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After this lecture you will be knowing following things:

e Introduction to Edge Computing

e Edge Computing Architecture & building blocks
e Edge Computing for IOT

e Advantages of Edge Computing



Recapitulate:Evolution of Cloud

Virtual machines running in Data processed locally and
a remote data center or compute comes much
storage that was offered in a closer to the devices or the
remote data center sources of data
VMs getting replaced by Training the models
containers and workloads are on edge also called

moving towards containers inferencing



Introduction to Edge Computing

Edge computing allows the cloud to be genuinely distributed. \/

Don't need to rely on the cloud for all the processing and data/
aggregation collection processing and querying.

Mimics the public cloud platform capabilities. v~

Reduces the latency by avoiding the round-trip and brings in the
Jdata sovereignty by keeping data where it actually belongs.

JDelivers local storage, compute, and network services.




Edge Computing: makes distributed cloud v

® Edge computing makes the cloud truly distributed. The = \/
current cloud or rather the previous generation of cloud P =
was almost like a mainframe or like a client-server

architecture where very little processing was done on
the client side but all the heavy lifting was done by the

cloud.//
®\With all the i@vations in the hardware chips and with
the affordable electronics and silicon it makes more
sense to bring compute down to the last mile and actuall
keep the compute closer to the devices.

@S0 that's when edge computing becomes more and
more viable where you don't need to rely on the cloud for
all the processing and data aggregation, collection, )
processing and querying instead’y&T‘could actually run

computing layer that is very close to the dewces du,\'wﬁ
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Edge Computing: Mimics the public cloud platform capabilities
and Move cloud service closer to data-source

eThe edge computing mimics the public cloud platform J \

capabilities

Distributed Cloud
Environment

eFor example when you dissect an edge computing
platform you would notice that it almost has all the
apabilities of a typical public cloud
o|OT pass: it has device management, it has data
ingestion, it has stream analytics and it can run
machine learning models and it can run server less
functions so all of those are capabilities that are
predominantly available on the public cloud
eBut with edge computing they all come to the last mile
delivery point and run very close to the source of the
data which is sensors actuators and devices

NN




Edge Computing: Reduces the latency by avoiding the round-trip

and brings in the data sovereignty

®The biggest advantage o ing an edge computing
layer is that it reduces th¢ latency py avoiding the round-
trip.

®Tt also brings in the data sovereignty by keeping data
where it actually belongs to.

®For example in a healthcaé’cenario it may not be viab
or it may not be compliant to actually stream sensitive
patient data to the cloud where it is getting stored and
processed instead the patient data should remain on-Prem\—
within the hospital premises but it still needs to go through
lot of processing and 1ind out very useful insights so in that
case the edge computing layer is going to stay close to the
healthcare equipment with connectivity back to the cloud
and the architects and the customer engineers will decide
what data will stay within the edge boundary and what will
actually cross that and move to the cloud may be
anonymized data.
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Edge Computing Building Blocks (i %%

Data Ingestion v/ MM’ M
o

M2M Brokers ~/ . )
Object Storage ‘ %]
Function as a Service

NoSQL/Time-Series Database

Streem Processing

ML Models



Edge Computing Building Blocks: Data
Ingestion

Data Ingestion:
This is the high velocity, high throughput DATAINC}E;@N

Process of Absorbifig Information

data endpoint like the Kafka endpoint that
is going to ingest the data.

It is the process of obtaining and
importing data for immediate use or
storage in a database. To ingest
something is to take something in or
absorb something. Data can be streamed
in real time or ingested in batches. In
real-time data ingestion, each data item
is imported as the source emits it.

Sources of Data




Edge Computing Building Blocks: M2M
Brokers

ZCanar Zﬂﬁzi%
M2M Brokers: <GS I
_ — :
Edge will also run message 74 SuBSCRIBERS Eﬁi
brokers that will orchestrate
machine to machine ( S MOTT JBROKER

communication.

For example device one talks
PUBLISHERS

to device two via the M2M Omm  Omm O fﬂT[ﬂ

broker. milll mill
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Edge Computing Building Blocks: Storage

, J
Object Storage:

there may be unstructured storage
particularly to store the feed from
video cameras and mics and
anything that is unstructured will go
into object storage.

J S
NoSQL/Time-Series Database:

N\ ) )
More Etructured data goes into time
series data base and no sequel
database

Structured
Data

[l

Structured data is quantitative
datain the form of numbers and
values.

Unstructured
Data

Unstructured data is qualitative
datain the form of text files,
audio files, video files.




Edge Computing Building Blocks: Stream
Processing

Stream Processing:

It is a complex event processing _—’—7 —

engine that is enabling you to

perform real-time queries and\l SEE = - [ 09
proces$ thé data as it comes. SEE = é: } Analytics

For example for every data point s

you want to convert Fahrenheit to

Output Stream

Outputs

Celsius or you want to convert the DpHEDsEs B e
timestamp from one format to Ve
another, you could do it either in ﬁ

stream processing.



Edge Computing Building Blocks: Function
as a Sevice

Function as a service:

To add additional business
logic there is a functions as a
service which is actually

responsible for running Function
lightweight compute. asa
If you need to do more Service

sophisticated code you could
actually move that to functions
as a service.



Edge Computing Building Blocks: ML
Models

Machine Learning models:

Lastely, there is an ML runtime for
example most of the computing
platforms are capable of running
tensorflow light, cafe models and
pitorch models, so you can actually
process the data that comes in
more intelligently and take
preventive measures and perform
predictive analytics.



Edge Computing Architecture

Visualizations, Dashboards
Human-Machine Interaction (HMI)




Edge Computing: Three-tier Architecture

Now let's look at this from a different dimension.

But this three-tier architecture is not the traditional three-tier Actionable O
that we are familiar of. |n5|ght Human-Machine Interaction (HMI)

There are data sources and by the way edge computing is
not confined just to IOT, it could be even for non IOT use
cases. Anything that generates data can be fed into an IOT
like cameras, clickstream analysis, gaming, etc.

A lot of use cases are relevant for the edge geployments so
it's basically like a three-tier architecture.

There is no app server, no database, no middle layer, and
there is no front end, so this is not a traditional three tier

architecture.



Edge Computing Architecture: Data Source Tier

The first tier is the Data Source Tier:

In industrial IOT environment, this
could be a set of devices that are
generating the data.

ACtlona ble Visualizations, Dashboards
I n si g ht Human-Machine Interaction (HMI)

These are nothing but original
endpoint, from where the data is
acquired or the origin of the data.




Edge Computing Architecture: Intelligence Tier

Then there is an intelligent tier: /

Responsible for running the machine
learning models.

This intelligent tier cuts across the
cloud and the edge so there is a very
well-defined boundary between edge

and cloud where the training takes A‘|“°_“ah':l° . Vioteiztons, Detboards,
place on the cloug and the inferencing nsig
is run on the edge. But collectively, AFmML

this overlap between the cloud and _
the edge is this intelligence layer. E 0(7‘3

- T TJroing




Edge Computing Architecture: Actionable Insight Tier

Then there is an actionable insight
layer:

Responsible for sending an alert to the -

relevant stakeholders or populating the

dashboards and showing some --
visualizations or even the edge taking

an action to immediately shut down a Actionable Vis@,,s,msh;;ds
faulty machine or controlling an Insi Huza-Hactine blerctionlii)
actuator and again the actionable jb‘

insight takes place on the edge so this

is not the physical boundary.



Edge Computing Architecture: Summary

In Summary, you logically look at the whole
architecture so there is a data source which is
the original endpoint from where the data is
acquired or the origin of the data.

Sensors, Databases, Event Sources,

*D ata Sources Machine Logs, Clickstream, Social Media

: Machine Learning Algorithms (Cloud)
Intelllgence Machine Learning Models (Edge)

Then there is an intelligence layer where the

constant training and inferencing takes place. Actionable —

InS|ght Human-Machine Interaction (HMI)

Edge Computing
Architecture

Then there is an insight layer where you actually
visualize the outcome from the intelligence and
also perform actions based on those insights so
that is one way of visualizing edge computing.



Lecture Summary

® |n depth concepts of Edge Computing

@) Edge makes distributed cloud
@) Edge mimics thépubtie-etotd platform capabilities and Move cloud service closer to data-source

O Edge reduces the latency by avoiding the round-trip and brings in the data_se

® Building Blocks of Edgeyémputing
® Three tier architectu\ry‘of Edge Computing
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On completion of this Lecture you will get to know about the following:

Understanding of today’s cloud scenario
Different objectives of cloud
Current limitations of traditional cloud

Why there is a need of Edge Computing?



