration between MQTT and Kafka

Introduction to MQTT and Kafka

Scenario4 : Connect MQTT Broker to Kafka via MQTT Broker extension
Another approach is to implement a Kafka client as an extension on the MQTT broker.
This allows the MQTT broker to ingest the IoT device messages to the Kafka
broker/cluster.
Some MQTT providers like EMQ or HiveMQ have already implemented the bridging of
MQTT broker and Kafka by extending their brokers with a native Kafka protocol.

NPTEL

Vu Pham

Kafka can be used to aggregate user activity data such as clicks,
navigation, and searches from different websites of an
organization; such user activities can be sent to a real-time
monitoring system and hadoop system for offline processing.

Aggregating User Activity Using Kafka-Example

Introduction to MQTT and Kafka

NPTEL

Vu Pham

The Kafka data model consists of messages and topics.
Messages represent information such as, lines in a log file, a row of stock
market data, or an error message from a system.
Messages are grouped into categories called topics.
Example: LogMessage and Stock Message.
The processes that publish messages into a topic in Kafka are known as
producers.
The processes that receive the messages from a topic in Kafka are known as
consumers.
The processes or servers within Kafka that process the messages are known as
brokers.
A Kafka cluster consists of a set of brokers that process the messages.

Kafka Data Model

Introduction to Kafka

NPTEL

Vu Pham

A topic is a category of messages in Kafka.
The producers publish the messages into topics.
The consumers read the messages from topics.
A topic is divided into one or more partitions.
A partition is also known as a commit log.
Each partition contains an ordered set of messages.
Each message is identified by its offset in the partition.
Messages are added at one end of the partition and consumed
at the other.

Topics

Introduction to MQTT and Kafka

NPTEL

Vu Pham

Topics are divided into partitions, which are the unit of
parallelism in Kafka.

Partitions allow messages in a topic to be distributed to
multiple servers.
A topic can have any number of partitions.
Each partition should fit in a single Kafka server.
The number of partitions decide the parallelism of the topic.

Partitions

Introduction to MQTT and Kafka

NPTEL

Vu Pham

Partitions can be distributed across the Kafka cluster.
Each Kafka server may handle one or more partitions.
A partition can be replicated across several servers fro fault-tolerance.
One server is marked as a leader for the partition and the others are
marked as followers.
The leader controls the read and write for the partition, whereas, the
followers replicate the data.
If a leader fails, one of the followers automatically become the leader.
Zookeeper is used for the leader selection.

Partition Distribution

Introduction to MQTT and Kafka

NPTEL

Vu Pham

The producer is the creator of the message in Kafka.

The producers place the message to a particular topic.
The producers also decide which partition to place the message into.
Topics should already exist before a message is placed by the producer.
Messages are added at one end of the partition.

Producers

Introduction to MQTT and Kafka

NPTEL

Vu Pham

The consumer is the receiver of the message in Kafka.

Each consumer belongs to a consumer group.
A consumer group may have one or more consumers.
The consumers specify what topics they want to listen to.
A message is sent to all the consumers in a consumer group.
The consumer groups are used to control the messaging system.

Consumers

Introduction to MQTT and Kafka

NPTEL

Vu Pham

Kafka architecture consists of brokers that take messages from the
producers and add to a partition of a topic. Brokers provide the
messages to the consumers from the partitions.

• A topic is divided into multiple partitions.
• The messages are added to the partitions at one end and consumed in

the same order.
• Each partition acts as a message queue.
• Consumers are divided into consumer groups.
• Each message is delivered to one consumer in each consumer group.
• Zookeeper is used for coordination.

Kafka Architecture

Introduction to MQTT and Kafka

NPTEL

Vu Pham

Kafka architecture supports the publish-subscribe and queue system.

Types of Messaging Systems

Introduction to MQTT and Kafka

NPTEL

Vu Pham

Example: Queue System

Introduction to MQTT and Kafka

NPTEL

Vu Pham

Example: Publish-Subscribe System

Introduction to MQTT and Kafka

NPTEL

Vu Pham

Brokers are the Kafka processes that process the messages in Kafka.

• Each machine in the cluster can run one broker.

• They coordinate among each other using Zookeeper.

• One broker acts as a leader for a partition and handles the
delivery and persistence, where as, the others act as followers.

Brokers

Introduction to MQTT and Kafka

NPTEL

Vu Pham

Kafka Guarantees
Kafka guarantees the following:

1. Messages sent by a producer to a topic and a partition
are appended in the same order

2. A consumer instance gets the messages in the same
order as they are produced.

3. A topic with replication factor N, tolerates upto N-1
server failures.

Introduction to MQTT and Kafka

NPTEL

Vu Pham

Replication in Kafka
Kafka uses the primary-backup method of replication.

One machine (one replica) is called a leader and is chosen
as the primary; the remaining machines (replicas) are
chosen as the followers and act as backups.
The leader propagates the writes to the followers.
The leader waits until the writes are completed on all the
replicas.
If a replica is down, it is skipped for the write until it
comes back.
If the leader fails, one of the followers will be chosen as
the new leader; this mechanism can tolerate n-1 failures if
the replication factor is ‘n’

Introduction to MQTT and Kafka

NPTEL

Vu Pham

Persistence in Kafka
Kafka uses the Linux file system for persistence of messages

Persistence ensures no messages are lost.
Kafka relies on the file system page cache for fast reads
and writes.
All the data is immediately written to a file in file system.
Messages are grouped as message sets for more efficient
writes.
Message sets can be compressed to reduce network
bandwidth.
A standardized binary message format is used among
producers, brokers, and consumers to minimize data
modification.

Introduction to MQTT and Kafka

NPTEL

Vu Pham

Apache Kafka: a Streaming Data Platform
Ø Apache Kafka is an open source streaming data platform (a new

category of software!) with 3 major components:
1. Kafka Core: A central hub to transport and store event

streams in real-time.
2. Kafka Connect: A framework to import event streams from

other source data systems into Kafka and export event
streams from Kafka to destination data systems.

3. Kafka Streams: A Java library to process event streams live as
they occur.

Introduction to MQTT and Kafka

NPTEL

Vu Pham

o Kafka Streams code examples
o Apache Kafka

https://github.com/apache/kafka/tree/trunk/streams/examples/src/main/java/org/apache/kafka/
streams/examples

o Confluent https://github.com/confluentinc/examples/tree/master/kafka-streams

o Source Code https://github.com/apache/kafka/tree/trunk/streams

o Kafka Streams Java docs
http://docs.confluent.io/current/streams/javadocs/index.html

o First book on Kafka Streams (MEAP)
o Kafka Streams in Action https://www.manning.com/books/kafka-streams-in-action

o Kafka Streams download
o Apache Kafka https://kafka.apache.org/downloads
o Confluent Platform http://www.confluent.io/download

Further Learning

Introduction to MQTT and Kafka

NPTEL

https://github.com/apache/kafka/tree/trunk/streams/examples/src/main/java/org/apache/kafka/streams/examples
https://github.com/apache/kafka/tree/trunk/streams/examples/src/main/java/org/apache/kafka/streams/examples
https://github.com/confluentinc/examples/tree/master/kafka-streams
https://github.com/apache/kafka/tree/trunk/streams
http://docs.confluent.io/current/streams/javadocs/index.html
https://www.manning.com/books/kafka-streams-in-action
https://kafka.apache.org/downloads
http://www.confluent.io/download

Vu Pham

Kafka is a high-performance, real-time messaging system.

Kafka can be used as an external commit log for distributed
systems.

Kafka data model consists of messages and topics.

Kafka architecture consists of brokers that take messages from the
producers and add to a partition of a topics.

Kafka architecture supports two types of messaging system called
publish-subscribe and queue system.

Brokers are the Kafka processes that process the messages in Kafka.

Conclusion

Introduction to MQTT and Kafka

NPTEL

Vu Pham

Introduction to Edge Data Center for IoT
platform

Dr. Rajiv Misra, Professor
Dept. of Computer Science & Engg.
Indian Institute of Technology Patna
rajivm@iitp.ac.in

Introduction to Edge Data Center

NPTEL

Vu Pham

Preface

Introduction to Edge Data Center

Content of this Lecture:
Current demand of Data centers
Why to move Data centers to Edge?
In this lecture, we will discuss a brief introduction to Cloud
Computing and also focus on the aspects i.e. Why Clouds,
What is a Cloud, Whats new in todays Clouds and also
distinguish Cloud Computing from the previous generation
of distributed systemsNPTEL

Waves of Innovation: Cloud IoT Edge ML

Cloud IoT Edge ML

Cloud
(the waves of innovation started with cloud)
Globally available, unlimited compute resources

IoT
(IoT-as-SaaS platform is key drivers of public cloud)
Harnessing signals from sensors and devices, managed
centrally by the cloud

Edge
(IoT realize not everything needs to be in the cloud)
Intelligence offloaded from the cloud to IoT devices

ML
(rise of AI, ML models are trained in cloud are deployed
at the edge to make inferencing for predictive analytics
)

Breakthrough intelligence capabilities, in the cloud and
on the edge

ML

CurrentStateofCloud
• Highly centralized set of resources,

• Resembles Client/Server computing
• Compute is going beyond VMs as

Containers becoming mainstream
• Storage is complemented by CDN is

replicated and cached at edge locations
• Network stack is programmable SDN

enabling hybrid scenarios

Introduction to Edge Data CenterIntroduction to Edge Data Center

NPTEL

Edge Computing

● Edge computing makes the cloud truly distributed
● Moves core cloud services closer to the origin of data
● Edge Mimics public cloud platform capabilities
● Delivers storage, compute, and network services locally.
● Reduces the latency by avoiding the roundtrip to the cloud
● Brings in data sovereignty by keeping data where it actually

belongs, savings on cloud and bandwidth usages

Cloud IoT Edge MLIntroduction to Edge Data Center

NPTEL

Functionality of Edge Computing for IOT

• Data Ingestion and M2M Brokers

• Object Storage

• Functions as a Service

• Containers

• Distributed Computing
• NoSQL/Time-Series Database

• Stream Processing

• ML Models

Introduction to Edge Data Center

NPTEL

Vu Pham

Cloud Data Center: Current Demand

Introduction to Edge Data Center

In the next decade, we will continue to see
skyrocketing growth in the number of IP-
connected mobile and machine-to-machine
(M2M) devices, which will handle significant
amounts of IP traffic.
Tomorrow’s consumers will demand faster Wi-Fi
service and application delivery from online
providers. Also, some M2M devices, such as
autonomous vehicles, will require real-time
communications with local processing resources
to guarantee safety.

Today’s IP networks cannot handle the high-speed data transmissions that
tomorrow’s connected devices will require. In a traditional IP architecture, data
must often travel hundreds of miles over a network between end users or devices
and cloud resources. This results in latency, or slow delivery of time-sensitive
data.

Connected
Devices

The CloudNPTEL

Vu Pham

Cloud Data Center: Current Demand

Introduction to Edge Data Center

NPTEL

Vu Pham

Edge Data Center: Solution

Introduction to Edge Data Center

The solution to reducing latency lies in edge computing. By establishing IT deployments for
cloud-based services in edge data centers in localized areas, we effectively bring IT resources
closer to end users and devices. This helps us achieve efficient, high-speed delivery of
applications and data. Edge data centers are typically located on the edge of a network, with
connections back to a centralized cloud core.
Instead of bringing the users and devices to the data center, we bring the power of the data
center to the users and devices. Edge computing relies on a distributed data center
architecture, in which IT cloud servers housed in edge data centers are deployed on the outer
edges of a network. By bringing IT resources closer to the end users and/or devices they serve,
we can achieve high-speed, low-latency processing of applications and data.

NPTEL

Vu Pham

Edge Data Center: Solution

Introduction to Edge Data Center

NPTEL

Vu Pham

Why Move Data Centers to the Edge?