Current State of Today’s Cloud

Highly centralised set of resources
Compute is going beyond VMs
Storage is complemented by CDN
Network stack is programmable

The Web and Software-as-a-Service
Infrastructure-as-a-Service
High-Availability cloud




Current State of Today’s Cloud: Highly
Centralized in QIient-Server Architecturg

G daLW —Terhoogp (o], o )

® ,Cloud computing started as all about B CJ‘?,/ e
virtual machines that were running in a = e
remote data center (or storage). E_,g\

® Highly centralized architecture closely .

resembles 90s client-server computing.
® For example cloud (the remote data
enter or the remg}.e infrastgacture) V4
xposed by Amazon, Microsoft, Google,
% IBM and others is the server and the

CCCCC

machine from which you are connecting “~——=
to it and consuming the cloud resources ( ud
is the client. -2 (\9

vy
. - "’ 5“ W Soxcvor
s W™ oo



Current State of Today’s Cloud: Compute is
going beyond {a0S / (enianers

J Although cloud resembles the 90s client-server
computing but at the same time compute has - @ _—
gone beyond VMs the first generation of cloud Virtulzatio Virtzation

was all about VM virtual machines.

Where you could programmatically launch a VM
and you could SSH into it and take control of the
Virtual Machine and install the software.

Virtualization
-

Server

® But there is a dramatic shift in the compute i @ Network
Storage
Virtulization

Virtulization

where)él\/ls are slowly getting replaced by
containers.

ore worklo?d‘s are moving towards




Current State of Today’s Cloud: Stor\a/ge IS
complemented by C[/)N — Centomt dwm/} M v,

® Another important trend almost all the public
loud are in storage offerings. v/
® JObject storage is complemented by a copfent
delivery network today.
® Whenever you put an object in a bucket or a

/ container of the public cloud storage you can ~_STORAGE
c_Ii;l;g_ch%:;box to basically replicate and PEEES / S
cache the data across multiple edge locations contacts
but this edge is not the edge that we are talking
about this is the conteni delivery netwark where

/' it caches the frequently accessed content in a

(
set of pop or edge locations. Qd%" ’,ow"""z' DN
S
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Current State of Today’s Cloud Network
stack is programmable faehs

® Finally network has become extremely programmable today. \/

® If you look at the hybrid cloud, multi-cloud scenarios and how
network traffic is getting routed and how load balancers firewalls
and a variety of network components are configured it is throug

api's and programmability. p -
® The same capability of SDN\fenabllng hybrid scenarios Wt N ; A
particularly when we look at the combination of sottware-defined / sl
network with some gf the emerging networking technologies.
® These mesh they &fe opening up additional avenues some of the
very recent trends like Google’s Anthos, IBM cloud private and
\{ some of the other container based hybrid cloud platforms are
heavily relying on the programmable NetWwork stack and also a

combination of SDN with service mesh.

® This is the current state of the cloud and these trends represent
how the cloud is currently being consumed or how it is delivered to
customers but cloud is going through a huge transformation.




Multiple waves of innovation in Cloud: Pass

to 10T (b { W?‘) v

Initially cloud was all abou@w%oums globally
available highly centralized set of reSources because cloud made compute and
storage extremely cheap and affordable lot of industrial customers and
enterprises started connecting devices to the cloud.

The data that was not persisted or aggregated or acquired is now streamed to
the cloud because it is extremely cheap to store data in the cloud.

So a lot of companies and lot of industrial environments started to take
advantage of the cloud by streaming therdata coming from a variety of sensors
and deviees. —

Also use the cheaper compute power to process those data streams and make

sense out of the raw data generated these sensors and devices and thatwas
the next big shift in the cloud this was IOT pass™

—

— Da U'ilea SM
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Challenges for I0T-Pass ~ 'pm’ :"d rciawL

® |[f you look at azure IOT, Google Cloud IOT, AWS IOT core all off thery
essentially give you a mechanisnma plattorm to connect devices |and stoke
and process it in the cloud but it was not sufficient or it was not gnough to
address a lot of scenarloj\whlle cloud enabled capabilities like Big Data and

S

—A

IOT. -
® | ot of customers were not ready to move the data to the cloud
A challenge. ) — daar
® The second one is the g from the devices to the cloud a
/ devices-was too long ahd.it was increasing the Tatency in a lof ofmission-critical
— ——
® Sending the data 1o the cloud and waiting for the cloud to procegs it and send
the r k was just not feasible so there had to be a mechpanism where

data could be processed locally and compute comes much closer to the devices
or the sources of data so that's how IOT led to edge computing pnd today
almost every mainstream enterprise IOT platform has a complifhentary edge

offering-and €ssomate edge offering and more recently there Has been aTot of
focus on dtificial ntelligence.) Pagid TE >
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® Today’s cloud has become the logical d s:in}ion for training and running artificial intelligence

powerful to train very com ' ted ML models and Al models

and machine learning modelg’
/ Due to accelerators like GPUs GPUs FPGAs it has become extremely cheap and also
® But in most of the scenarios a model that is restrained in the cloud is going to be run in an

/ offline environment.
® For example, you might have trained an artificial intelligence model that can identify the make
and model of a car and automatically charge the thll fee for that vehicle when it passes through
\ the toll gate now since the toll gates are on highways and freeways with very little connectivity
and almost with no network access you need to run this model in offline scenario.
® Soedge computing became the boupdary for running these cloud trained Al models but
running in an offline mode withi o that islyjow we are basically looking at the
evolution of cloud and on e waves oTinRGVatan)
® So cloud are distributed or rather decentralized platform for aggregating storing and processing
data with himormance computing 10T brought in all the devices to the cloud with IOT data
; at edge made cloud decentralized by bringing compute closer to the data source and now it is
Al that is actually driving the next wave.where cloud is becoming the de facto platform for
training the mo and edge is becoming the de facto platform for running the models so one

is called the training the other one is called inferencing. f
N bt DI ¢ lowd

Q}#&V%b 3. ow::. ~ IDT 4‘("&“\?0”) Gm“[)




Limitations of current cloud system

® Al use cases need real-time responses from the devices they are
monitoring.

® Cloud-based inference cannot provide this real-time response due to
inherent issues with latency.

® |f edge devices have connectivity issues or no internet connection it
can not perform well.

e Sufficient bandwidth required to transfer the relevant amount of data in
a proper time frame can also be an issue.



Evolution of Cloud

Virtual machines running in Data processed locally and
a remote data center or compute comes much
storage that was offered in a closer to the devices or the
remote data center sources of data
VMs getting replaced by Training the models
conta}(qrs and workloads are on edge also called

—_——

moving towards cf/ﬁalners inferencing



Summary of this lecture

Today’s cloud is highly Centralized in Client-Server
Architecture ) /Y-

Compu}e is going beyond VMs —> (o wwg
Storage\}s complemented by CDN — v

Network stack is programmablev” - $DN —
Multiple waves of innovation in Cloud

Challenges for IOT-Pass —/—

Evolution of Cloud towards Edge Computing

-
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After completion of this lecture you will knowing the following:

e Different components of loT platforms
e |oT platforms building blocks which are provided by different
cloud providers such as microsoft, amazon, google, etc



Architectural approach for{loT platfor

S
loT applications have three components. Things o{devic s send data or events
that are used to generate insightj. Insightsare usedtogenerate actions to help
improve a business or progess.

The equipment or things In a manufacturing plant send various-types of data as
they operate. An example is a milling machine sending feed rate and temperature

data is data is used to evaluate whether the machine is running or not, an
@ he insi ht is us\ed to optimize the plant, an action.
W\M“ Aot

Q/\’l \6
@

Things Insights v Actions
(generate (based on generated data) (basedy Insights)

ev‘“‘"{



Introduction to loT platform

/

/

Things

Sensors
Automation
etc

Azure
Sphere
Azure lot
Device
SDK

J

loT Edge,
Databox Edge

Edge

Cloud IoT {

Device
Provision,
Device security,
Device
messaging

loT Central
loT Hub,
loT Hub DPS,
Digital Twins

Hot Path

Stream Analytics,

Real-time Event Hub,

data Functions,

. Synapse,
Processing Kafka,

Databricks

/

/

Warm Path

Data Lake,

Small Batch Functions,
: Data Factory,

Processing Synapse,

Databricks,
Azure DBaas

Cold Path

Data Lake,
Batch Data Factory,
Processing Synapse,
Databricks,
Azure DBaas

Presentation

Reporting,
Dataset, APIs
Applications

Azure DBaas,
Power Bl,
Synapse,
Azure App
services

Consumers

External
systems,
Report
Consumers,
Data
Integration
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Introduction to loT platform: Things

Things

Sensors
Automation
etc

Azure
Sphere
Azure lot
Device
SDK

loT Edge,
Databox Edge

Edge

Cloud loT

Device
Provision,
Device security,
Device
messaging

loT Central
loT Hub,
loT Hub DPS,
Digital Twins

Hot Path

Stream Analytics,

Real-time Event Hub,
data Functions,
Processing garse.

Databricks

Warm Path

Data Lake,
Small Batch Functions,
: Data Factory,
Processing Synapse,
Databricks,

Azure DBaas

Cold Path

Data Lake,
Batch Data Factory,
Processing Synapse,
Databricks,

Azure DBaas

Presentation

Reporting,
Dataset, APIs
Applications

Azure DBaas,
Power Bl,
Synapse,
Azure App

services

Consumers

External
systems,
Report
Consumers,
Data
Integration




Introduction to loT platform: Thing g

Everything in the iot space starts with the things side of the internet of things.