Introduction to Edge Data Center

There are four main benefits of moving data centers to the edge, which involve
improvements to latency, bandwidth, operating costs, and security:
1. Latency: edge data centers facilitate lower latency, meaning much faster response

times. Locating compute and storage functions closer to end users reduces the
physical distance that data packets need to traverse, as well as the number of
network “hops” involved, which lowers the probability of hitting a transmission path
where data flow is impaired

2. Bandwidth: edge data centers process data locally, reducing the volume of traffic
flowing to and from central servers. In turn, greater bandwidth across the user’s
broader network becomes available, which improves overall network performance

3. Operating Cost: because edge data centers reduce the volume of traffic flowing to
and from central servers, they inherently reduce the cost of data transmission and
routing, which is important for high-bandwidth applications. More specifically, edge
data centers lessen the number of necessary high-cost circuits and interconnection
hubs leading back to regional or cloud data centers, by moving compute and storage
closer to end users

4. Security: edge data centers enhance security by: i) reducing the amount of sensitive
data transmitted, ii) limiting the amount of data stored in any individual location,
given their decentralized architecture, and iii) decreasing broader network
vulnerabilities, because breaches can be ring-fenced to the portion of the network that
they compromise

NPTEL

Vu Pham

Edge Data Center: Introduction

Introduction to Edge Data Center

Edge data centers are small data centers that are located close to
the edge of a network. They provide the same devices found in
traditional data centers, but are contained in a smaller footprint,
closer to end users and devices.
Edge data centers can deliver cached content and cloud
computing resources to these devices. The concept works off
edge computing, which is a distributed IT architecture where
client data is processed as close to the originating source as
possible. Because the smaller data centers are positioned close to
the end users, they are used to deliver fast services with minimal
latency.
In an edge computing architecture, time-sensitive data may be
processed at the point of origin by an intermediary server that is
located in close geographical proximity to the client. The point is
to provide the quickest content delivery to an end device that may
need it, with as little latency as possible. Data that is less time-
sensitive can be sent to a larger data center for historical analysis,
big data analytics and long-term storage. Edge data centers work
off of the same concept, except instead of just having one
intermediary server in close geographical proximity to the client,
it's a small data center -- that can be as small as a box. Even
though it is not a new concept, edge data center is still a relatively
new term.

NPTEL

Vu Pham

Edge Data Center: Introduction

Introduction to Edge Data Center

The major benefit of an edge data center is the quick delivery of services with minimal
latency, thanks to the use of edge caching. Latency may be a big issue for organizations
that have to work with the internet of things (IoT), big data, cloud and streaming services.
Edge data centers can be used to provide high performance with low levels of latency to
end users, making for a better user experience. Typically, edge data centers will connect
to a larger, central data center or multiple other edge data centers.
Data is processed as close to the end user as possible, while less integral or time-centric
data can be sent to a central data center for processing. This allows an organization to
reduce latency.

NPTEL

Vu Pham

Edge Data Center: Use Cases

Introduction to Edge Data Center

1. 5G: Where a decentralized cell network made of edge data centers can help provide low
latency for 5G in use cases with high device density.
Telecommunications companies. With cell-tower edge data centers, telecom companies can
get better proximity to end users by connecting mobile phones and wireless sensors.
2. IoT: Edge data centers can be used for data generated by IoT devices. An edge data center
would be used if data generated by devices needs more processing but is also too time-
sensitive to be sent to a centralized server.
3. Healthcare: Some medical equipment, such as those used for robotic surgeries, would
require extremely low latency and network consistency, of which, edge data centers can
provide.
4. Autonomous vehicles: Edge data centers can be used to help collect, process and share
data between vehicles and other networks, which also relies on low latency. A network of
edge data centers can be used to collect data for auto manufacturers and emergency response
services.
5. Smart factories: Edge data centers can be used for machine Predictive maintenance, as well
as predictive quality management. It can also be used for efficiency regarding robotics used
within inventory management.

NPTEL

Vu Pham

Evolutionary changes that have occurred in distributed edge and
cloud computing over the past 30 years, driven by applications with
variable workloads, low-latency usecase and large data sets .
Evolutionary changes in machine architecture, operating system
platform, network connectivity, and application workload.
Edge computing uses multiple computers at network edge to solve
large-scale problems locally and over the Internet. Thus, distributed
edge computing becomes data-intensive and network-centric.
The emergence of distributed edge computing clouds instead
demands high-throughput computing (HTC) systems built with
distributed computing technologies.
High-throughput computing (HTC) appearing as computer clusters,
service-oriented, computational grids, peer-to-peer networks,
Internet clouds and edge, and the future Internet of Things.

Scalable Computing at network edge

Introduction to Edge Data Center

NPTEL

Vu Pham

The Hype of Cloud: Forecasting

Gartner in 2009 – Cloud computing revenue will soar
faster than expected and will exceed $150 billion by
2013. It will represent 19% of IT spending by 2015.

IDC in 2009: “Spending on IT cloud services will triple
in the next 5 years, reaching $42 billion.”

Forrester in 2010 – Cloud computing will go from
$40.7 billion in 2010 to $241 billion in 2020.

Companies and even federal/state governments using
cloud computing now: fbo.gov

Introduction to Edge Data Center

NPTEL

Vu Pham

Many Cloud Providers
• AWS: Amazon Web Services

– EC2: Elastic Compute Cloud
– S3: Simple Storage Service
– EBS: Elastic Block Storage

• Microsoft Azure
• Google Compute Engine/AppEngine
• Rightscale, Salesforce, EMC,

Gigaspaces, 10gen, Datastax, Oracle,
VMWare, Yahoo, Cloudera

• And 100s more…

Introduction to Edge Data Center

NPTEL

Vu Pham

Categories of Clouds
Can be either a (i) public cloud, or (ii) private cloud
Private clouds are accessible only to company employees
Public clouds provide service to any paying customer:

Amazon S3 (Simple Storage Service): store arbitrary
datasets, pay per GB-month stored

Amazon EC2 (Elastic Compute Cloud): upload and run
arbitrary OS images, pay per CPU hour used

Google App Engine/Compute Engine: develop applications
within their App Engine framework, upload data that will be
imported into their format, and run

Introduction to Edge Data Center

NPTEL

Vu Pham

Customers Save: Time and Money
“With AWS, a new server can be up and running in three minutes
compared to seven and a half weeks to deploy a server internally and a
64-node Linux cluster can be online in five minutes (compared with three
months internally.”

“With Online Services, reduce the IT operational costs by roughly 30% of
spending”

“A private cloud of virtual servers inside its datacenter has saved nearly
crores of rupees annually, because the company can share computing
power and storage resources across servers.”

100s of startups can harness large computing resources without buying
their own machines.

Introduction to Edge Data Center

NPTEL

Vu Pham

Advances in virtualization make it possible to see the growth of
Internet clouds as a new computing paradigm.
i.e. dramatic differences between developing software for millions
to use as a service versus distributing software to run on their PCs.”

History:
In 1984, John Gage Sun Microsystems gave the slogan,
“The network is the computer.”
In 2008, David Patterson UC Berkeley said,
“The data center is the computer.”
Recently, Rajkumar Buyya of Melbourne University simply said:
“The cloud is the computer.”
Some people view clouds as grids or clusters with changes through
virtualization, since clouds are anticipated to process huge data sets generated
by the traditional Internet, social networks, and the future IoT.

What is a Cloud?

Introduction to Edge Data Center

NPTEL

Vu Pham

What is a Cloud?
A single-site cloud (as known as “Datacenter”)
consists of

Compute nodes (grouped into racks)
Switches, connecting the racks
A network topology, e.g., hierarchical
Storage (backend) nodes connected to the
network
Front-end for submitting jobs and receiving
client requests
(Often called “three-tier architecture”)
Software Services

A geographically distributed cloud consists of
Multiple such sites
Each site perhaps with a different structure and
services

Introduction to Edge Data Center

NPTEL

Vu Pham

Cloud computing overlaps with distributed computing.

Distributed computing: A distributed system consists of
multiple autonomous computers, having its own memory,
communicating through message passing.

Cloud computing: Clouds can be built with physical or
virtualized resources over large data centers that are distributed
systems. Cloud computing is also considered to be a form of
utility computing or service computing.

Computing Paradigm Distinctions

Introduction to Edge Data Center

NPTEL

Vu Pham

“A Cloudy History of Time”

Introduction to Edge Data Center

1940
1950

1960

1970

1980

1990

2000

Timesharing Companies
& Data Processing Industry

Grids

Peer to peer systems

Clusters

The first datacenters!

PCs
(not distributed!)

Clouds and datacenters

2012NPTEL

Vu Pham

“A Cloudy History of Time”

Introduction to Edge Data Center

1940
1950

1960

1970

1980

1990

2000

2012 Clouds

Timesharing Industry (1975):
•Market Share: Honeywell 34%, IBM 15%,
•Xerox 10%, CDC 10%, DEC 10%, UNIVAC 10%
•Honeywell 6000 & 635, IBM 370/168,

Xerox 940 & Sigma 9, DEC PDP-10, UNIVAC 1108

Data Processing Industry
- 1968: $70 M. 1978: $3.15 Billion

First large datacenters: ENIAC, ORDVAC, ILLIAC
Many used vacuum tubes and mechanical relays

Berkeley NOW Project
Supercomputers
Server Farms (e.g., Oceano)

P2P Systems (90s-00s)
•Many Millions of users
•Many GB per day

Grids (1980s-2000s):
•GriPhyN (1970s-80s)
•Open Science Grid and Lambda Rail (2000s)
•Globus & other standards (1990s-2000s)

NPTEL

Vu Pham

Scalable Computing Trends: Technology

Doubling Periods – storage: 12 months, bandwidth: 9 months,
and CPU compute capacity: 18 months (what law is this?)
Moore’s law indicates that processor speed doubles every 18
months.
Gilder’s law indicates that network bandwidth has doubled each
year in the past.

Then and Now
Bandwidth
• 1985: mostly 56Kbps links nationwide
• 2015: Tbps links widespread

Disk capacity
• Today’s PCs have TBs, far more than a 1990 supercomputer

Introduction to Edge Data Center

NPTEL

Vu Pham

Aiming towards autonomic operations that can be self-
organized to support dynamic discovery. Major
computing paradigms are composable with QoS and
SLAs (service-level agreements).
In 1965, MIT's Fernando Corbató of the Multics operating
system envisioned a computer facility operating “like a
power company or water company”.
Plug your thin client into the computing Utility and Play
Intensive Compute & Communicate Application
Utility computing focuses on a business model in which
customers receive computing resources from a paid
service provider.
All grid/cloud platforms are regarded as utility service providers.

The Trend toward Utility Computing

Introduction to Edge Data Center

NPTEL

Vu Pham

Features of Today’s Clouds

I. Massive scale: Very large data centers, contain tens of thousands
sometimes hundreds of thousands of servers and you can run your
computation across as many servers as you want and as many servers
as your application will scale.

II. On-demand access: Pay-as-you-go, no upfront commitment.
– And anyone can access it

III. Data-intensive Nature: What was MBs has now become TBs, PBs and
XBs.
– Daily logs, forensics, Web data, etc.

IV. New Cloud Programming Paradigms: MapReduce/Hadoop,
NoSQL/Cassandra/MongoDB and many others.

– Combination of one or more of these gives rise to novel and
unsolved distributed computing problems in cloud computing.

Introduction to Edge Data Center

NPTEL

Vu Pham

I. Massive Scale
• Facebook [GigaOm, 2012]

– 30K in 2009 -> 60K in 2010 -> 180K in 2012

• Microsoft [NYTimes, 2008]
– 150K machines
– Growth rate of 10K per month
– 80K total running Bing
– In 2013, Microsoft Cosmos had 110K machines (4 sites)

• Yahoo! [2009]:
– 100K
– Split into clusters of 4000

• AWS EC2 [Randy Bias, 2009]
– 40K machines
– 8 cores/machine

• eBay [2012]: 50K machines

• HP [2012]: 380K in 180 DCs

• Google: A lot

Introduction to Edge Data Center

NPTEL

Vu Pham

What does a datacenter look like from inside?

Lots of Servers

Introduction to Edge Data Center

NPTEL

Vu Pham

Power and Energy

Off-site

•WUE = Annual Water Usage / IT Equipment Energy (L/kWh)
– low is good

•PUE = Total facility Power / IT Equipment Power
– low is good (e.g., Google~1.11)

On-site

Introduction to Edge Data Center

NPTEL

Vu Pham

Cooling

•Air sucked in

•Combined with purified water

•Moves cool air through system

Introduction to Edge Data Center

NPTEL

Vu Pham

II. On-demand access: *AAS Classification
• On-demand: renting vs. buying one. E.g.:

AWS Elastic Compute Cloud (EC2): a few cents to a few $
per CPU hour
AWS Simple Storage Service (S3): a few cents per GB-month

HaaS: Hardware as a Service
Get access to barebones hardware machines, do whatever
you want with them, Ex: Your own cluster
Not always a good idea because of security risks

IaaS: Infrastructure as a Service
Get access to flexible computing and storage infrastructure.
Virtualization is one way of achieving this. subsume HaaS.
Ex: Amazon Web Services (AWS: EC2 and S3), OpenStack,
Eucalyptus, Rightscale, Microsoft Azure, Google Cloud.