When you talk to people about iot, people probably think about nest doorbells,
simplisafe appliances, differentkinds of things that you can use in your house that

make your house smart. Things
. /— e
All of these things are part of an_loT network so that's very familiar to most people Ve \/
and that is true, it is the sensors that goe o making a device work. ™M SensorsVT |
-_ Automation | A
n azure there's a couple of things that you can use to create these things. 7 etc
One is azure sphere which is like a lightweight operating system that you can put on 7
/’a device and you can use this as an_embedded system that will allow you tq create Azure -
devices and also have the connected back up to azure and also secure the device ;Sphere\/
using that particular specialized operating system. Azure lot
—
There's also the azure loT SDK which is a specialized sdk for interacting with some g,;',ie

of these other services. But it can be embedded on many different systems and
supports a lot of different kinds of languages as well.




Introduction to loT platform: Cloud loT

J

J

Things
—_—

Sensors
Automation
etc

Azure
Sphere
Azure lot
Device
SDK

Hot Path

Cloud loT
- Stream Analytics,
Real-time Event Hub,
Device data Functions,

(0] . s ,
ey Provision, Processing Kok,
2L Device security, Databricks
'-"_J g Device
o3 messaging Warm Path

a] Data Lake,

Small Batch Functions,
. Data Factory,
Processing Sy
() loT Central ADatabSéks,
zure aas
(@)] loT Hub,
E loT Hub DPS,
Digital Twins COId Path
Data Lake,
Batch Data Factory,
Processing Synapse,
Databricks,
Azure DBaas

L//\
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Dataset, APIs
Applications
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Azure App
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Introduction to loT platform: Cloud loT

Internet of things you also have the iot stack that typically exists on many
different iot deployments.

Basically with the iot stack you're going to be managing devices and also
brokering messages between devices and the cloud. (m Q—T-T)

This is a management suite that allows you to scale devices and it providesa —|

lot of services for that so you can provision devices you can take devices
offline to provide security for devices it also provides a messaging

e

telemetry back from devices.

All of these endpoints and all of this management infrastructure is
encapsulated in afyﬁé of different serwcess(<

infrastructure so that you can send commands to devices and also receive

S

Cloud loT

—_— Device Provision/
Device security,
- ; Device messaging

loT Central
loT Hub,
loT Hub DPS,
Digital Twins




Introduction to loT platform: Cloud loT

On azuredot central which is more a software—as-a-service offering that
encapsulates a lot of the functionality for ability to create applications in the
context of an iot central and that allows to have multi-tenancy with different
devices to scale not only the devices but also trmWnents of
things integrating with those devices are serving up.

IOT hub is ageneral purpose tool on azure foro it has
device provisioning services that need forsca INg Up JeviTes, for putting

certificates on devices, generating those certificates for messaging from device
for messaging to ijevice ie low level and more functionally oriented.

—

Azure digital twins, digital twinning is the ability to_.manage device configuration
in a suite of software to integrate with azure IOT hub maintains some kind of
state information about devices in \V cloud.

Cloud loT/

Device Provision,‘\/
Device security,
Device messaging

loT Central \/

loT Hubar"
loT Hub DPS,

Digital Twins”

|




Introduction to loT platform: Hot Path

Things
(0]
Sensors 5O
Automation 2L
etc 9
5=
i}
=}
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Introduction to loT platform: Hot Path

The data is routed to one of the three different patfg
ie the hot path or the cold path or th(?_vwat

Hot path data is data that is processed in real time so as it comes off of the iot

hub It gets processed within seconds of that happening so the message hits
he hot path it's processed and then It's presented to something in the
onsumption la /

The consumption layer is able to consume tt data immediately once it's been
processed in the hot path.

You could write the output from a hotpath to chd storagelsystem that is

consumed by something like an api. The data'is written in réal time but the api

might be querying that data that was written an hour ago.

Processing data in real time such as a dashboard that is constantly monitoring

things in their present state as comes off of the hot path and into the
consumption layer. .

Hot Path

Real-time Stream
data Analytics,
Processing Event Hub,
Functions,
Synapse,

Kafka,
Databricks

~- J.Wl




Introduction to loT platform: Hot Path

There are several offerings on azure for hotpath data is going to be event hubs the messaging

platform —_ ~

Event hubs can also write messages to a £old storage that can be consumed by cold pass or warm
path but whatever you get out of event hubs can be wired up to all these other other kinds of
processors such as stream analytics which is a platform as a service offering that uses sql to
transform data aggregate data enrich it

Then you have functions which can be triggered by event hubs . Then there's azure synapse which
as synapse allows you to have a full suite of tools at your disposal that do all kinds of things related
to data processing that is streams.

Hot Path
Real-time Strea
data Analytirgs\,/
Processing Event Hu
Functions,
Synapse,
Kafka, \/
Databricks,_~

Lad

You can also use kafka which is out of the apache space which is similar to stream analytics in that

you do real-time data processing but it's more specific in its implementation but it wires up directly
to event hubs. E——

Databricks is typically used for more batch style oriented workloads but you can use it for "/
streaming

Combining any number of these can do a lot of different kinds of hotpath aggregations
transformations queries filters whatever it might be they're all different tools that all do it very
similar functionality within the azure context.



Introduction to loT platform: Co
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Introduction to loT platform: Cold Path

Coldpath is more hatch-oriented, hotpath will process the message as it hits the system

while coldpath really processes the messages as they accumulate on the system and
rather being triggered by the message itself what it allows for is data to be accumulated

over a period of time and then typically on a trigger that is timer based it will then take
whatever data has been accumulated and process that data in batch.

Then it will write the data back to some kind of cold stor;ge whatever the processing on
that data might look like P—

This typically works as opposed to hot path where you have something like event hubs
that deliver a message to a processor what you typically do in this case is you land the
message that as it comes off of iot hub into some kind of what we call cold storage so

that's typically some kind of database or some kind of data retention system.
yPIesly Y Cold Path

Now that could be something like a data lake which would be basically built on top of

blob storage, you can also do it with blob storage as well but fundamentally data lake is Batch Data Lake\/'|

built on top of blob storage in any case. Processing  Data Factory,
Synapse,
Databricks,

Azure DBaas




Introduction/to loT platform: Cold Path

Azure database as a service offering, use sqgl databases, use cosmos databases, use
postgres or mysq|l putting into some kind of data stora latform.

Then from there once it's accumulated in that cold storage then the trigger fires and it's
going to launch whatever processing capability is going to be a part of that and that's
where something like data data factory or azure synapse or or databricks

Data factory is software as a service or platform as a service gives the ability to visually
build workflows inside of data factory that can then take data out of a data lake or
database and process it in batches and then write the results back to some kind of
output.

Now synapse has similar functionality but it is integrated with the synapse suite on

azure Cold Path
so databricks has the ability to scale and it also integrates with a lot of other different Batch Data Lake,
offerings on azure including the databases data lakes and many of these other similar Processing  Data Factory,
things is more of a visual designer for building those kind of workflows. SMETES)
Databricks
Azure DBa




Introduction to loT platform: Warm Path
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Introduction to loT platform: Warm Path

v

Between the hot path and the cold path is warm path. It has some kind of
functionality that might seem similar to hot path and something that might
seem to similar to cold path.

Tools that are more in line with warmpath such as data lake, factory data,

factory synapse, databricks use azure functions.

s
Even use something like stream analytics or kafka for some smaller workloads
The distinction between hot path, warm path and cold path really isn't clear.

The takeaway from this is that hot path is_real-time warm path is going to be

Warm Path

Small Batch Data Lake,
Processing Functions,
Data Factory,
Synapse,
Databricks,
Azure DBaas

more often smaller workloads that are going to be rating on smaller time scales
like 5 minutes, 10 minutes, 15 minutes or an hour and cold path is going to be
larger workloads that are going to be operating over long periods of time. It
might be five minutes if there's a lot of data it could be an hour it could be a day
could be a week.




Introduction to loT platform: Presentation
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Introduction to loT platform: Prese‘n/tation

The data that was collected by way of things that originated in the iot layer i's
going to be an aggregated plus some enhancement of that data and some
filtering of that data. This is going to be things like api’s that are going to be
consumed by applications, it's going to be reports that people are going to be
looking at.

That could be some kind of dashboard like report where you're looking at
telemetry in real time or a query telemetry out of a data set or it could just be
the raw data itself that you're going to be providing by way of some kind of data
integration where you're taking some kind of export of the data and then taking
that into another data system for consumption in that system.‘/

Regardless of whatever is the presentation of that data it's basically the output
of the data pipelines that you're employing either as hotpath warm path or cold
path and the presentation then can take that data and then just make it
available.
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Introduction to loT platform: Presentation

So this is going to imply things like security, access controls and those kinds of things,
also a database as a service offering, so anything that would store the data, that would
be sql server, cosmos db, maria, azure data explorer thergs a lot of different ways to
present data. ja

Then you have the reporting services such as power guide, which is kind of the one
tool that a lot of folks love to use for building dashboards in the microsoft context and it
can hook up to all kinds of data sources and then it can import those and then use data
sets that are manipulated inside of the rbi context itself.