Introduction to Edge Data Center

NPTEL

Vu Pham

II. On-demand access: *AAS Classification

PaaS: Platform as a Service
Get access to flexible computing and storage
infrastructure, coupled with a software platform
(often tightly coupled)
Ex: Google’s AppEngine (Python, Java, Go)

SaaS: Software as a Service
Get access to software services, when you need
them. subsume SOA (Service Oriented
Architectures).
Ex: Google docs, MS Office on demand

Introduction to Edge Data Center

NPTEL

Vu Pham

III. Data-intensive Computing
Computation-Intensive Computing

Example areas: MPI-based, High-performance
computing, Grids
Typically run on supercomputers (e.g., NCSA Blue
Waters)

Data-Intensive
Typically store data at datacenters
Use compute nodes nearby
Compute nodes run computation services

In data-intensive computing, the focus shifts
from computation to the data:
CPU utilization no longer the most important
resource metric, instead I/O is (disk and/or network)

Introduction to Edge Data Center

NPTEL

Vu Pham

IV. New Cloud Programming Paradigms
Easy to write and run highly parallel programs in new cloud programming
paradigms:

Google: MapReduce and Sawzall
Amazon: Elastic MapReduce service (pay-as-you-go)
Google (MapReduce)
• Indexing: a chain of 24 MapReduce jobs
• ~200K jobs processing 50PB/month (in 2006)

Yahoo! (Hadoop + Pig)
• WebMap: a chain of several MapReduce jobs
• 300 TB of data, 10K cores, many tens of hours (~2008)

Facebook (Hadoop + Hive)
• ~300TB total, adding 2TB/day (in 2008)
• 3K jobs processing 55TB/day

NoSQL: MySQL is an industry standard, but Cassandra is 2400 times faster

Introduction to Edge Data Center

NPTEL

Vu Pham

Two Categories of Clouds
Can be either a (i) public cloud, or (ii) private
cloud

Private clouds are accessible only to company
employees
Example of popular vendors for creating private
clouds are VMware, Microsoft Azure, Eucalyptus etc.

Public clouds provide service to any paying
customer
Examples of large public cloud services include
Amazon EC2, Google AppEngine, Gmail, Office365
and Dropbox etc.

You’re starting a new service/company: should
you use a public cloud or purchase your own
private cloud?

Introduction to Edge Data Center

NPTEL

Vu Pham

Single site Cloud: to Outsource or Own?
• Medium-sized organization: wishes to run a service for M months

– Service requires 128 servers (1024 cores) and 524 TB

• Outsource (e.g., via AWS): monthly cost

– S3 costs: $0.12 per GB month. EC2 costs: $0.10 per CPU hour (costs
from 2009) Storage = $ 0.12 X 524 X 1000 ~ $62 K

– Total = Storage + CPUs = $62 K + $0.10 X 1024 X 24 X 30 ~ $136 K

• Own: monthly cost

– Storage ~ $349 K / M Total ~ $ 1555 K / M + 7.5 K (includes 1
sysadmin / 100 nodes)

• using 0.45:0.4:0.15 split for hardware:power: network and
3 year lifetime of hardware

o Breakeven analysis: more preferable to own if:
- $349 K / M < $62 K (storage)

- $ 1555 K / M + 7.5 K < $136 K (overall)
Breakeven points

o M > 5.55 months (storage)

o M > 12 months (overall)

Introduction to Edge Data Center

-Startups use clouds a lot
-Cloud providers benefit
monetarily most from storage

NPTEL

Vu Pham

Conclusion
• Limitations of current cloud data center.
• Understanding the concept of edge data center.
• Clouds build on many previous generations of distributed

systems
• Characteristics of cloud computing problem

- Scale, On-demand access, data-intensive,
new programming

Introduction to Edge Data Center

NPTEL

Vu Pham Introduction to Edge Data Center

NPTEL

Vu Pham

Design of Key-Value Stores for
IoT Edge Storage

Dr. Rajiv Misra
Associate Professor
Dept. of Computer Science & Engg.
Indian Institute of Technology Patna
rajivm@iitp.ac.in

Design of Key-Value Stores

Vu Pham

Preface

Content of this Lecture:
Design of datastore for IoT applications.

In this lecture, we will discuss the design and insight of
Key-value/NoSQL stores for today’s Edge storage
systems.

We will also discuss one of the most popular cloud
storage system i.e. Apache Cassandra and different
consistency solutions.

Design of Key-Value Stores

Vu Pham

IoT Edge: Data Flow

Design of Key-Value Stores

Initially the data collected from the azure IOT sensor is
passed through the IOT-Edge gateway and then we need to
pull the data from IOT-Edge using stream analytics and
then stream that data then to from the IOT Edge to the
data-store/database

Vu Pham

IoT Edge: Data Flow

Design of Key-Value Stores

Vu Pham

IoT Edge: Databases

Design of Key-Value Stores

The most popular databases for IoT apps are InfluxDB, CrateDB, Riak TS,
MongoDB, RethinkDB, SQLite, Apache Cassandra.
To select the right storage for Time Series and IoT domain use case, it
depends upon the data-access methods, you may require the following
database:

• Hot database:
These are typically used for data that is frequently being queried or
updated. They are often a good choice for storing data as they provide read
and write capabilities with little latency at the lowest cost. When choosing
a hot database you can consider the following features — flexibility in data
formats, querying abilities, messaging/ queueing capability, and tiered
memory models.
• Cold Database:
They store information in their original state with little to no changes made
thereafter. In contrast with real-time data collection, storing huge volumes
of historical data can be a difficult task on cold databases.

Vu Pham

IoT Edge: Databases

Design of Key-Value Stores

NoSQL with Built-In Sorting
BigTable, HBase, Cassandra, DynamoDB, Accumulo are often used to store time-series data.

Strong Sides: Extremely well scaled for writes. Performing the basic level of analytics extremely efficient.
Weak Sides: All other kinds of analytics are not supported and not efficient

NoSQL Purpose-Built Time Series DB
There are engines that have been designed from the ground up as Time Series databases. In the majority of
cases, they are NoSQL.
NewSQL In-Memory Databases
The in-memory nature of SQL databases increases their ability to handle fast data ingestion. SQL interface
enriched by the time buckets normalization support

Strong Sides: Provide the reach analytics capabilities.
Weak Sides: The scalability for writes and reads are usually limited or is very expensive

Cloud Time-Series Platforms
Azure and AWS released recently their time series data services/platforms:

Azure Time Series Insights
Amazon Timestream

The platforms cover many aspects of the time series data storing, visualizing, and really reach capabilities in
querying. They have built-in separation of data between hot, warm, and cold storage to make the data
storing and retrieval well balances from the cost of ownership perspective.

Vu Pham

IoT Edge Database: Example

Design of Key-Value Stores

As a continuation of the series of lecture about IoT Data Analytics, let’s
use the Fitness Tracker use case which represents well a typical IoT
use case. A dataset (as it is also described here and here) consists of a
set of observation, and each observation contains:

• A metric name generating by a sensor/edge, i.e.: heart rate,
elevation, steps

• A metric value generated by the sensor bound to the point in time,
i.e.: (2020–11–12 17:14:07, 71bpm), (2020–11–12 17:14:32, 93bpm),
etc

• Tags or Context description in which a given sensor is generating data,
i.e.: device model, geography location, user, activity type, etc.

Vu Pham

IoT Edge Database: Functional Requirement

Design of Key-Value Stores

Basic Level: Simple Data Retrieval
Random data access: for the particular point in
time return the proper metric value
Small range scans: for the particular time range
(reasonably small, within minutes or hours
depending on the frequency of data generation)
return the sequential metric values (i.e.: to draw a
standard chart on it)

Vu Pham

IoT Edge Database: Functional Requirement

Design of Key-Value Stores

Middle Level: Time Window Normalization
The measurement events usually supposed to be triggered on a
predefined recurrence basis, but there are always deviations in data
points timing. That is why it is highly desirable to have capabilities
around building predefined time windows to normalize the time series
data.
To the mid-level capacities it is worth to add more sophisticated
diagnostic analytics/ad-hoc queries:

Flexible Filtering: filter data points based on predicate on
tags/context attributes, i.e.: filtering data points by some region, user,
or activity type
Flexible Aggregations: grouping and aggregations on tags/context
attributes or their combinations, i.e.: max hearth rate by region by
activity type.

Vu Pham

IoT Edge Database: Functional Requirement

Design of Key-Value Stores

Advance Level: Sequential Row Pattern Matching
The most advanced level would include checking if
the sequence of events matches the
particular pattern to perform introspection and
advanced diagnosis:

Did similar patterns of measurements precede
specific events?;
What measurements might indicate the cause of
some event, such as a failure?

Vu Pham

IoT Edge Database: Non Functional Requirement

Design of Key-Value Stores

Besides the functional requirements, it’s really crucial to consider
non-functional requirements which often are the main drivers for
the selection:

Scalable storage: ability to handle big data volumes
Scalable writes: the ability to handle a big amount of
simultaneous writes. This is closely related to the real-time data
access — the ability to have the minimum possible lag between
when the data point is generated and when it’s available for
reading.
Scalable reads: the ability to handle a big amount of
simultaneous reads
High Maturity: presence on the market and community
support.

Vu Pham

(Business) Key à Value

(flipkart.com) item number à information about it

(easemytrip.com) Flight number à information about
flight, e.g., availability

(twitter.com) tweet id à information about tweet

(mybank.com) Account number à information about it

The Key-value Abstraction

Design of Key-Value Stores

Vu Pham

It’s a dictionary datastructure.
Insert, lookup, and delete by key
Example: hash table, binary tree

But distributed.

Seems familiar? Remember Distributed Hash tables (DHT)
in P2P systems?

Key-value stores reuse many techniques from DHTs.

The Key-value Abstraction (2)

Design of Key-Value Stores

Vu Pham

Yes, kind of
Relational Database Management Systems (RDBMSs)
have been around for ages
MySQL is the most popular among them
Data stored in tables
Schema-based, i.e., structured tables
Each row (data item) in a table has a primary key that is
unique within that table
Queried using SQL (Structured Query Language)
Supports joins

Is it a kind of database ?

Design of Key-Value Stores

Vu Pham

Relational Database Example

Example SQL queries
1. SELECT zipcode

FROM users
WHERE name = “John”

2. SELECT url
FROM blog
WHERE id = 11

3. SELECT users.zipcode,
blog.num_posts
FROM users JOIN blog
ON users.blog_url =
blog.url

user_id name zipcode blog_url blog_id

110 Smith 98765 smith.com 11

331 Antony 54321 antony.in 12

767 John 75676 john.net 13

Id url last_updated num_posts

11 smith.com 9/7/17 991

13 john.net 4/2/18 57

12 antony.in 15/6/16 1090

users table

blog table

Foreign keysPrimary keys

Design of Key-Value Stores

Vu Pham

Data: Large and unstructured: Difficult to come out with
schemas where the data can fit

Lots of random reads and writes: Coming from millions of
clients.

Sometimes write-heavy: Lot more writes compare to read

Foreign keys rarely needed

Joins infrequent

Mismatch with today’s workloads

Design of Key-Value Stores

Vu Pham

Speed
Avoid Single point of Failure (SPoF)
Low TCO (Total cost of operation and Total cost of
ownership)
Fewer system administrators
Incremental Scalability
Scale out, not scale up

Needs of Today’s Workloads

Design of Key-Value Stores

Vu Pham

Scale up = grow your cluster capacity by replacing with more
powerful machines

• Traditional approach
• Not cost-effective, as you’re buying above the sweet spot on the

price curve
• And you need to replace machines often

Scale out = incrementally grow your cluster capacity by
adding more COTS machines (Components Off the Shelf)

• Cheaper
• Over a long duration, phase in a few newer (faster) machines as

you phase out a few older machines
• Used by most companies who run datacenters and clouds today

Scale out, not Scale up

Design of Key-Value Stores

Vu Pham

NoSQL = “Not Only SQL”
Necessary API operations: get(key) and put(key, value)

And some extended operations, e.g., “CQL” in Cassandra
key-value store

Tables
“Column families” in Cassandra, “Table” in HBase,
“Collection” in MongoDB
Like RDBMS tables, but …
May be unstructured: May not have schemas
• Some columns may be missing from some rows

Don’t always support joins or have foreign keys
Can have index tables, just like RDBMSs

Key-value/NoSQL Data Model

Design of Key-Value Stores

Vu Pham

Unstructured

No schema
imposed

Columns missing
from some Rows

No foreign keys,
joins may not be
supported

Key-value/NoSQL Data Model

user_id name zipcode blog_url

110 Smith 98765 smith.com

331 Antony antony.in

767 75676 john.net

Id url last_updated num_posts

11 smith.com 9/7/17 991

13 john.net 57

12 antony.in 15/6/16

users table

blog table

Key Value

Value

Design of Key-Value Stores

Vu Pham

NoSQL systems often use column-oriented storage
RDBMSs store an entire row together (on disk or at a server)
NoSQL systems typically store a column together (or a group of
columns).