You can use azure functions and azure app services for serving up api’s, so azure
functions gives you the ability to create http endpoints that can then query back into
whatever database a source that you want to use or other data sources.

Then azure app services if you want to just write something like an mpd application
that's going to be exposing some kind of data api that external applications then can
consume from that data source.

Presentation
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Applications

Azure DBaas
Power Bl,
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Azure App
services




Introduction to loT platform: Consumers
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Introduction to loT platform: Consumers

Now we have consumers, this is not so much an explicit part of the system as

it is a more implicit part of the system.

Ultimately what ends up in the presentation layer is going to be determined by
what the external consumers of this data are going to want to be in that
presentation layer.

So whenever you're designing a system that is going to be presenting data,
you start with the api in mind and you kind of work back from that to the source

data and that's really why we have set it up this way.

The reason we included it is because you need to be cognizantly aware of how
you want this data to show up in whatever is going to be integrated with it
whether it be a report, whether it be an api or some kind of external data
integration.

Consumers

External systems,
Report Consumers,
Data Integration




Introduction to loT platform: Edge
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Introduction to loT platform:

On the edge of a network,a local area network a bunch of devices that are emitting{€rermetry and events and
doing all those kinds of things that they do and those are ultimately sent back to the cloud.

However, in some cases you might want to put some kind of preprocessor in place that will do some filtering
and aggregation arysome other enhanceny&s on the data closer to where the devices are. ————

So in a sense the edge is almost a microcgsm of everything that happens in the cloud.

You will have things like message buses, data pipelines and other kinds oféta enhancement tools that exist
in that context for the purpose of pre-processing that data before it goes over to the cloud side.

There are two services that are in this space on the edge, the first one is the iot edge.

——
loT edge isa-platie at is more of an at you can install on an appliance and it's based
around u‘ You can do things like stream analytics in that context, it also gives you the ability to
do message filtering and a number of other things that are a part of that ecosystem. Also the code that you
want to mg—lzmm a docker container on the iot edge.

/_\/

loT Edge,
Databox Edge

Edge




Introduction to loT platform: Edge

It also offers a message proxy for sending messages from devicese the cloud so that you can basically
queue those messages up on the loT edge.

In the event of an internet outageﬂc-)u can then queue those messages_up there and then when the internet is
restored, it will then forward those onto the cloud so it mitigates againgf things like losses of message.

There is local response to events in that particular context as well, so you can build an ML and other kind of
event management into the iot edge. It can quickly respond to something like a fire, for instance if a device
reports that there's a fire, you can have a command issued by the iot edge to put that fire out for instance.

Databox is a similar service but it's not as purpose-built as iot edge and it's basically bringing a lot more the
ML type workloads that you get in something like ML workspaces.

These kind of things are bringing to the edge as well, so it can do data ingestion and apply ML models.

In the context of an edge installation rather than having to ship all that data back up to the cloud you can do it
more intelligently on the edge and do it more quickly, so that you don't have to rely on an internet connection
€cC -

and the latency that ches.

loT Edge,
Databo<\Edge

Edge
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loT platform: Things

On one end of the platform we have devices and these
devices are either sensors or actuators.

Sensgrs generate data, for example a tepaperature
sengor, a humm_\s?réérg_—m@?@p‘w ity . pres SO on.
The generated data’is going to be acquired and ingested
into the cloud.” J

Then there are-actuators like switches and bulbs. These
are the things that could switch on and switch off that
have electromegpéﬁ?gal interface.

The devices are further connected to the edge and and
the edge acts as a gateway abstracting the devices that
are at the lowest level of the spectrum and that actually
connects to the public cloud.

[

Devices },::){ Edge }
|

On-premises



loT platform: Insight

Now on the cloud side we have two touch points for the edge or the devices.

—

One is the device registry that is primarily used for onboarding the devices and it is the
repository of devices.

Every devicethatis-eennecied to the IOT platform has an identity within the device registry.

Consider an enterprise corporate directory séé-rio where the device registry like an LDAP
of devices, you can query to get a lot of metadata and useful information about every device
connected to the platform.

The public cloud pass also callexposes a data ingestion endpoint. This is the
high velocity, high throughput endpeint whére the sensor data gets'streamed.

Typically could bz Kafka jf you are doing it yourself or it could be as your event hubs or
Amazon kinases or Google cloud pub/sub so it is the pipe that basically acquires the data

and passes on to the data processing pipeline

v

Device
Registry

Data
Ingestion



J
loT platform: Insight

Now both the device registry and data ingestion \/\
endpoints are connected to a message routing policy. —

A message routing policy which will define how this
data is going to be split between real-time processing

and batch processing and how the raw data is stored Message | -
and how the processed data is going to be stored\./ Routing
Policies

This is the place where you actually create a rules
engine or you basically create some kind of policy that
is going to define how the data flows. \. J

For example, some data needs to be batch process,
where you first collect and then process, in some
cases you need to perform real-time stream analytics.




loT platform: Insight

The batch processing layer which is also called as cold path anali/yand
stream analytics layer which is also called as hot path analytics.

In other words, when you are performing queries on data as it comes that is
called the hot path analytics and if you are storing and processing the data over
a period of time it is called the cold path analytics. \/}m

Now both the raw data which is going or about to go to either batch processing
or stream analytics is first persisted in a time series database or an
unstructured database and even the output from the batch processing and
stream analytics gets persisted in the the same database.

Then we have storage and databases for persisting the raw sensor data and
also the process data

)

Batch
Processing

———

Storage
&
Database

Stream
Analytics




loT platform: actions v

Now from the same data store we apply machine learning
algorithms to basically find out anomaly detection and
predictive analytics from the dafa thatis coming in.

Finally, all of that is fed into an enterprise Business

Intelligence Platform, where you can actually run dashboards _ Business

and alerts and the entire visualization happens on the data MBS IZ> InElee-
. . . : Learning nce

warehousing or the business intelligence layer

These key building blocks of IOT platform you could actually a

map this to Azure or AWS or Google or G predicts, Bosch \ J
IOT, etc.

Every platform has a very similar architecture it's almost like
a blueprint for any public cloud-based IOT platform.




Lecture Summary

e Detail of components of loT architecture.
e Concepts of loT platform building blocks.
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Content of this Lecture:

* In this lecture, we will discuss the fundamentals of clock
synchronization in loT and its different algorithms.

* To understand how clocks operate on loT devices and how
they can be synchronized in an accurate and efficient

fashion.
>,

Time and Clock Synchronization



Content of this Lecture:
* Internet of Things (loT) devices that are wirelessly
connected in mesh networks often need mutual clock time

————

synchronization, to enable chronological ordering of sensor
T

events, coordination of asynchronous processes across

devices, or network-wide coordination of actuators. -~
 We will also discuss the causality and a general framework

of logical clocks and present two systems of logical time,

namely, lamport and vector, timestamps %o capture

causality between distributed events of an Internet of things

as a distributed system.
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Need of Synchronization

Synchronizing clocks on Internet of Things (1oT) devices is
important for applications such as monitoring and real time
control.

J
You want to catch a bus at 9.05 am, but your watch is off by 15

minutes
What if your watch is Late by 15 minutes?
« You'll miss the bus!
What if your watch is Fast by 15 minutes?

* You’ll end up unfairly waiting for a longer time than you
intended

Time and Clock Synchronization



Time and Synchronization

¢ Time and Synchronization

(“There’s is never enough time...”)

o Distributed Time

. The notion of time is well defined (and measurable) at
each single location

. But the relationship between time at different locations
is unclear

Time Synchronization is required for:
JS

o
, Correctness

, Fairness

Time and Clock Synchronization



Synchronization in an loT

Example: Cloud based airline reservation system:

e Server X receives, a client request, to purchase the last ticket on

f flight, say PQR 123. V%
o’ Server X timestamps the purchase using its local clock as
6h:25\?{:42.555. It then logs it. Replies ok to the client.

e That was the very last seat, Server X sends a message to Server Y
saying the “flight is full”.

o @anters, “Flight PQR 123 is full” + its own local clock value,
(which happens to read GnyOm:ZO.le).

e Server Z, queries X's ;and Y's logs. Is confused tha:c/a client
purchased a ticket at X after the flight became full at Y.

¢ This may lead to full incorrect actions at Z

Time and Clock Synchronization



Key Challenges

¢ End-hosts in Internet based systems (like clouds)
« Each have its own clock

« Unlike processors (CPUs) within one server or
workstation which share a system clock.

e Processes in internet based systems follow an
asynchronous model.

« No bounds on
J

— Messages delays /
— Processing delays

« Unlike multi-processor (or parallel) systems which follow
a synchronous system model

Time and Clock Synchronization



e An asynchronous distributed system consists of a number of
processes. —

e Each process has a state (values of variables).

e Each process takes actions to change its state, which may be
an instruction or a communication action (send, receive).

e An eventis the occurrence of an action.

e Each process has a large clock — events within a process can
be assigned timestamps, and thus ordered linearly.

e But-in a loT system, we also need to know the time order
of events across different processes.