• Entries within a column are indexed and easy to locate, given a key
(and vice-versa)

Why useful?
Range searches within a column are fast since you don’t
need to fetch the entire database
E.g., Get me all the blog_ids from the blog table that were
updated within the past month

– Search in the the last_updated column, fetch corresponding
blog_id column

– Don’t need to fetch the other columns

Column-Oriented Storage

Design of Key-Value Stores

Vu Pham

Design of Apache Cassandra

Design of Apache Cassandra

Vu Pham

A distributed key-value store
Intended to run in a datacenter (and also across DCs)
Originally designed at Facebook
Open-sourced later, today an Apache project
Some of the companies that use Cassandra in their production
clusters

Blue chip companies: IBM, Adobe, HP, eBay, Ericsson
Newer companies: Twitter
Nonprofit companies: PBS Kids
Netflix: uses Cassandra to keep track of positions in the
video.

Cassandra

Design of Apache Cassandra

Vu Pham

How do you decide which server(s) a key-value resides
on?

Inside Cassandra: Key -> Server Mapping

Design of Apache Cassandra

Vu Pham

Cassandra uses a Ring-based DHT but without
finger tables or routing

Keyàserver mapping is the “Partitioner”

N80

0Say m=7

N32

N45

Backup replicas for
key K13

N112

N96

N16

Read/write K13

Primary replica for
key K13

(Remember this?)

CoordinatorClient

One ring per DC

Design of Apache Cassandra

Vu Pham

Replication Strategy:
1. SimpleStrategy
2. NetworkTopologyStrategy

1. SimpleStrategy: uses the Partitioner, of which there are two kinds
1. RandomPartitioner: Chord-like hash partitioning
2. ByteOrderedPartitioner: Assigns ranges of keys to servers.
• Easier for range queries (e.g., Get me all twitter users starting

with [a-b])
2. NetworkTopologyStrategy: for multi-DC deployments

Two replicas per DC
Three replicas per DC
Per DC
• First replica placed according to Partitioner
• Then go clockwise around ring until you hit a different rack

Data Placement Strategies

Design of Apache Cassandra

Vu Pham

Maps: IPs to racks and DCs. Configured in cassandra.yaml
config file
Some options:

SimpleSnitch: Unaware of Topology (Rack-unaware)
RackInferring: Assumes topology of network by octet of
server’s IP address
• 101.102.103.104 = x.<DC octet>.<rack octet>.<node octet>

PropertyFileSnitch: uses a config file
EC2Snitch: uses EC2.
• EC2 Region = DC
• Availability zone = rack

Other snitch options available

Snitches

Design of Apache Cassandra

Vu Pham

Need to be lock-free and fast (no reads or disk seeks)
Client sends write to one coordinator node in Cassandra
cluster

Coordinator may be per-key, or per-client, or per-query
Per-key Coordinator ensures writes for the key are
serialized

Coordinator uses Partitioner to send query to all replica
nodes responsible for key
When X replicas respond, coordinator returns an
acknowledgement to the client

X?

Writes

Design of Apache Cassandra

Vu Pham

Always writable: Hinted Handoff mechanism
If any replica is down, the coordinator writes to all
other replicas, and keeps the write locally until down
replica comes back up.
When all replicas are down, the Coordinator (front end)
buffers writes (for up to a few hours).

One ring per datacenter
Per-DC coordinator elected to coordinate with other
DCs
Election done via Zookeeper, which runs a Paxos
(consensus) variant

Writes (2)

Design of Apache Cassandra

Vu Pham

On receiving a write
1. Log it in disk commit log (for failure recovery)
2. Make changes to appropriate memtables

Memtable = In-memory representation of multiple key-value pairs
Typically append-only datastructure (fast)
Cache that can be searched by key
Write-back aas opposed to write-through

Later, when memtable is full or old, flush to disk
Data File: An SSTable (Sorted String Table) – list of key-value pairs,
sorted by key
SSTables are immutable (once created, they don’t change)
Index file: An SSTable of (key, position in data sstable) pairs
And a Bloom filter (for efficient search)

Writes at a replica node

Design of Apache Cassandra

Vu Pham

Compact way of representing a set of items
Checking for existence in set is cheap
Some probability of false positives: an item not in set may
check true as being in set
Never false negatives

Bloom Filter

Large Bit Map
0
1
2
3

69

127

111

Key-K
Hash1

Hash2

Hashk

On insert, set all hashed
bits.

On check-if-present,
return true if all hashed bits
set.
• False positives

False positive rate low
• m=4 hash functions
• 100 items
• 3200 bits
• FP rate = 0.02%

.

.

Design of Apache Cassandra

Vu Pham

Data updates accumulate over time and SStables and logs
need to be compacted

The process of compaction merges SSTables, i.e., by
merging updates for a key

Run periodically and locally at each server

Compaction

Design of Apache Cassandra

Vu Pham

Delete: don’t delete item right away

Add a tombstone to the log
Eventually, when compaction encounters tombstone it
will delete item

Deletes

Design of Apache Cassandra

Vu Pham

Read: Similar to writes, except
Coordinator can contact X replicas (e.g., in same rack)
• Coordinator sends read to replicas that have responded quickest in

past
• When X replicas respond, coordinator returns the latest-

timestamped value from among those X
• (X? We will check it later.)

Coordinator also fetches value from other replicas
• Checks consistency in the background, initiating a read repair if

any two values are different
• This mechanism seeks to eventually bring all replicas up to date

At a replica
• A row may be split across multiple SSTables => reads need to touch

multiple SSTables => reads slower than writes (but still fast)

Reads

Design of Apache Cassandra

Vu Pham

Any server in cluster could be the coordinator

So every server needs to maintain a list of all the other
servers that are currently in the server

List needs to be updated automatically as servers join,
leave, and fail

Membership

Design of Apache Cassandra

Vu Pham

Cluster Membership – Gossip-Style

1

1 10120 66

2 10103 62
3 10098 63
4 10111 65

2

4
3

Protocol:

•Nodes periodically gossip their
membership list

•On receipt, the local membership
list is updated, as shown

•If any heartbeat older than Tfail,
node is marked as failed

1 10118 64

2 10110 64
3 10090 58
4 10111 65

1 10120 70
2 10110 64
3 10098 70
4 10111 65

Current time : 70 at node 2

(asynchronous clocks)

Address

Heartbeat Counter

Time
(local)

Cassandra uses gossip-based cluster membership

(Remember this?)

Design of Apache Cassandra

Vu Pham

Suspicion mechanisms to adaptively set the timeout based on
underlying network and failure behavior
Accrual detector: Failure Detector outputs a value (PHI)
representing suspicion
Applications set an appropriate threshold
PHI calculation for a member

Inter-arrival times for gossip messages
PHI(t) =

– log(CDF or Probability(t_now – t_last))/log 10
PHI basically determines the detection timeout, but takes
into account historical inter-arrival time variations for
gossiped heartbeats

In practice, PHI = 5 => 10-15 sec detection time

Suspicion Mechanisms in Cassandra

Design of Apache Cassandra

Vu Pham

MySQL is one of the most popular (and has been for a
while)
On > 50 GB data
MySQL

Writes 300 ms avg
Reads 350 ms avg

Cassandra
Writes 0.12 ms avg
Reads 15 ms avg

Orders of magnitude faster
What’s the catch? What did we lose?

Cassandra Vs. RDBMS

Design of Apache Cassandra

Vu Pham

CAP Theorem

CAP Theorem

Vu Pham

Proposed by Eric Brewer (Berkeley)
Subsequently proved by Gilbert and Lynch (NUS and MIT)
In a distributed system you can satisfy atmost 2 out of the
3 guarantees:

1. Consistency: all nodes see same data at any time, or
reads return latest written value by any client

2. Availability: the system allows operations all the time,
and operations return quickly

3. Partition-tolerance: the system continues to work in
spite of network partitions

CAP Theorem

CAP Theorem

Vu Pham

Availability = Reads/writes complete reliably and quickly.
Measurements have shown that a 500 ms increase in
latency for operations at Amazon.com or at Google.com
can cause a 20% drop in revenue.
At Amazon, each added millisecond of latency implies a
$6M yearly loss.
User cognitive drift: If more than a second elapses between
clicking and material appearing, the user’s mind is already
somewhere else
SLAs (Service Level Agreements) written by providers
predominantly deal with latencies faced by clients.

Why is Availability Important?

CAP Theorem

Vu Pham

• Consistency = all nodes see same data at any time, or
reads return latest written value by any client.

When you access your bank or investment account via
multiple clients (laptop, workstation, phone, tablet), you
want the updates done from one client to be visible to
other clients.

When thousands of customers are looking to book a flight,
all updates from any client (e.g., book a flight) should be
accessible by other clients.

Why is Consistency Important?

CAP Theorem

Vu Pham

Partitions can happen across datacenters when the
Internet gets disconnected
• Internet router outages
• Under-sea cables cut
• DNS not working

Partitions can also occur within a datacenter, e.g., a rack
switch outage

Still desire system to continue functioning normally
under this scenario

Why is Partition-Tolerance Important?

CAP Theorem

Vu Pham

Since partition-tolerance is essential in today’s cloud
computing systems, CAP theorem implies that a system
has to choose between consistency and availability

Cassandra
Eventual (weak) consistency, Availability, Partition-
tolerance

Traditional RDBMSs
Strong consistency over availability under a partition

CAP Theorem Fallout

CAP Theorem

Vu Pham

Starting point for NoSQL
Revolution
A distributed storage
system can achieve at
most two of C, A, and P.
When partition-
tolerance is important,
you have to choose
between consistency and
availability

CAP Tradeoff

Consistency

Partition-tolerance Availability

RDBMSs
(non-replicated)

Cassandra, RIAK,
Dynamo, Voldemort

HBase, HyperTable,
BigTable, Spanner Pick 2

CAP Theorem

Vu Pham

If all writes stop (to a key), then all its values (replicas) will
converge eventually.
If writes continue, then system always tries to keep
converging.

• Moving “wave” of updated values lagging behind the latest
values sent by clients, but always trying to catch up.

May still return stale values to clients (e.g., if many back-
to-back writes).
But works well when there a few periods of low writes –
system converges quickly.

Eventual Consistency

CAP Theorem

Vu Pham

While RDBMS provide ACID
Atomicity
Consistency
Isolation
Durability

Key-value stores like Cassandra provide BASE
Basically Available Soft-state Eventual Consistency
Prefers Availability over Consistency

RDBMS vs. Key-value stores

CAP Theorem

Vu Pham

Cassandra has consistency levels
Client is allowed to choose a consistency level for each
operation (read/write)

ANY: any server (may not be replica)
• Fastest: coordinator caches write and replies quickly to

client
ALL: all replicas
• Ensures strong consistency, but slowest

ONE: at least one replica
• Faster than ALL, but cannot tolerate a failure

QUORUM: quorum across all replicas in all datacenters
(DCs)
• What?

Consistency in Cassandra

CAP Theorem

Vu Pham

In a nutshell:
Quorum = majority

> 50%
Any two quorums intersect

Client 1 does a write in
red quorum
Then client 2 does read
in blue quorum

At least one server in blue
quorum returns latest
write
Quorums faster than ALL,
but still ensure strong
consistency

Quorums for Consistency

Five replicas of a key-value pair

A second
quorumA quorum

A server

CAP Theorem

Vu Pham

Several key-value/NoSQL stores (e.g., Riak and Cassandra)
use quorums.
Reads

Client specifies value of R (≤ N = total number of
replicas of that key).
R = read consistency level.
Coordinator waits for R replicas to respond before
sending result to client.
In background, coordinator checks for consistency of
remaining (N-R) replicas, and initiates read repair if
needed.

Quorums in Detail

CAP Theorem

Vu Pham

Writes come in two flavors
Client specifies W (≤ N)
W = write consistency level.
Client writes new value to W replicas and returns. Two
flavors:
• Coordinator blocks until quorum is reached.
• Asynchronous: Just write and return.

Quorums in Detail (Contd..)

CAP Theorem

Vu Pham

R = read replica count, W = write replica count
Two necessary conditions:
1. W+R > N
2. W > N/2

Select values based on application
(W=1, R=1): very few writes and reads
(W=N, R=1): great for read-heavy workloads
(W=N/2+1, R=N/2+1): great for write-heavy workloads
(W=1, R=N): great for write-heavy workloads with
mostly one client writing per key

Quorums in Detail (Contd.)

CAP Theorem

Vu Pham

Client is allowed to choose a consistency level for each operation
(read/write)

ANY: any server (may not be replica)
• Fastest: coordinator may cache write and reply quickly to client

ALL: all replicas
• Slowest, but ensures strong consistency

ONE: at least one replica
• Faster than ALL, and ensures durability without failures

QUORUM: quorum across all replicas in all datacenters (DCs)
• Global consistency, but still fast

LOCAL_QUORUM: quorum in coordinator’s DC
• Faster: only waits for quorum in first DC client contacts

EACH_QUORUM: quorum in every DC
• Lets each DC do its own quorum: supports hierarchical replies

Cassandra Consistency Levels (Contd.)