Time and Clock Synchronization



Space-time diagram
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Figure : The space-time diagram of a distributed execution.
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Clock Skew vs. Clock Drift

e Each process (running at some end host) has its own clock””

e When comparing two clocks at two processes. g

lock Skew =)Relative difference in clock values of two
rocesses. o

VA

ike distance between two vehicles on road.

Relative difference in clock frequencies (rates)
D processes

« Aike difference in speeds of two vehicles on the road.
Voo :
¢ A non-zero clock skew implies clocks are not synchronized .~

¢ A non-zero clock drift caus§ skew increases (eventually). .~
ncreases {eventua

o If faster vehicle is aheac\i,/ix will drift away.
« If faster vehicle is behind, it will catch up and then drift away.

Time and Clock Synchronization



Clock Inaccuracies

e Clocks that must not only be

synchronized with each other but also ~ v \/
have to adhere to physical time are A>T 4o

. Clock time, C , = o
termed physical clocks. Y ,dt

e Physical clocks are synchronized to an /(
accurate real-time standard like UTC
(Universal Coordinated Time).

e« However, due to the clock inaccuracy, a
timer (clock) is said to be working within

its specification if (where constant p is the

. ifi h Figure: The behavior of fast, slow, and
maximum skew rate specified by the perfect clocks with respect to UTC.
manufacturer)

UTC,t -

3

l—pSES1+p

dt
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How often to Synchronize

e Maximum Drift rate (MDR) of a clock .~

e Absolute MDR is defined to relative coordinated universal
Time (UTC). UTC is the correct time at any point of time.

* MIDR of any process depends on the environment.
e Maximum drift rate between two clocks with similar MDR
is 2*MDR.

e Given a maximum acceptable skew M between any pair of
clocks, need tq synchr.onlze\}t least once every: -
M/ (2* MDR) time units.

* Since time = Distance/ Speed.

Time and Clock Synchronization



External vs Internal Synchronization

e Consider a group of processes _/
o External synchronization/ Ve

« Each process C(i)’s clock is within a bounded D of a well-
knovy clock S external to the group

« |C(i)-S|< D at all times. v/

« External clock may be connected to UTC (Universal
Coordinated Time) or an atomic clock.

« Example: Christian’j/algorithm, NTP
¢ Internal Synchronization

Ve
. Ever& pair of processes in group have clocks within bound D

« |C(i)- C(j)|< D at all times and for all processes i,j. =~
« Example: Berk}ey Algorithm, DT&J
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External vs Internal Synchronization

e External synchronization with D => Internal
synchronization with 2*D.

S

¢ Internal synchronization does \ryt imply External
Synchronization.

* |n fact, the entire system may drift away from the
external clock S!

Time and Clock Synchronization



Basic Fundamentals

External time synchronization
o ) \/\
o All processes P synchronize W|th a time server S.

Set clock to t Time

P >
) ° "')

What>e\tl:‘le- Hertﬁme t

S .

Check local cIUCI(ﬁ?fmd tlme t

e What'’s Wrong:
« Bythe time the message has received at P, time has moved on.
. P’stime settotisinaccurate./
« Inaccuracy a function of message latencies.

« Since latencies unbounded in an asynchronous system, the inaccuracy
cannot be bounded.

Time and Clock Synchronization




(i) Christians Algorithm

e P measures the round-trip-time RTT of message exchange

e Suppose we know the minimum P - S latency minl

e Andthe minimum S - P latency min2

—_ <
> Minl and Min2 depends on the OS overhead to buffer messages, TCP
time to queue messages, etc.

e The actual time at P when it receives response is between

[t+min2, t + RTT-min1] R F4RIT- o) ’
RTT o
- [ '" Setclocktot Time
>

What’s thetime?

Here’s the time t!
> ; [ T many
Check local clock to find time t ¥
Time and Clock Synchronization




Christians Algorithm

e Theactual time at P when it receives response is between
[t+min2, t + RTT-min1]

o P sets its time to halfway through this interval
« To:t+ (RTT+min2-minl)/2
e Erroris at most (RTT- min2- minl)/2

. Bounded
v e (“4.-: R — (s v )
mT
p ’ \  Setclocktot Time
>

What’s thetime?
AN Hgre’s the time t!
) ( f"/‘)

Check local clock to find time t
Time and Clock Synchronization
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Error Bounds

.

l server

server

. R
TOLY_I \_Y_l Tl time
Tmin

message arrives \ Y ) message leaves

range = T-T,-2T

client

min

accuracy of result = + —T
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/

e Allowed to increase clock value but should never
decrease clock value

— May violate ordering of events within the same
process. Ve

¢ Allowed to increase oyecrease speed of clock

e If erroris too high, take multiple readings and
average them v

Time and Clock Synchronization



Christians Algorithm: Example

e Sendrequest at 5:08:15.100 (TO) o If best-case message
time=200 msec

To =5:08:15.100

T1=5:08:15.900
o Elapsedtimeis T1 'TO Tserver=5:09:25:300

o 5:08:15.900 - 5:08:15.100 = 800 msec Tmin = 200msec
e Best guess: timestamp was generated
o 400 msec ago

. Server i 4
« Settimeto Iserver+ elapsed time ’
. 5:09:25.300 + 400 = 5:09.25.700 et o

900 - 100 800 Client )

To— e T Time

Error=+ N 200 = iT_ 200 = 200

e Receive response at 5:08:15.900 (Tl)
— Response contains 5:09:25.300 (Tserver)

TSEWEF

J

|
300
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(iif) NTP: Network time protocol

e (1991, 1992) Internet Standard, version 3: RFC 1305
e NTP servers organized in a tree. v

e Each client = a leaf of a tree. e

e Each node synchronizes with its tree parent

Vs

Primary servers

"
v

Tertiary servers

Secondary servers

Client
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NTP Protocol

Message 1 recv tlm@
Message 2 send time ts2
\/ Tlme

Let’s starkprotocol Message 2
Message 1
Parent

o) \/,"r/
Message 2 recv tI

Message 1 send tI \/
\/ v
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Why o = (trl1-tr2 + ts2- ts1)/2 ?

/ g ~
o Offset o = (trl-tr2 + ts2-tsl)/2

o Let’scalculate the error.
e Suppose real offset is oreal 4
. Child is ahead of parent by oreal.

v

e Suppose one way latency of Message 1 is L1.
(L2 for Message 2)

¢ No one knows L1 or L2! J

e Then J /

, trl=ts1+L1+oreal —U
o tr2=1ts2 + L2 — oreal ’@

Time and Clock Synchronization
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Why o = (trl1-tr2 + ts2- ts1)/2 ?

e Then
, trl =tsl1 + L1 + oreal.
, tr2 =ts2 + L2 — oreal.

¢ Subtracting second equation from first
. oreal = (tr1-tr2 + ts2- ts1)/2 — (L2-L1)/2
Y
« =>oreal =0 + (L2-

« => |oreal—o|<\(L2-L1)/2]| < [(L2+L1)/2]
* Thus the error is bounde rip tim

Time and Clock Synchronization




(iii) Berkley’s Algorithm

¢ Gusella & Zatti, 1989
e Master poll’s each machine periodically

« Ask each machine for time

— Can use Christian’s algorithrMo compensate the network’s
latency.

e When results are in compute,
 Including master’s time.

e Hope: average cancels out individual clock’s tendency to run
fast or slow

e Send offset by which each clock needs adjustment to each
slave

* Avoids problems with network delays if we send a time-stamp.

Time and Clock Synchronization



Berkley’s Algorithm : Example

2. Compute fault-tolerant average:

3.25 + 2:50 + 3.00

0
3

3. Send offset to each client

Time and Clock Synchronization



(iv) DTP: Datacenter Time Protocol

Globally Synchronized Time via Datacenter Networks

Ki Suh Lee, Han Wang, Vishal Shrivastav, Hakim Weatherspoon
Computer Science Department

C I Uni it
kslee,hwang,visﬂrarl‘,ehwenell\t,ﬁ(rasrI cs.cornell.edu ACM SIGCOMM 2016

e DTP uses the physical layer of network

Application devices to implement a decentralized clock
synchronization protocol.

Transport

e Highly Scalable with bounded precision!
—~25ns (4 clock ticks) between peers

Data Link

— ~150ns for a datacenter with six hops

— No Network Traffic

— Internal Clock Synchronization

Physical

e End-to-End: ~200ns precision!
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DTP: Phases

QB ¢ Runs in two phases between two peers

lshspolt — Init Phase: Measuring OWD (one-way delay)

— Beacon Phase: Re-Synchronization
Data Link

Physical

Time and Clock Synchronization




DTP: (i) Init Phase

e INIT phase: The purpose of the INIT phase is to measure the one-way
delay between two peers. The phase begins when two ports are
physically connected and start communicating, i.e. when the link
between them is established.

e Each peer measures the one-way delay by measuring the time between

sending an INIT message and receiving an associated INIT-ACK message,
i.e. measure RTT, then divide the measured RTT by two.

- delay = (ta — t, — a)/2
— a=3: Ensure del/ay is always less than actual delay

m  Introduce 2 clock tick errors
— Due to oscillator skew, timing and Sync FIFO

Physical

Physical

-
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DTP: (ii) Beacon Phase

e BEACON phase: During the BEACON phase, two ports periodically exchange
their local counters for resynchronization. Due to oscillator skew, the offset
between two local counters will increase over time. A port adjusts its local
counter by selecting the maximum of the local and remote counters upon
receiving a BEACON message from its peer. Since BEACON messages are
exchanged frequently, hundreds of thousands of times a second (every few
microseconds), the offset can be kept to a minimum.

Application e Jocal = max (local, remote+delay)

- Frequent messages
m — Ewvery 1.2 us (200 clock ticks) with MTU packets
— Every 7.2 us (1200 clock ticks) with Jumbo packets

Physical -
e |Introduces 2 clock tick errors

g — Total 4 clock tick errors

.. |
Physical ; s Physical
- -
Time and Clock Synchronization
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DTP Switch

st G  « global = max(local counters)

Transport

| opeation

| Tenort_

| Network

]

Pl
|

* Propagates global via Beacon messages

Data Link

Physical

\

Physical

Physical
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DTP Property

e DTP provides bounded precision and scalability

¢ Bounded Precision in hardware
— Bounded by 4T (=25.6ns, T=oscillator tick is 6.4ns)
— Network precision bounded by 4TD

D is network diameter in hops

o Requires NIC and switch modifications

Time and Clock Synchronization



But Yet...

Y \?\Y\»_‘J\ JV'C/’C

¢ We still have a non-zero error!

e We just can’t seem to get rid of error r‘\)’& AL

» Can’t as long as messages Iat\efrcies are non-zero.

« Can we avoid synchronizing clocks altogether, and
still be able to order events ? o

Time and Clock Synchronization



Ordering events in a distributed system

e TOoOrderevents across proce"éses, trying to synchronize
clocks is an approach.

e What if we instead assigned timﬁtamps to events that
were not absol%ce time ?

e Aslong as those timestamps obey causality, that would

work T

J
« If an event A causally happens before another event B, then

timestamgy\) < timestamp (B)

« Example: Humans use causality all the time _~
* | enter the house only if | unlock it
* Youreceive a letter,only after | send it

v
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Logical (or Lamport) ordering

Leslie Lamport

e Proposed by Leslie Lamport in the 1970s.
e Used in almost all distributed sy\s);e/ms since then

e Almost all cloud computing systems use some
form of logical ordering of events.

e Leslie B. Lamport (born February 7, 1941) is an American computer
scientist. Lamport is best known for his seminal work in distributed
systems and as the initial developer of the document preparation
system LaTeX. Leslie Lamport was the winner of the 2013 Turing/
Award for imposing clear, well-defined coherence on the seemingly
chaotic behavior of distributed computing systems, in which several
autonomous computers communicate with each other by passing
messages.

Time and Clock Synchronization



Lamport’s research contributions

e Lamport’s research contributions have laid the foundations of the theory of
distributed systems. Among his most notable papers are

« “Time, Clocks, and the Ordering of Events in a Distributed System”, which received the PODC
Influential Paper Award in 2000,

. “How to Make a Multiprocessor Computer That Correctly Executes Multiprocess Programs”,which
defined the notion of Sequential consistency,

« “The Byzantine Generals' Problem”,
. “Distributed Snapshots: Determining Global States of a Distributed System” and
. “The Part-Time Parliament”.

e These papers relate to such concepts as logical clocks (and the happened-before
relationship) and Byzantine failures. They are among the most cited papers in the
field of computer science and describe algorithms to solve many fundamental
problems in distributed systems, including:

« the Paxos algorithm for consensus,

« the bakery algorithm for mutual exclusion of multiple threads in a computer system that require
the same resources at the same time,

» the Chandy-Lamport algorithm for the determination of consistent global states (snapshot), and
. the Lamport signature, one of the prototypes of the digital signature.

Time and Clock Synchronization



Logical (or Lamport) Ordering(2)

Define a logical relation Happejns-Before among pairs of events
Happens-Before denoted as —

Three rules: / Y / J Vs

. On the same process: a —b, if time(a) < time(b) (using th
Iocaljlock) Y %

. If pl sends m }o p2: send(m) —>receive(m)
. (Transitivity) Ifa b and b —>cthen a —>c¢
Creates a partial order among events

+ Not all events related to each other v

v~
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Example 1:

@ >
Time
E F G
>

| J
@ >

) % /B ¢ (o (i)
&

&

® Instruction or step

——> Message
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Example 1: Happens-Before

A / B v C D E
P1 @ ® >
Time
v
E F G
P2 s
H | J
P3 P >
e AOB ® Instruction or step
e BOF
e ASDF \/ ——> Message

Time and Clock Synchronization



Example 2: Happens-Before

A B C D E
P1 o ® >
Time
E F G
P2 S
H | J
P3 P >
¢« HOG _
e FOJ ® Instruction or step
* H3J ——> Message
e CJ

Time and Clock Synchronization



Lamport timestamps

o Goal: Assign logical (Lamport) timestamp to each event
o Timestamps obey catis?a’ﬁty

e Rules
e Each process uses a local counter (cj9@<) which is an integer
- initial value of counter is zero

e A process increments its counter when a send or an
instruction happens at it. The counter is assigned to the
event as its timestamp. S

e Asend (mesyfge) event carries its timestamp v/~
e For areceive (meﬁée) event the counter is updated by

/ N/ V4

max(local clock, message timestamp) + 1

Time and Clock Synchronization



P1 ® ® >

Time

P2 >

P3 . >

® Instruction or step

—> Message

Time and Clock Synchronization




Lamport Timestamps

P1 0 @ ® >
Time

P2 O >

P3 0 ° S

® Instruction or step

Initial counters (clocks)
—> Message

Time and Clock Synchronization




Lamport Timestamps

P1 Vo

/\\ [\

Message carrles
ts=1
P3 O ° S

ts=1 \/

Message send

® Instruction or step

—> Message

Time and Clock Synchronization




Lamport Timestamps

P1 Vo

1 @ >
ts = max(local, msg) + 1 Time
= max(0, 1)+1
P2 0 o R
Message carries
ts=1
P3 O ° S

® Instruction or step

—> Message

Time and Clock Synchronization




Lamport Timestamps

Time

P2

P3 . >

® Instruction or step

—> Message

Time and Clock Synchronization




Lamport Timestamps

max(3, 4)+1
// =5
pp O ° o £ >
1 2 3
Time
P2 O
] 3 4 g
P3 0 ° s

® Instruction or step

—> Message

Time and Clock Synchronization




Lamport Timestamps

0
P1 * 3 N 5\ 6 >
Time
P2 0
) 3 4 >
P3 0
1 : 7’

® Instruction or step

—> Message

Time and Clock Synchronization




Obeying Causality

0 A B C D E
Time
E F G
p2 O >
2 4
P3 0 H L N
1 2 7

® Instruction or step
e A>B::1<2

e B2>F:2<3 ——> Message
e A>F:1<3

Time and Clock Synchronization




Obeying Causality (2)

0 A B C D E
P1 s 2 3 5\ 6 g
Time
F
p2 O E >
2 4
H
P3 0 I. . >
1 2 /
H>G:1<4 ® Instruction or step
F2>J :3<7
H>J :1<7 —> Message
C—>)J ::3<7

Time and Clock Synchronization




Not always implying Causality

p1 0__e ° . 0 - ,
1 2 3 5 6
Time
P2 0 : \F (/ \
2 >
P3 0 " . o
1 2
e 2C>F?::3=3 ® Instruction or step

e PH>C?::1<3
e (C, F)and (H, C) are pairs of
concurrent events <

—— Message

Time and Clock Synchronization



Concurrent Events

o A pair of concurrent events doesn’t have a causal path
from one event to another (either way, in the pair)

o Lamport timestamps not guaranteed to be ordered or
unequal for concurrent events

e Ok, since concurrent events are not causality related!
o Remember:

El 2> E2 = timestamp(E1l) < timestamp (E2), BUT
timestamp(E1) < timestamp (E2) =

{E1 2 E2} OR{E1 and E2 concurrent}

Time and Clock Synchronization



Vector Timestamps

e Used in key-value stores like Riak S
o Each process uses a vector of integer clocks

e Suppose there are N processes in the group 1...N
o Each vector has N elements
o Processimaintains vector V;[1...N] v/ Y

o jth element of vector clock at process i, V], is f’s
knowledge of latest events at processj —

Time and Clock Synchronization



Assigning Vector Timestamps

Incrementing vector clocks

1. On an instruction or send event at process j, it increments
only its ith element of its vector clock

2. Each message carries the send-event’s vector timestamp

Vmessage[l---N] \/‘
3. On receiving a message at process /:
Vil=Viil+1 v
4
Vi[i] = mi‘/x(vmessage[i]r Vi[i]) for_lﬂ.