CAP Theorem

Vu Pham

Cassandra offers Eventual Consistency

Are there other types of weak consistency models?

Types of Consistency

CAP Theorem

Vu Pham

Consistency Solutions

Consistency Solutions

Vu Pham

Consistency Solutions

Strong
(e.g., Sequential)Eventual

More consistency

Faster reads and writes

Consistency Solutions

Vu Pham

Cassandra offers Eventual Consistency
If writes to a key stop, all replicas of key will converge
Originally from Amazon’s Dynamo and LinkedIn’s
Voldemort systems

Eventual Consistency

Strong
(e.g., Sequential)Eventual

More consistency

Faster reads and writes

Consistency Solutions

Vu Pham

Striving towards strong consistency
While still trying to maintain high availability and
partition-tolerance

Newer Consistency Models

Strong
(e.g., Sequential)Eventual

Causal
Red-Blue

CRDTs
Per-key sequential

Probabilistic

Consistency Solutions

Vu Pham

Per-key sequential: Per key, all operations have a global
order
CRDTs (Commutative Replicated Data Types): Data
structures for which commutated writes give same result
[INRIA, France]

E.g., value == int, and only op allowed is +1
Effectively, servers don’t need to worry about
consistency

Newer Consistency Models (Contd.)

Strong
(e.g., Sequential)Eventual

Causal
Red-Blue

CRDTs
Per-key sequential

Probabilistic

Consistency Solutions

Vu Pham

Red-blue Consistency: Rewrite client transactions to
separate operations into red operations vs. blue
operations [MPI-SWS Germany]

Blue operations can be executed (commutated) in any
order across DCs
Red operations need to be executed in the same order
at each DC

Newer Consistency Models (Contd.)

Strong
(e.g., Sequential)Eventual

Causal
Red-Blue

CRDTs
Per-key sequential

Probabilistic

Consistency Solutions

Vu Pham

Causal Consistency: Reads must respect partial order based
on information flow [Princeton, CMU]

Newer Consistency Models (Contd.)

Strong
(e.g., Sequential)Eventual

Causal

Red-Blue

CRDTs
Per-key sequential

Probabilistic

Client A

Client B

Client C

W(K1, 33)

W(K2, 55)

R(K1) must return 33W(K1, 22) R(K1) may return
22 or 33

Time
R(K1) returns 33

R(K2) returns 55
Causality, not messages

Consistency Solutions

Vu Pham

Use the lowest consistency (to the left) consistency model
that is “correct” for your application

Gets you fastest availability

Which Consistency Model should you use?

Strong
(e.g., Sequential)Eventual

Causal
Red-Blue

CRDTs
Per-key sequential

Probabilistic

Consistency Solutions

Vu Pham

Linearizability: Each operation by a client is visible (or available)
instantaneously to all other clients

Instantaneously in real time
Sequential Consistency [Lamport]:

"... the result of any execution is the same as if the operations of all the
processors were executed in some sequential order, and the operations of
each individual processor appear in this sequence in the order specified
by its program.
After the fact, find a “reasonable” ordering of the operations (can re-
order operations) that obeys sanity (consistency) at all clients, and across
clients.

Transaction ACID properties, example: newer key-value/NoSQL stores
(sometimes called “NewSQL”)

Hyperdex [Cornell]
Spanner [Google]
Transaction chains [Microsoft Research]

Strong Consistency Models

Consistency Solutions

Vu Pham

Traditional Databases (RDBMSs) work with strong
consistency, and offer ACID
Modern workloads don’t need such strong guarantees, but
do need fast response times (availability)
Unfortunately, CAP theorem
Key-value/NoSQL systems offer BASE
[Basically Available Soft-state Eventual Consistency]

Eventual consistency, and a variety of other consistency
models striving towards strong consistency

We have also discussed the design of Cassandra and
different consistency solutions.

Conclusion

Consistency Solutions

Introduction to Edge ML with AWS IoT platform

Dr. Rajiv Misra
Professor, Dept. of Computer
Science & Engg. Indian Institute of
Technology Patna rajivm@iitp.ac.in

NPTEL

mailto:rajivm@iitp.ac.in

After Completion of this lecture you will knowing the following:

● Introduction to AWS IoT platform
● Layered architecture of AWS IoT
● Concepts of AWS IoT Core
● Understanding of AWS greengrass
● Event-Driven architecture with sensor data in AWS IoT

NPTEL

Recapitulate: Traditional IoT platform

Cloud
Globally available, unlimited compute resources

IoT
Harnessing signals from sensors and devices,
managed centrally by the cloud

Edge
Intelligence offloaded from the cloud to IOT
devices

ML
Breakthrough intelligence capabilities, in the cloud
and on the edge

ML

NPTEL

AWS IoT: Introduction

AWS IoT started in 2015 with Amazon acquiring a
company called telemetry.

It started with several cloud services with a very
simple IoT device management and M2M.

Now it has been expanded significantly.

AWS IoT architecture consists of three different
layers:

● Things
● Cloud
● Intelligence

NPTEL

AWS IoT Architecture: Services Suite

NPTEL

AWS IoT Architecture: Things

● Things comprises of components which are on
premises at the field and on the devices side,
which actually sense data and act.

● Amazon offers a couple of products for this layer.
● First one is Amazon FreeRTOS which is a real-

time operating system that can run on top of a
microcontroller with 64 KB of memory or more

● Then AWS greengrass which is the edge
computing software act as a interfacing with the
local devices running either Amazon FreeRTOS
or the AWS IoT devices SDK

NPTEL

AWS IoT Architecture: Cloud

When it comes to cloud there are two important aspects:

The first one is AWS IoT core and as the name suggests it is the core
building block of the AWS IoT platform and is responsible for registering
the devices, so it acts as the device registry.

It also exposes endpoints for MQTT WebSockets and HTTP for the
devices to talk to each other and to talk to the cloud and it is also the
touch point for applications that want to control the devices running in
the field.

AWS IoT core acts as an interface between the applications for example
a mobile app that is talking to a device and similarly a device that is
sending sensor data to the cloud.

Second one is IoT device management which supports bulk
onboarding of devices because registering one device at a time in
industrial use cases is not feasible, so it supports bulk onboarding and
also has properties like over-the-air software updates, maintenance and
performing bulk jobs, operations and so on.

NPTEL

AWS IoT Architecture: Intelligence

AWS IOT device defender is all about security and if there is
a drift between the preferred configuration and the policy and
what is currently running and it automatically raises alerts.

It also maintains a highly secure footprint of all the devices
and if there is any anomaly it raise an alert so that is the fleet
audit or protection service.

Finally, AWS IoT analytics which is an analytic solution and
this service is responsible for analyzing the trends, visualizing
and from there feeding to more powerful systems like quick
site or redshift and so on. NPTEL

AWS IoT Core: Building Blocks

AWS IOT core is all about connecting devices
to the cloud, the moment you bring in your
first device that is going to become available
you need to talk to AWS IoT core.

The workflow is very straightforward you need
to register your device with AWS IoT core and
that is going to act as the digital identity of
your device.

The moment you register a device you receive a set of credentials for the device and you're going to
embed those credentials in the device and once the device has those credentials and it connects to
the cloud it gets authenticated, authorized and it shows up in the device registry.

The device could be running a microcontroller, a single board computer, a slightly more powerful
machine that can talk to an Modbus or canvas internally or, even an automobile device like a car.

After that it can send messages to the cloud and it can receive commands from the cloud.

NPTEL

AWS IoT Core: Building Blocks

When you zoom into AWS IoT core, the first one is all about
authentication and authorization and the second one is device
gateway which is the cloud endpoint for talking to the IoT core.

Message broker which is based on MQTT WebSockets and
HTTP for publishing and subscribing messages or feeding data
from the device to the cloud but it is predominantly uses it for a
communication between devices at the cloud to send some
metadata or telemetry and to receive some settings or
commands.

There is a rules engine which decides how the messages will flow into rest of the system and the rules engine is ANSI SQL compliant that
writes simple select statements that will filter the messages and apply a rule and the outcome of this rule can be hooked to a lambda
function to take further action.

The device shadow is the digital twin or digital identity of the physical device and all the changes that are made to the device will first get
applied to the device shadow and then it gets propagated all the way to the device. When the device state changes it automatically gets
synchronized with the device shadow. It acts as the buffer between the desired state and the current state.

The job of the AWS IoT core is to make sure that the desired configuration is matching with the current configuration or not.

Device registry is a huge database repository but meant for the devices or things that you connect to AWS IoT.

NPTEL

AWS IoT Core: Summary

To put things in perspective, for using multiple
building blocks of AWS IoT, the device SDK which
is supported in variety of languages like node.js,
Python, C, Java where SDK is used to connect
your device to the cloud.

The first touch point is authentication and
authorization and then the device gateway for
communication and further it goes to a rules
engine and device shadow which maintains a
replica of this state

The rules engine is responsible for extending the
IoT platform to rest of AWS services like dynamo
DB, Neptune, redshift, AWS sage maker and to
third-party services.

NPTEL

AWS Greengrass: Building Blocks
AWS Greengrass extends AWS IOT to your devices
so they can act locally and the data that they generate
or filter is filtered before it is sent to the cloud.

Like AWS IoT core there is a message broker built into
green grass so devices can continue to talk to each
other, there is a compute layer which is based on
lambda to write functions that are running locally and
triggered when a specific condition is met and these
triggers will actually fire lambda functions that perform
an action.

Greengrass also have the data and state synchronized with the cloud with the help of local device
shadows and the cloud device shadow. If something updated locally, it first gets written to the device
shadow running on the edge and then it eventually gets synchronized with the cloud.

Greengrass provides local resource access. For example, you want to talk to a local database which
already has some metadata or material asset tracking information you can you can query that directly, talk
to the file system, databases or anything that is accessible within the network.

NPTEL

AWS Greengrass: Building Blocks
The most recent feature of greengrass is the ability to run
machine learning inferencing on the edge and this is one
of the key drivers because there are three aspects when it
comes to IOT.

First one is the learning part which is happening in the
cloud, where you train machine learning models then you
have decision-making that takes place at the edge and
where fully trained machine learning models are used and
they make decisions on behalf of the cloud and the action
phase that is directly done by the devices.

For example, a machine learning model trained in the cloud to find an anomaly is deployed on the edge and because
an anomaly is found with a very critical device, the machine learning model decides that one of the other equipments
need to be shut down and that decision will result in an action where an actuator or a relay or another interface
physically shuts down a malicious or a vulnerable machine to avoid any eventuality or any fatalities.

Thus the learn, decide and act cycle that happens with the cloud, edge and devices and performing the decision part
run locally by ML inferencing.

NPTEL

AWS Greengrass Group: Cloud Capabilities to the Edge
AWS IoT Greengrass Group: An AWS IoT Greengrass
group is a collection of settings and components, such as
an AWS IoT Greengrass core, devices, and subscriptions.
Groups are used to define a scope of interaction. For
example, a group might represent one floor of a building,
one truck, or an entire mining site. Since the group acts as
the logical boundary for all the devices, it enforces
consistent configuration and policies to all the entities.

AWS IoT Greengrass Core: This is just a device in AWS
IoT Core registry that doubles up as an edge device. It is
an x86 and ARM computing device running the
Greengrass runtime. Local devices talk to the Core similar
to the way they interact with AWS IoT Core.

AWS IoT Devices: These are the devices that are a part
of the Greengrass group. Once devices become a part of
the group, they automatically discover the Core to continue
the communication. Each device has a unique identity and
runs AWS IoT Device SDK. Existing devices can be added
to a Greengrass Group.

NPTEL

AWS Greengrass Group: Cloud Capabilities to the Edge
Lambda Functions: As discussed earlier, Lambda provides
the local compute capabilities for AWS IoT Greengrass. Each
function running within the Core uses Greengrass SDK to
interact with the resources and devices. Lambda functions
can be customized to run within the Greengrass sandbox
container or directly as a process within the device OS.

Subscriptions: AWS IoT Greengrass subscriptions connect
the resources declaratively. It maintains a list of publishers
and subscribers that exchange messages. For another
scenario, a Lambda function may publish messages to a topic
to which the device is subscribed. Subscriptions eliminate the
strong dependency between publishers and consumers by
effectively decoupling them.
Connectors: AWS IoT Greengrass Connectors allows developers to easily build complex workflows on AWS IoT Greengrass
without having to worry about understanding device protocols, managing credentials, or interacting with external APIs. Based
on a declarative mechanism, Connects extend the edge computing scenarios to 3rd party environments and services.
Connectors rely on Secrets for maintaining the API keys, passwords, and credentials needed by external services.

ML Inferencing: This is one of the recent additions to AWS IoT Greengrass. The trained model is first uploaded to an Amazon
S3 bucket that gets downloaded locally. A Lambda function responsible for inferencing inbound data stream publishes the
predictions to a MQTT topic after loading the local model. Since Python is a first-class citizen in Lambda, many existing
modules and libraries can be used to perform ML inferencing at the edge.

NPTEL

AWS IoT: Event-driven architecture with sensor data

NPTEL

Phase 1:

● Data originates in IoT devices such as medical devices, car sensors, industrial IoT sensors.
● This telemetry data is collected using AWS IoT Greengrass, an open-source IoT edge runtime and

cloud service that helps your devices collect and analyze data closer to where the data is generated.
● When an event arrives, AWS IoT Greengrass reacts autonomously to local events, filters and

aggregates device data, then communicates securely with the cloud and other local devices in your
network to send the data.

Phase 2:

● Event data is ingested into the cloud using edge-to-cloud interface services such as AWS IoT Core,
a managed cloud platform that connects, manages, and scales devices easily and securely.

● AWS IoT Core interacts with cloud applications and other devices.
● You can also use AWS IoT SiteWise, a managed service that helps you collect, model, analyze, and

visualize data from industrial equipment at scale.

AWS IoT: Event-driven architecture with sensor data

NPTEL

Phase 3:

● AWS IoT Core can directly stream ingested data into Amazon Kinesis Data Streams.
● The ingested data gets transformed and analyzed in near real time using Amazon

Kinesis Data Analytics with Apache Flink and Apache Beam frameworks.
● Stream data can further be enriched using lookup data hosted in a data warehouse such

as Amazon Redshift.

Phase 4:

● Amazon Kinesis Data Analytics can persist SQL results to Amazon Redshift after the
customer’s integration and stream aggregation (for example, one minute or five
minutes).

● The results in Amazon Redshift can be used for further downstream business
intelligence (BI) reporting services, such as Amazon QuickSight.

● Amazon Kinesis Data Analytics can also write to an AWS Lambda function, which can
invoke Amazon SageMaker models.

● Amazon SageMaker is a the most complete, end-to-end service for machine learning.

AWS IoT: Event-driven architecture with sensor data

NPTEL

Phase 5:

● Once the ML model is trained and deployed in SageMaker, inferences are invoked in a
micro batch using AWS Lambda.

● Inferenced data is sent to Amazon OpenSearch Service to create personalized
monitoring dashboards using Amazon OpenSearch Service dashboards.

● The transformed IoT sensor data can be stored in Amazon DynamoDB.
● Customers can use AWS AppSync to provide near real-time data queries to API

services for downstream applications.
● These enterprise applications can be mobile apps or business applications to track and

monitor the IoT sensor data in near real-time.
● Amazon Kinesis Data Analytics can write to an Amazon Kinesis Data Firehose stream,

which is a fully managed service for delivering near real-time streaming data to
destinations like Amazon Simple Storage Service (Amazon S3), Amazon Redshift,
Amazon OpenSearch Service, Splunk, and any custom HTTP endpoints or endpoints
owned by supported third-party service providers, including Datadog, Dynatrace,
LogicMonitor, MongoDB, New Relic, and Sumo Logic.

AWS IoT: Event-driven architecture with sensor data

NPTEL

This use case describe the steps in setting up Greengrass Machine Learning Inference, using Greengrass Image
Classification ML Connector with model trained with Amazon SageMaker, and Greengrass ML Feedback
connector to send data back to AWS for model retraining or prediction performance analysis.

Use Case: Greengrass Machine Learning Inference

NPTEL

Use Case: Greengrass Machine Learning Inference
The common design patterns of using Greengrass Connectors:

1. Creates a Amazon SageMaker training job to create the model. When the Greengrass configuration is being
deployed, the Greengrass Core will download the model from the Amazon SageMaker training job as a local
machine learning resource.

2. Data acquisition - This function periodically acquire the raw data inputs from a image source. In this example, we
are using static images to simulate image sources.

3. Data preprocessor - This function pre-process the image by resize to the images used to train the model.
4. Estimator - This function predict the data input with the connector via IPC
5. Greengrass ML Image Classification Connector - The Connector loads the model from local Greengrass

resource and invoke the model.
6. The process will handle the prediction result, with object detected and confidence level.
7. The result can be used to trigger an action, or send it back to the cloud for further processing.
8. Greengrass ML Feedback Connector - Greengrass ML Feedback Connector sends field data back to AWS

according to the sampling strategy configured
9. Greengrass ML Feedback Connector sends unlabeled data to AWS
10. Unlabled data can be labeled using Amazon Ground Truth, and the labeled data can be used to retrain the model
11. Greengrass ML Feedback Connector sends prediction performance which can be used for realtime performance

analysis.

NPTEL

The main steps for deployment are:

1. Prerequisites. Ensure there is an AWS IoT certificate and private key created and accessible
locally for use.

2. Train the ML model. We will use an example notebook from Amazon SageMaker to train the
model with the Image Classification Algorithm provided by Amazon SageMaker.

3. Generate and launch the CloudFormation stack. This will create the Lambda functions, the
Greengrass resources, and an AWS IoT thing to be used as the Greengrass Core. The
certificate will be associated with the newly created Thing. At the end, a Greengrass
deployment will be created and ready to be pushed to the Greengrass core hardware.

4. Create the config.json file, using the outputs from the CloudFormation. Then place all files into
the /greengrass/certs and /greengrass/config directories.

5. Deploy to Greengrass. From the AWS Console, perform a Greengrass deployment that will
push all resources to the Greengrass Core and start the MLI operations.

Use Case Greengrass ML Inference: Deployment

NPTEL

https://github.com/awslabs/aws-iot-greengrass-accelerators/blob/master/accelerators/machine_learning_inference/Greengrass_Connectors.md
https://github.com/awslabs/aws-iot-greengrass-accelerators/blob/master/accelerators/machine_learning_inference/Greengrass_Connectors.md
https://github.com/awslabs/aws-iot-greengrass-accelerators/blob/master/accelerators/machine_learning_inference/Greengrass_Connectors.md
https://github.com/awslabs/aws-iot-greengrass-accelerators/blob/master/accelerators/machine_learning_inference/Greengrass_Connectors.md
https://github.com/awslabs/aws-iot-greengrass-accelerators/blob/master/accelerators/machine_learning_inference/Greengrass_Connectors.md

Prerequisites:

● AWS Cloud.

Ensure you have an AWS user account with permissions to manage iot, greengrass, lambda,
cloudwatch, and other services during the deployment of the CloudFormation stack.

● Local Environment

Ensure a recent version of the AWS CLI is installed and a user profile with permissions mentioned above is
available for use.

● Greengrass Core AWS IoT

Greengrass Core SDK Software which can be installed using pip command sudo pip3.7 install
greengrasssdk

Use Case Greengrass ML Inference: Deployment

NPTEL

https://github.com/awslabs/aws-iot-greengrass-accelerators/blob/master/accelerators/machine_learning_inference/Greengrass_Connectors.md

Train the model with Amazon SageMaker:
We will train the model using algorithm provided by Amazon SageMaker, Amazon SageMaker Image Classification Algorithm and
Caltech-256 dataset.

● Login to Amazon SageMaker Notebook Instances console https://console.aws.amazon.com/sagemaker/home?#/notebook-
instances

● Select Create notebook instance
● Enter a name in Notebook instance name, such as greengrass-connector-training
● Use the default ml.t2.medium instance type
● Leave all default options and select Create notebook instance
● Wait for the instance status to be InService, and select Open Jupyter
● Select SageMaker Example tab, expand Sagemaker Neo Compilation Jobs, Image-classification-fulltraining-highlevel-

neo.ipynb, select Use
● Keep default option for the file name and select Create copy

Use Case Greengrass ML Inference: Deployment

NPTEL

https://docs.aws.amazon.com/en_pv/sagemaker/latest/dg/image-classification.html
http://www.vision.caltech.edu/Image_Datasets/Caltech256/
https://console.aws.amazon.com/sagemaker/home?
https://console.aws.amazon.com/sagemaker/home?

Train the model with Amazon SageMaker:

● We are to use transfer learning approach with use_pretrained_model=1. Locate the cell that
configure the hyper-parameters and add the additional use_pretrained_model=1. Details of the
hyperparameters can be found in Amazon SageMaker Developer Guide - Image Classification
Hyperparameters

● We will also be setting the prefix for our training job so that the Cloudformation Custom Resources is
able to get the latest training job. Configure a base_job_name in the sagemaker.estimator. Locate
the cell that initialize the sagemaker.estimator and add the base_job_name, for example, using
greengrass-connector as the prefix. You will need this name prefix when creating the stack.

● Add a cell below the cell that do the training ic.fit() and the command
ic.latest_training_job.name in the empty cell. This will give you the name of the training job that
you can verify to make sure the Cloudformation stack picks up the correct job.

● Select the Cell from thet notebook menu and Run All

Use Case Greengrass ML Inference: Deployment

NPTEL

https://docs.aws.amazon.com/en_pv/sagemaker/latest/dg/IC-Hyperparameter.html
https://docs.aws.amazon.com/en_pv/sagemaker/latest/dg/IC-Hyperparameter.html
https://github.com/awslabs/aws-iot-greengrass-accelerators/blob/master/accelerators/machine_learning_inference/cfn/lambda_functions/cfn_custom_resources/get_latest_sagemaker_trainingjobs.py

Launch the CloudFormation Stack:

Prior to launching the accelerator locally, a CloudFormation package needs to be created,
and then the CloudFormation stack launched from the Template. Follow the steps below to
create the package via the command line, and then launch the stack via the CLI or AWS
Console.

The CloudFormation template does most of the heavy lifting. Prior to running, each input
template needs to be processed to an output template that is actually used. The package
process uploads the Lambda functions to the S3 bucket and creates the output template
with unique references to the uploaded assets.

Use Case Greengrass ML Inference: Deployment

NPTEL

Configure the Greengrass Core:

With the stack deployed, we use one output from the CloudFormation stack, the
GreengrassConfig value, along with the certificate and private key to complete the config.json
so that Greengrass Core can connect and authenticate.

Starts the Greengrass Core:

With the Greengrass configuration config.json in place, start the Greengrass Core.

Use Case Greengrass ML Inference: Deployment

NPTEL

Deploy Cloud Configurations to the Greengrass Core:

From the AWS Console of AWS IoT Greengrass, navigate to the Greengrass Group you
created with the Cloudformation, and perform Actions->Deploy to deploy to the Greengrass
Core machine.

Use Case Greengrass ML Inference: Deployment

NPTEL

To test out this accelerator without any hardware, you can install the Greengrass on
an EC2 to simulate as a Greengrass Core

1. Create a EC2 running Greengrass, using the Cloudformation template in
cfn/greengrass_core_on_ec2-s3_models.cfn.yml

2. Once the instance is created, copy the greengrass-setup.zip to the EC2
3. In the EC2, extract greengrass-setup.zip into /greengrass folder using

command sudo unzip -o greengrass-setup.zip -d /greengrass
4. Restart the Greengrass daemon using the command sudo systemctl restart

greengrass

Use Case Greengrass ML Inference: Testing

NPTEL

Lecture Summary

● Introduction to AWS IoT platform
● Layered architecture of AWS IoT
● Concepts of AWS IoT Core
● Understanding of AWS greengrass
● Event-Driven architecture with sensor data in AWS IoTNPTEL

NPTEL

Introduction to Federated Learning at
IoT Edge

Dr. Rajiv Misra, Professor
Dept. of Computer Science & Engg.
Indian Institute of Technology Patna
rajivm@iitp.ac.in

Federated Learning

NPTEL

Preface

Federated Learning

After Completion of this lecture you will knowing the following:

● Current IoT scenarios
● Why there is a need to shift from centralized ML training to decentralized ML

training of data?
● Concepts of Federated Learning (ie Distributed ML)
● Several challenges of federated learning

NPTEL

Current IoT Scenario

Federated Learning

Explosion of IoT Market
● McKinsey reported $11.1 Trillion market value by 2025
● 14 billion connected devices - Bosch
● 5 billion connected devices - Cisco
● 309 billion IoT supplier revenue - Gartner
● 7.1 trillion IoT solutions revenue - IDC

A “deluge of data” is observed in 2020
1.5 GB of traffic per day from average internet user
3000 GB per day - Smart Hospitals
4000 GB data per day - self driving cars EACH
Radars ~ 10-100 kb per sec
40,000 GB per day - connected aircrafts
1,000,000 GB per day - connected factoriesNPTEL

Shift from Centralized to Decentralized data

Federated Learning

● The standard setting in Machine Learning (ML) considers a centralized dataset
processed in a tightly integrated system

● But in the real world data is often decentralized across many IOT devices
● Sending the data tpo Cloud for centralized ML may be too costly

○ Self-driving cars are expected to generate several TBs of data a day
○ Some wireless devices have limited bandwidth/power

● Data may be considered too sensitive sometimes such as medical reports
○ We see a growing public awareness and regulations on data privacy
○ Keeping control of data can give a competitive advantage in business and

research

NPTEL

Federated Learning: Distributed ML

Federated Learning

● 2016: the term FL is first coined by Google researchers; 2020: more
than 1,000 papers on FL in the first half of the year (compared to just
180 in 2018)1

● We have already seen some real-world deployments by companies and
researchers for large scale IOT devices

● Several open-source libraries are under development: PySyft,
TensorFlow Federated, FATE, Flower, Substra...