Time and Clock Synchronization



P1 ® ® >
Time
E F G
P2 >
H l J
P3 . >

® Instruction or step

—— Message

Time and Clock Synchronization




Vector Timestamps

P1 (0,0,0) @ ® >
Time
P2
(0,0,0) >
P3 P >
(0,0,0)

Initial counters (clocks)

Time and Clock Synchronization




Vector Timestamps

P3 Message(0,0,1)
(0,0,0) (0,0,1)

Time and Clock Synchronization




Vector Timestamps

P10,5,0) ® 11,0,0)
Time

P2
(0,0,0) (0,1,1)

P3 Mgessage(0,0,1)
(0,0,0) (0,0,1)

Time and Clock Synchronization




Vector Timestamps

P1 @ ® >
(0,0,0) (1,0,0) (2,0;
Message(2,0,0) Time
P2 >
(0,0,0) (0,1,1) (2,2,1)
P3 . >

(0,0,0) (0,0,1)

Time and Clock Synchronization




Vector Timestamps

P1 @ ® >
(OIOIO) (11010) (ZI ) 4 ) (31010) (4I31 ) (51311)
Time
P2 >
(0,0,0) (0,1,1) (2,2,1) (2,3,1)
P3 @ >
(0,0,0) (0,0,1) (0,0,2) (5,3,3)

Time and Clock Synchronization




Causally-Related

o VT,=VT,,

iff (if and only if)

VT4[i] = VT,[i], foralli=1, ..., N

o VTi<VT,,

iff VT4[i] £VT,li], foralli=1, ..., N
e TWwo events are causally related iff

VT, < VT, i.e,

iff VI,<VT, &

there exists j such that
1<j<N&VTj] < VT, [j]

Time and Clock Synchronization



... or Not Causally-Related

e Two events VT; and VT, are concurrent
iff
NOT (VT, £VT,) AND NOT (VT, £VT,)

We'll denote thisas VT, | || VT,

Time and Clock Synchronization



Obeying Causality

A B C D E
P1 @ ® >
(OIOIO) (1;0;0) (zl 0) (31010) (4,3, ) (5)3)1)
Time
P2 E F G .
(0,0,0) (0,1,1) (2,2,1) (2,3,1)
H I J
P3 ° S
(0,0,0) (0,0,1) (0,0,2) (5,3,3)

e A B::(1,0,0)<(2,0,0)
e B> F::(2,0,0)<(2,21)
e A F:(1,0,0)<(2,2,1)

Time and Clock Synchronization




Obeying Causality (2)

A B C D E
P1 (0,6,0) (T,0,0) (2,0; ,0,0) (4,3, (5,3,1)
Time
P2 3 F G R
(0,0,0) (0,1,1) (2,2,1) (2,3,1)
H | J
P3 R
(0,000  (0,0,1) (0,0,2) (5.3,3)

e H>G:(0,0,1)<(2,3,1)
e F>J ::(2,2,1)<(5,3,3)
e H->J ::(0,0,1) < (5,3,3)
e C—~>1J ::(3,0,0)<(5,3,3)

Time and Clock Synchronization




Identifying Concurrent Events

A B C D E
P10,0,0r T,0,0r —1Z00) 8007 @51 \ (531"
Time
P2 E >
(0,0,0) (0,1,1)
P3 H [ J R
(0,00) _ (0,0,1) (0,0.3) (5,3,3)

e C&F::(3,00)][]](221)
e H&C::(0,0,1) ||] (3,0,0)
e (C, F)and (H, C) are pairs of concurrent events
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Conclusion

Internet of Things (loT) devices that are wirelessly connected in
mesh networks often need mutual clock time synchronization, to
enable chronological ordering of sensor events, coordination of
asynchronous processes across devices, or network-wide
coordination of actuators.

Time synchronization: ./
Christian’s algorithm
Berkeley algorithm
NTP
DTP

But error a function of RTT
Can avoid time synchronization altogether by instead assigning
logical timestamps to events

Time and Clock Synchronization



Enabling Intelligence at Edge layer for IOT

% e Dr. Rajiv Misra

Professor, Dept. of Computer
Science & Engg. Indian Institute of
Technology Patna rajivm@iitp.ac.in
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After Completion of this lecture you will knowing the following:

Issues in traditional loT platform

How edge ML addresses the issues of loT platform?
Work flow of edge ML

Advantages and applications of edge ML



Recapitulate: Internet of Things

Internet of Things (loT) is a network of internet
connected devices (loT Devices) embedded in everyday
objects enabling sending and receiving data such as
settings and telemetry.




Azure loT
(|
e O

hings ’5’7
\¢o

Once the edge device is connected to azure loT hub service, different custom code modules are developed.

One to capture incoming data and send-that ta the custom vision.module and_another one to manage, control
and get the j%f out to display output of the model and the last one is a custom vision model which is used

to provide thehsight.



Recapitulate: Limitation of raditione{l loT platform])

Poor internet connection, when the internet is down theMmple, if a

mart fire alarm sysiem just detect fires when internet connection is up, then it fails in

performing its task. —
Data grawty,fc;T devices create lots of data that demand more way to find the insights
ocally on a device than shipping all of the data to the cloud. For example, a smart
doorbell, you don't want to stream video to the cloud 24-7 just to identify faces for the
two minutes that someone is in front of your door, you would rather do that, locally on

the smart doorbells.

/Beal time responses, as opposed to near real time responses that you cannot get by
sending data tg’the cloud finding insights and then sending the actions back down.

Pult

@v%’yvr[ﬂ/’n

R

o' \e



v

ncloud Vs
g
CL

Remote monitoring and control €@ Low latency tight control loops require near real-
time response

Merging remote data across multiple
loT devices v

@ Pre-process data on premise

@ Intelligence on edge

Near Infinite storage to train machine | o ofiine operations
learning and other advanced ML

models \/

& Data p\r?y and IP protection

]UT’ ¢ d?b' Clowal



Recapitulate: |IOT-Edge: Bringing machine learning to edge for loT

Azu
? - | TN
Insights Actions
e 7 Cloud
Things Gateway

" /1 4 \ J

Once the IoT device fetches the workload description from cloud, then whenever the device receives his
deployment manifest from the 10T hub service, it understands that it should go fetch those two containers
i.e. action and things.




Enabling\Intelligence at Edge layer for IOT

To manage the increasing amount of data that is generated by the dQ\gz’és, sengors, most of
the bu§iyg;s logic is now applied at the edge instead of the cloud to achieve low-latency and
have faster response time for IOT devices using Machine learning at edge.
Edge layer is delivering three essential capabilities

1. » local data processing,

2. ® ﬂltered data transfer to the cloud and
3. 4 faster decision-making o

®




Enabling Intelligence at Edge layer for IOT

rLocal data processing: S N
® |n order to deal with increasing amount of data generated by sensors, most of the

business logic is now deployed at the edge layer instead of cloud to ensure low-latency
—_— B e —

and faster response time._
® Only a subset of the data generated b\y?nsors is sent to the cloud after aggregating and

filtering the data a:c/th{edge.
¢ bandwidth ynd
6 Faster decision-making:

® Al has enabled new capabilities for edge computing. Since most of the decisi‘oyn'(aking is
now taking advantage of artificia\lyfélligence, the edge layer is becoming the perfect

destination for deploying machine-learning models trained in the cloud.
— —

¢ Filtered data transfer to cloud:
® This Edge Compyting approach significantly saves th




s Ve
Performance vs Cost trade-off in IOTtEdge Platforms
~_~

ML implementation on edge heavily depends onmed processors that complement the CPU.
There’s no conventional CPU can increase the speed of training ML moderT”

To bridge the gap between the ¢loud and edge, innovations in chip designs offers purpose-built
accelerator that speed up model inferencing significantly. Chip manufacturers such as Qualcomm,
NVIDIA and ARM have launched specialized chips that speed up the executlon of ML- enabled

applications. — . 45 ,_G\P

These modern processors GPUs assist the CPU of the edge devices by taking over the complex
mathematical calculations needed for runnlng deep learning models, accelerate the mfereyee

process. : 7

.—/___

This result in faste detectjonand|classificatior] of data ingested to_the edge layer.
~___~

The solutions like Microsoft and the Qualcomm Neural Processing SDK for
ML makes it pogsible to take models trained-in-the-cloud and run hardware-accelerated inference at

the intelligent £gdge. Loy .
Vs %ﬁ?%\w




Training: Involves the use of a

deep-learning framework (e.g.,
ﬂnsorFlow) and training

dataset. loT data provides a

source of training data thatdata =~

scientists and engineers can

use to train machine learning
models for a variety of use
cases, from failure detection to
consumer intelligence.