● FL is highly multidisciplinary: it involves machine learning, numerical
optimization, privacy & security, networks, systems, hardware...

NPTEL

Federated Learning: Decentralised data

Federated Learning

● Federated Learning (FL) aims to collaboratively train a ML model while
keeping the data decentralized

● Enabling devices to learn from each other (ML training is brought close
● A network of nodes and all nodes with their own central server but

instead of sharing data with the central server, we share model we
don't send data from node to server instead send our model to server

NPTEL

Gradient Descent Procedure

Federated Learning

The procedure starts off with initial values for the coefficient or coefficients for the
function. These could be 0.0 or a small random value.

coefficient = 0.0

The cost of the coefficients is evaluated by plugging them into the function and
calculating the cost.

cost = f(coefficient) or cost = evaluate(f(coefficient))

We need to know the slope so that we know the direction (sign) to move the
coefficient values in order to get a lower cost on the next iteration.

delta = derivative(cost)
we can now update the coefficient values.

A learning rate parameter (alpha) must be specified that controls how much the
coefficients can change on each update.

coefficient = coefficient – (alpha * delta)

This process is repeated until the cost of the coefficients (cost) is 0.0 or close to 0
It does require you to know the gradient of your cost function or the function you
are optimizing

NPTEL

Gradient Descent Algorithm

Federated Learning

Gradient Descent
• Gradient Descent is the most basic but most used optimization algorithm. It’s

used heavily in linear regression and classification algorithms. Backpropagation
in neural networks, Federated Learning also uses a gradient descent algorithm.

• Gradient descent is a first-order optimization algorithm which is dependent on
the first order derivative of a loss function. It calculates that which way the
weights should be altered so that the function can reach a minima. Through
backpropagation, the loss is transferred from one layer to another and the
model’s parameters also known as weights are modified depending on the
losses so that the loss can be minimized.

algorithm: θ=θ−α⋅∇J(θ)
Advantages:
• Easy computation
• Easy to implement
• Easy to understand

The devices train the generic neural network model using the gradient descent
algorithm, and the trained weights are sent back to the server. The server then
takes the average of all such updates to return the final weights.

NPTEL

Edge Computing ML: FL

Federated Learning

• FL is category of machine learning (ML) , which
moves the processing over the edge nodes so
that the clients’ data can be maintained. This
approach is not only a precise algorithm but
also a design framework for edge computing.

• Federated learning is a method of ML that
trains an ML algorithm with the local data
samples distributed over multiple edge devices
or servers without any exchange of data. This
term was first introduced in 2016 by McMahan.

• Federated learning distributes deep learning by
eliminating the necessity of pooling the data
into a single place.

• In FL, the model is trained at different sites in
numerous iterations. This method stands in
contrary to other conventional techniques of
ML, where the datasets are transferred to a
single server and to more traditional
decentralized techniques that undertake that
local datasets

NPTEL

Edge Computing ML: FL

Federated Learning

Deep Learning model training

Finding the function: model training

NPTEL

Edge Computing ML: FL

Federated Learning

Finding the function: model training

NPTEL

How is this aggregation applied? FedAvg Algo

Federated Learning

NPTEL

Example: FL with i.i.d.

Federated Learning

In FL, each client trains its model decentral. In other
words, the model training process is carried out
separately for each client.

Only learned model parameters are sent to a trusted
center to combine and feed the aggregated main model.
Then the trusted center sent back the aggregated main
model back to these clients, and this process is
circulated.

A simple implementation with IID (independent and
identically distributed) data to show how the parameters
of hundreds of different models that are running on
different nodes can be combined with the FedAvg
method and whether this model will give a reasonable
result.

This implementation was carried out on the MNIST Data
set. The MNIST data set contains 28 * 28 pixel
grayscale images of numbers from 0 to 9.

NPTEL

Image Classifier using FedAvg

Federated Learning

The MNIST data set does not contain each label equally. Therefore, to fulfill the IID
requirement, the dataset was grouped, shuffled, and then distributed so that each
node contains an equal number of each label.

A simple 2-layer model can be used for the classification process used FedAvg.
Since the parameters of the main model and parameters of all local models in the
nodes are randomly initialized, all these parameters will be different from each other,
so the main model sends its parameters to the nodes before the training of local
models in the nodes begins.

Nodes start to train their local models over their own data by using these parameters.
Each node updates its parameters while training its own model. After the training
process is completed, each node sends its parameters to the main model.
The main model takes the average of these parameters and sets them as its new
weight parameters and passes them back to the nodes for the next iteration.
The above flow is for one iteration. This iteration can be repeated over and over to
improve the performance of the main model.
The accuracy of the centralized model was calculated as approximately 98%. The
accuracy of the main model obtained by FedAvg method started from 85% and
improved to 94%.

NPTEL

Apple personalizes Siri without hoovering up data

Federated Learning

The tech giant is using privacy-preserving machine learning to
improve its voice assistant while keeping your data on your
phone.

It relies primarily on a technique called federated learning.

It allows Apple to train different copies of a speaker
recognition model across all its users’ devices, using only the
audio data available locally.

It then sends just the updated models back to a central server
to be combined into a master model.

In this way, raw audio of users’ Siri requests never leaves
their iPhones and iPads, but the assistant continuously gets
better at identifying the right speaker. In addition to federated
learning, Apple also uses something called differential privacy
to add a further layer of protection. The technique injects a
small amount of noise into any raw data before it is fed into a
local machine-learning model. The additional step makes it
exceedingly difficult for malicious actors to reverse-engineer
the original audio files from the trained model.

NPTEL

Federated Learning: Training

Federated Learning

● There are connected devices let's say we have cluster of four IOT
Devices from four of the IOT devices and there is one central server
that has an untrained model.

● We will send a copy of the model to each of the node.
● Each node would receive a copy of that model.

NPTEL

Federated Learning: Training

Federated Learning

● Now all the nodes in the network has that untrained model that is
received from the server.

NPTEL

Federated Learning: Training

Federated Learning

● In the next step, we are taking data from each node by taking data it
doesn't mean that we are sharing data.

● Every node has its own data based on which it is going to train a
model.

NPTEL

Federated Learning: Training

Federated Learning

● Each node is training the model to fit the data that they have and it will
train the model accordingly to its data.

NPTEL

Federated Learning: Training

Federated Learning

● Now the server would combine all these model received from each node
by taking an average or it will aggregate all the models received from the
nodes.

● Then the server will train that a central model, this model which is now
trained by aggregating the models from each node. It captures the pattern
in the training data on all the nodes it is an aggregated one

NPTEL

Federated Learning: Training

Federated Learning

● Once the model is aggregated, the server will send the copy of the
updated model back to the nodes.

● Everything is being achieved at the edge so no data sharing is done
which means there is privacy preservation and also very less
communication overhead.

NPTEL

Federated Learning: Challenges

Federated Learning

Systems heterogeneity

● Size of data
● Computational power
● Network stability
● Local solver
● Learning rate

Expensive Communication

● Communication in the
network can be slower
than local computation by
many order of magnitude.

NPTEL

Federated Learning: Challenges

Federated Learning

Dealing with Non-I.I.D. data i.i.d (independent and identical distributed)
● Learning from non-i.i.d. data is difficult/slow because each IOT device

needs the model to go in a particular direction
● If data distributions are very different, learning a single model which

performs well for all IOT devices may require a very large number of
parameters

● Another direction to deal with non-i.i.d. data is thus to lift the
requirement that the learned model should be the same for all IOT
devices (“one size fits all”)

● Instead, we can allow each IOT k to learn a (potentially simpler)
personalized model θk but design the objective so as to enforce some
kind of collaboration

● When local datasets are non-i.i.d., FedAvg suffers from client drift
● To avoid this drift, one must use fewer local updates and/or smaller

learning rates, which hurts convergence

NPTEL

Federated Learning: Challenges

Federated Learning

Preserving Privacy
● ML models are susceptible to various attacks on data privacy
● Membership inference attacks try to infer the presence of a

known individual in the training set, e.g., by exploiting the
confidence in model predictions

● Reconstruction attacks try to infer some of the points used to
train the model, e.g., by differencing attacks

● Federated Learning offers an additional attack surface because
the server and/or other clients observe model updates (not only
the final model) NPTEL

Key differences with Distributed Learning

Cloud IoT Edge ML

Data distribution
● In distributed learning, data is centrally stored (e.g., in a data center)

○ The main goal is just to train faster
○ We control how data is distributed across workers: usually, it is

distributed uniformly at random across workers
● In FL, data is naturally distributed and generated locally

○ Data is not independent and identically distributed (non-i.i.d.), and it
is imbalanced

Additional challenges that arise in FL
● Enforcing privacy constraints
● Dealing with the possibly limited reliability/availability of participants
● Achieving robustness against malicious parties

NPTEL

Federated Learning: Concerns

Federated Learning

When to apply Federated Learning

● Data privacy needed
● Bandwidth and power consumptions are concerns
● High cost of data transfer

When NOT to apply Federated Learning

● When more data won’t improve your model (construct a learning
cure)

● When additional data is uncorrelated
● Performance is already at ceiling

NPTEL

Federated Learning: Applications

Federated Learning

● Predictive maintenance/industrial IOT
● Smartphones

● Healthcare (wearables, drug discovery, prognostics, etc.)

● Enterprise/corporate IT (chat, issue trackers, emails, etc.)

NPTEL

Lecture Summary

Federated Learning

● Market trend of IoT platform
● Why decentralized training is important?
● Understanding of Federated Learning
● Different issues with federated learning

NPTEL

Thank You!

Federated Learning

NPTEL

ML for Autonomous Driving Car

Dr. Rajiv Misra, Professor
Dept. of Computer Science & Engg.
Indian Institute of Technology Patna
rajivm@iitp.ac.in

ML for Autonomous Vehicles

NPTEL

Preface

After completion of this lecture you will know the following:

● Understanding of Autonomous Vehicles
● Role of Edge computing in Automotive Industry
● How ML is trained in Self-driving cars?
● Use Case of LSTM model for self-driving cars

ML for Autonomous Vehicles

NPTEL

Autonomous Vehicles: Introduction
Autonomous vehicles (AVs) have attracted a
significant amount of interest in recent years.
According to a report released by the US state
Department of Transportation, “Self-Driving-Cars
can reduce 90% of Traffic Deaths”.

A big chunk of major Automobile companies is
trying to develop Self-Driving-Cars. Some big
players are Tesla, Waymo, even Google is
developing Self Driving Cars which has no
presence in the automobile sector, have invested a
huge amount of money, manpower and
engineering capabilities in developing such
systems.

Designing policies for an autonomous driving
system is particularly challenging due to
demanding performance requirements in terms of
both making safe operational decisions and fast
processing in real-time.

ML for Autonomous Vehicles

NPTEL

Edge Computing in Automotive
Historically, the adoption of computing (be it cloud or edge) and software in automotive
has trailed the in-general adoption in other industries.

Cloud computing has been around for a while in many industries and many forms. But,
vehicle telematics became one of the top use cases adopted in automotive somewhere
in 2008.

Connected vehicles will continue to evolve at an exponential rate with V2V and V2X
communication. This generates a large volume of data (every connected vehicle will
generate data up to 4TB/day). How to handle, process, analyse the large amounts of
data and make critical decisions quickly and efficiently?

Automobile makers are focused on leveraging edge computing to address these ever-
evolving challenges. A group of cross-industry global players has formed the
Automotive Edge Computing Consortium (AECC) to drive best practices for the
convergence between the vehicle and computing ecosystem.

When driving a vehicle, milliseconds matter. Autonomous vehicles are no different,
even though it may be your AI that drives them. AI = data + compute, and you want
your compute to be as close to your data as possible. Enter edge computing.

ML for Autonomous Vehicles

NPTEL

Edge Computing: Self-Driving Car Sensors
Given its real-time data processing capabilities, edge computing has naturally
established itself as a pillar in autonomous vehicle technology. However, this data
isn't generated by the computer but rather by the multitude of sensors that
comprise an autonomous vehicle's peripheral "eyes" and "ears."

Sensor topology can vary widely amongst autonomous vehicles, even within the
same sector.

Most self-driving sensors are fundamentally similar - they collect data about the
world around them to help pilot the vehicle. For example, the Nuro vehicle
contains cameras, radar, Lidar, and thermal cameras to provide a complete, multi-
layered view of the vehicle's surroundings.

Currently, a Tesla utilize eight cameras,12 , and a forward radar system, but rely
much more heavily on camera visuals than Nuro vehicles. Google's Waymo Driver
primarily relies on Lidar and uses cameras and radar sensors to help map the
world around it.

ML for Autonomous Vehicles

NPTEL

Self-Driving Car: Requirements
Autonomous driving vehicles require two in-vehicle computing systems. One computer processes a large
amount of sensed data and images collected by cameras and sensors. And a second computer to analyze
processed image data and make intelligent and quick decisions for the vehicle.

● Pre-processing collected data. Autonomous vehicles have video cameras and a variety of sensors
like ultrasonic, LiDAR, and radar to become aware of their surroundings and the internals of the
vehicle. This data coming from different vehicle sources must be quickly processed through data
aggregation and compression processes. An in-vehicle computer needs to have multiple I/O ports for
receiving and sending data.

● Secure network connectivity. The in-vehicle computing solution must remain securely connected to
the Internet to upload the pre-processed data to the cloud. In this case, having multiple wireless
connections for redundancy and speed is crucial. High-speed connectivity is also vital for continuous
deployments of vehicle updates or "push" updates like location, on-road conditions, and vehicle
telematics.

● High-performance computing. Autonomous vehicles may generate approximately 1 GB of data
every second. Gathering and sending a fraction of that data (for instance, 5 minutes of data) to a
cloud-based server for analysis is impractical and quite challenging due to limited bandwidth and
latency. Autonomous driving systems shouldn’t always rely on network connectivity and cloud services
for their data processing. Self-driving vehicles need real-time data processing to make crucial quick
decisions according to their surroundings. In-vehicle edge computing is essential for reducing the
need for network connectivity (offline decision-making) and for increasing decision-making accuracy.a

ML for Autonomous Vehicles

NPTEL

How Machine Learning Trains AI in Self-Driving Cars

The value of the sensor data collected in all self-driving cars and vehicles depends on
the compute methodologies downstream of the sensors themselves. In many ways, the
most valuable intellectual property of companies like Tesla, Waymo, Aurora
Innovations, and Nuro is the software and data infrastructure built to process and action
the sensor data.

Today, all autonomous vehicles on the road utilize edge computing AI programs, which
are often trained using data center machine learning models. Autonomous car machine
learning models are only made possible by the incredible computing power of modern
data centers capable of hundreds of petaflops.

The computing requirements of these vast machine learning models well exceed the
computing power of edge computers. Given this information, data centers are often
used to form algorithms deployed for edge.

The problem of self-driving-car can be seen as a Regression Problem.

Training an AI algorithm is similar; it takes hundreds of compute hours on a high-power
data center. Yet once that algorithm is learned, it can quickly and accurately utilize that
algorithm using much less computing power.

ML for Autonomous Vehicles

NPTEL

Machine learning in autonomous driving

Kalman Filter, In real-life autonomous driving, the machine will deal with the
same information from different sensors, such as Lidar, Radar, MEC signals and
V2V Communications. This information will always have discrepancies with each
other, and Kalman filter can help us to get a relatively reliable answer according to
these two sets of information.

ML for Autonomous Vehicles

NPTEL

Machine learning in autonomous driving
Lidar, Radar, and Cameras ML is an important part of autonomous driving. A
self-driving vehicle usually has multiple sensors, including cameras, lidar, and
radar sensors. The machine learning module will tell the vehicle what to do with
different information. For example, the car needs to stop when there were
pedestrians, and the machine must be able to tell the difference between actual
pedestrians and pictures of human. Additionally, camera sets cannot precisely
measure distance or work at night. Lidar sensors usually emit high-frequency
signals, and those high-frequency signals could be used for positioning and 3D
modelling, being able to tell the difference between actual human and pictures
of human. Radar is a low energy cost solution for positioning because the radio
wave it emits is usually with low frequency. Low-frequency wave cannot depict
the detailed 3D shape, but it is enough for positioning. However, cameras are
still needed because neither lidar nor radar can identify colors.

Vehicle-to-Vehicle Communication. Communication (V2V) technology can
increase the accuracy of autonomous driving prominently. When multiple cars
are sharing their information, they can calibrate according to their relative
positions.

ML for Autonomous Vehicles

NPTEL

Key component of ML for self driving cars
Perception: a core element of what the self-driving car needs to build an understanding of the
world around around it using two major inputs:

● Scene Prior, and
● Sensor Data

Scene Prior, is prior on the scene. For example it would be a little silly to recompute the actual
location of the road, interconnectivity of the intersections of every intersection. Things you can pre-
compute in advance and save your onboard computing for all the tasks that are more critical which
is often referred to as the mapping exercise.

Sensor, the signal that's going to tell you what is not like, what you mapped and the things like
traffic light right or green, where are the pedestrians and the cars what are you doing.

ML for Autonomous Vehicles

NPTEL

Key component of ML for self driving cars

ML for Autonomous Vehicles

Components

NPTEL

Key component of ML for self driving cars

ML for Autonomous Vehicles

Scene Representation

NPTEL

Key component of ML for self driving cars

ML for Autonomous Vehicles

Perform semantic object segmentation

NPTEL

Key component of ML for self driving cars

ML for Autonomous Vehicles

Perform finer classification of objects

NPTEL

Key component of ML for self driving cars

ML for Autonomous Vehicles

Time tracking using embeddings/RNN
Now the vector representations of different
objects will be tracked over time.

A common technique that you can use is a
recurrent neural networks that essentially are
networks that will build a state that gets better
and better as it gets more observation
sequential observations of for the pattern.

Once semantic representation and coding in an
embedding for the pedestrian, the car under it
and the model will track that over time and build
a state of a good understanding of what's going
on in the scene.

The vector representation combined with
recurrent neural networks is a common
technique to achieve this.

NPTEL

Data for training ML models in Self-Driving Cars

Waymo Open Dataset is the largest, richest and most diverse AV datasets ever
published for academic research Sun et al. (2019). This dataset, collected from
Waymo level-5 autnomous vehicles in various traffic conditions, comprise radar,
lidar and camera data from 1000 20-second segments with labels. We will
introduce details about the Waymo dataset, as well as how the data is
preprocessed before being fed into several machine learning models.

ML for Autonomous Vehicles

NPTEL

Data for training ML models in Self-Driving Cars

Labels refer to kinematics and spatial parameters of objects, which are
represented as bounding boxes. Specifically, one kind of labels, type, is classified
into pedestrian, vehicle, unknown, sign and cyclist categories. Detailed information
is provided for each label, among which we especially pay attention to the
coordinates of the bounding boxes, velocities v, and accelerations a in the
subsequent feature extraction step.

Coordinate Systems three coordinate systems are provided in this dataset: global
frame, vehicle frame, and sensor frame. Some raw features are represented in
unintended coordinate systems. In order to maintain consistency, it is crucial to
transform data into the correct coordinate system. The dataset also provides
vehicle pose VP, a 4 × 4 row matrix, to transform variables from one coordinate
system to another.

Acceleration Computation Because one’s instant acceleration of is not directly
available in the dataset, the “ground truth” for training and evaluation needs to be
computed by velocity differences.

ML for Autonomous Vehicles

NPTEL

Data for training ML models in Self-Driving Cars

Data Size: According to the data format, 1000 segments are packed into multiple
compressed files (tars) with a size of 25 GB each. In our experiments, 32 training
tars are used as the training set and 8 validation tars are used as the testing set.
The total number of videos extracted from the segments is 45000.

Image embedding there are five cameras installed on the AV, facing towards front,
front-left, frontright, side-left, and side-left respectively. These images reflect the
time-series information of the moving vehicle with relatively smoother variation than
numerical data, which helps to prevent spiky prediction between consecutive
frames.

ML for Autonomous Vehicles

NPTEL

Use Case: LSTM model for self driving cars

Basic Model with 12 Features, One of the straightforward ways to build the acceleration
prediction model is to treat 12 basic features as the input of the model. The ”encoder-
decoder” architecture proposed for trajectory prediction in SS-LSTM is a suitable
architecture for the acceleration prediction problem as the acceleration curve is a
trajectory based on past experiences.

ML for Autonomous Vehicles

NPTEL

Use case: LSTM model for self driving cars
Advanced Model with Image Inputs, The architecture of such an advanced model is
similar to the previous basic model. An ”encoder-decoder” structure is maintained to
learn the information hidden in the input features. The difference is that the front camera
images are treated as additional inputs.

ML for Autonomous Vehicles

NPTEL

Use Case: LSTM model for self driving cars
Advanced Model with more Image Inputs

ML for Autonomous Vehicles

NPTEL

Use Case: LSTM model for self driving cars

Comparison of results with other state-of-the-art methods

ML for Autonomous Vehicles

NPTEL

Future trend of autonomous driving

Like other intelligent industries of IIoT, autonomous driving is also reducing the
total energy consumption. Gasoline has been the primary fuel for all kinds of
vehicles, and natural gas storage only has about 52 years left, with current
consumption levels. If the natural gas demands increased, natural gas could
run out faster. So, the energy crisis is existing all the time.

First of all, the rise of autonomous driving cars can improve the energy
efficiency of private-owned cars. Usually, an average family car can reach its
maximum speed at about 200 to 250 km/h, but the city’s usual speed limit is
usually about 60km/h. That means the engine displacement of nowadays cars
are mostly excessive. However, high engine displacement is necessary
because faster cars are always safer because driver can overtake or change
lane faster. If autonomous vehicles took the places of private-owned vehicles.
In that case, it is pointless to use bigger and faster cars because autonomous
driving cars are much more reliable than human drivers.

ML for Autonomous Vehicles

NPTEL

Future trend of autonomous driving

Secondly, auto-driving vehicles could reduce the natural gas dependency. As
this paper mentioned before, smaller cars do not need potent energy resource,
and electricity will be enough for most auto-driving vehicles. The popularization
of auto-Driving cars is also an excellent opportunity to accept renewable
energy over traditional energy sources, which will do good to the global climate
as well.

Last but not least, when autonomous driving vehicles replaced private cars,
parking issues will be solved, people will have bigger house and living areas
because no garage is needed. There will be no traffic congestion as routes will
be pre-scheduled to ensure efficiency. Long-distance deliverance will be more
reliable because the auto-driving vehicle will never be tried.

ML for Autonomous Vehicles

NPTEL

Lecture Summary

● Different concepts of Autonomous Vehicles
● How Edge computing is important in Automotive Industry?
● How ML is trained in Self-driving cars?
● Use Case of LSTM model for self-driving cars

ML for Autonomous Vehicles

NPTEL

Thank You!

ML for Autonomous Vehicles

NPTEL

	Lecture 01-Introduction to Edge Computing
	Lecture 02-Introduction to Cloud
	Lecture 03-Introduction to IoT Platform
	Lecture 04-Time-and-clock-synchronization
	Lecture 05-Enabling Intelligence at Edge layer for IOT
	Lecture 06-ML-based Image Classifier at IoT-Edge
	Lecture 07-Introduction to Docker Containers and Kubernetes
	Lecture 08-ML based Predictive Maintenance at IoT Edge
	Lecture 09 Deep Reinforcement Learning for Cloud-Edge
	Lecture 10 Deep Reinforcement Learning for Cloud Edge Example
	Lecture 11- Public Cloud Services- Case Study of AWS Services
	Lecture 12 Mathematical formulations for task-offloading in Edge-Cloud
	Lecture 13 Task Offloading Based on LSTM Prediction and Deep Reinforcement Learning
	Lecture 14 Vertical and Horizontal Offloading for Cloud-Edge
	Lecture 15 Global State and Snapshot Recording Algorithms
	Lecture 16 Hot Data Analytics for Real-Time Streaming in IoT Platform
	Lecture 17- Introduction to MQTT and Kafka in IoT platform
	Lecture 18 Introduction to Edge Data Center for IoT platform
	Lecture 19 Design of Key-Value Stores for IoT Edge Storage
	Lectture 20- Introduction to Edge ML with Edge IoT platform
	Lecture 21- Introduction to Federated Learning at IoT Edge
	Lecture 22- Machine Learning for Autonomous Vehicles at IoT Edge Computing copy