Infer&nce: Inference refers to
the process of using a trained
machine learning algorithm to
make a predictiortoT data can
be used as the input to a
trained machine learning
model, enabling predictions that
can guide decision logic on the
device, at the edge gateway or
elsewhere in the loT system.

loT Data Input to ML Models (Training vs. Ir@ence)

Raw loT Data Fro N
Endpoints (e.g., Sensors)
-

Edge Device,
Y On-Premises or

Cloud-Hosted
Interence Cloud-Hosted

Applying This
Capability to
New Data

Capability From
Existing Data

~

g
>
Training

New App or Service
Framework Dataset Data Featuring
Capability




o Collect training data o Prepare & Experiment:

Train the model using Azure Machine Learning and
-
loT . Azure |

Jupyter Notebooks
! | Azure Azure Machine Learning
O n e g e O Device loT Hub Storage Storage Machine Leaning

Model
A
] 1
=58 8—24—0
—= A 4 /
. oxxn
While we may touch many aspects of Jupyter
. . Notebook
a general machine learning workflow. v
— ODeploytrained model to lot Edge Sumth S i
. . . . ct
This lecture session is not intended & Bk e ek i e o

as an in-depth introduction to

machine learning. = -~ &S Ly {d:;:)n%r;zm
oD something
We intend to illustrate the process of = - with the data)

creating and using a viable model for
loT data processing. /

Maintain:
Collect more training data, upload to cloud periodically, and improve the model over time

£ [ & e
—© el |

- ]

v

I
L le
L




S
ML on edge loT: Collect training data

So w { o Collect training data

The process begins by collecting training data. W(}m‘ut A~ Ve

loT Hub
1
L : » !

~
In some cases, data has already been collected
and is available in a database, or in form of data
files.

Azure
Storage

In other cases, especially for loT scenarios, the
data needs to be collected from loT devices and
sensors and stored in the cloud. \/‘

A7
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ML on edge loT: Prepare data & Experiment

In most cases, the raw data as collected from device

. e — . Prepare & Experiment:
and sensors will require preparatlon for machine Traigathe modgl using Azure Machine Learning and
|earning_ —_— Jupyter Notebooks
This step may involve data clean up, data reformatting, ‘ R . rreprE—
or preprocessing to inject additional information machlne S e L T L
learning can key off. )\

L . . > »(((s)
Data preparation involves calculating explicit label for 8 L (/
every data point in the sample based on the actual : \/
observations on the data. & daman Jupyter

Notebook

This information allows the machine learning algorithm
to find correlations between actual sensor data patterns
and the expected results. This step is highly domain-

02y

U
A



ML on edge loT: Build a machine learning model

Based on the prepared data, we can now
experiment with different machine learning
algorithms and parameterizations to train models
and compare the results to one anothers/”

In this case, for testin compare the predicted
outcome computed\péfgs model with the real
outcome observed for a IOT Applicqﬂ@’n‘.

In Azure Machine Learning, this be can done in the
different iterations of models th\a)/g created in a
model registry.

e Build a machine learning model

Ve

(/\

T

\N\'OJ

d
ey
o
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ML on edge loT: Deploy the machine learning model

Based on the prepare%;ta, we can how
experiment with different machine learning
algorithms and parameterizations to train models
and compare the results to one another.

In this case, for testing we compare the predicted
outcome computed by the model with the real
outcome observed for a IOT Application.

In Azure Machine Learning, this be can done in the
different iterations of models that is created in a
model registry.

v/

o Deploy trained model to lot Edge
Use l;Ee model on loT Edge tofailure and pass
failur ion ontothe d to the do




ML on edge loT: Maintain and refine the model

Our work is not done once the model is deployed. In many cases, we want to continue
collecting data and periodically L Bte

74

We can then use this data t

Edge.
Maintain: \f

Collect more training data, upload to cloud periodically, and improve the model over time

- \J"F‘: P g
I 10 ‘%3\ ’ 8—&—0©
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Edge ML Platform (Sac

’ Video =
Camera

Device
deployment
& management

JLALELESRN L

Once the edge device is connected to azure loT hub service, two custom code modules are developed.

One to capture incoming data and send that to the custom vision module and another one to manage,
cantrel-and get the score out to display output of the model and the last one is a custom vision model which
is used to provide the\in/'sight.



Ve
Edge ML Platform: Insight-Con

Step 1: Package the da\t?(ans‘?ém, insight and

action into containers.

Now, write those three modules and package them
as docker containers

’ Video =4
Camera

Device

deployment
& management Azure




Edge ML Platform: Docker

Step 2: Put the containers to container registry.

Push all those docker contajfiers into container
registry

=

Container Registry

’ Video —<
Camera

Device

deployment
PR Azure




Edge ML Platforp: Cloud 1Q

Step 3: Define a workload description'in the cloud.

Then, write a deployment manifest which is also
called as the workload description that deploy
those three modules.

’ Video =Y
Camera

G IR IR

Device

deployment
A Azure




Edge ML Platform: Edge Run-time

Step 4: Target a loT ed\g?/uatime on edge device.

The edge device is running its runtime that's
appear because it's right hooked up to specific

instance of it.

’ Video =3
Camera

Container Registry

Device

deployment
& management Azure



Edge ML Platform: Migrating

Step 5: Shift the workload de\éption to the target
loT edge runtime on edge device.

Whenever the device receives his deployment
manifest from the loT hub service, it understands
that it should go fetch those three containers.

’ Video -~
Camera

evice

dep'oyment
& 1 1 nagement Azure




Step 6: The target IoT edge runtime download the
correct work load from the cloud and start them up
using container registry and runs on the edge
device.

2 8 =

That's a workload that it will bring down from the i g
Container Registry

cloud to the local device

’ Video e
Camera

Device

deployment
Rl Azure




Azure loT Hub

Azure iot hub allows for bi-directional communication between the cloud and iot devices

Also, allows developers to take advantage of this information to provide insights monitoring

7 ]

=) INSIGHTS
A
<> s

and develop custom solutions for their iot platform.




5 (\e

Azure1oT H/b,key—eh"aﬁerlstlcs

@nages service for bi-directional communication: it is a managed service for bi-directional
ommunication between the cloud and iot devices.

e ——
/Platform as a service (Paas): it's a platform as a service offering in azure for iot development.
H

ighly secure, scalable and reliable: it's a highly secure, scalable and reliable service for iot

/\ devices
Integrates with lots of azure services: perfectly integrates with a lot of azure services.

Programmable SDK for popular languages: you do not need to learn any new language to take
/\advantage of iot hub for their development purposes.

Multiple protocols: it support for multiple common standards on the market when it comes to

/‘\ communication protocols Na""; \,\'f“;(\ U



loT-Edge: key characteristics

The Camera Capture Module handles scanning items using a camera. It then calls the Image Classification module to
identify the item, a call is then made to the “Text to Speech” module to convert item label to speech, and the name of
the item scanned is played on the attached speaker.

The Image Classification Module runs a Tensorflow machine learning model that has been trained with images of
fruit. It handles classifying th€ scanned items.

The Text to Speech Module converts the name of the item scanned from text to speech using Azure Speech Services.
A USB Camera is used to capture images of items to be bought.

A Speaker for text to speech playback.

Azure loT Hub (Free tier) is used for managing, deploying, and reporting Azure IoT Edge devices running the solution.

Azure Speech Services (free tier) is used to generate very natural speech telling the shopper what they have just
scanned.

Azure Custom Vision service was used to build the fruit model used for image classification.



Services offered by loT Edge:

OpenCV
Camera Capture

(1)

Azure loT Edge Device (Linux)

Image
Classification
REST API (2)

Text to Speech
Function (3)

Azure Cloud Services

Azure Speech
Service (Text to
Speech) (7)

Exported
Tensorflow
Azure Custom
Vision Fruit
Classification

Model (8)

1
ks
//7
7




Azure loT Edge in Action

Develop your Container Workloads \/ >
Upload Modules to a Container Registry )

Container Registry
‘ (T,
[l

loT Edge

Provision loT Edge Device Agents
Azure loT

Select Device/ Deployment Set Hub

Define Modules
Define Message Routes /
Define Module Parameters /

N o & W =

Container Container Container Container

. Module [%Module .Module % Module

Module Twin L—L—l—]

. Device Twin

* Module
Local
storage

- — » Routes
Device Provisioning
S * Secure Boot
Security Manager » Secure Storage

Hardware based root of trust




Azure loT edge: Functionalities
e Target workload at the correct type of device

O Once the workload description sent down to the edge, the run time will download the correct work
load from the cloud and start them up and running.

e Create workload which can include high value ML

O This results in the custom code, machine learning model, and business logic all running locally
independent of cloud connection and also all of those values of edge analytics.

e Run those workload locally, in disconnected manner

O The runtime is smart enough to detect if the workload is trying to send messages to the cloud while it
doesn't have internet connection, the runtime will catch those messages and sync them with the
cloud once the internet is up.

e Monitor the health of the workloads

O Azure loT edge ensures that the work loads continue to run and report status sent back to the cloud.
Reporting the status back to the cloud allows to understand if there is any issues issues in the
deployment and take preventive actions.



Advantages of Edge ML

Reduced latency: Transfer of data back & forth from the cloud takes time. Edge ML reduces
latency by processing data locally (at the device level).

Real-time analytics: Real-time analytics is a major advantage of Edge Computing. Edge ML
brings high-performance computing capabilities to the edge, where sensors and IoT devices are
located.

Higher speeds: Data is processed locally which significantly improves processing speed as
compared to cloud computing

Reduced bandwidth requirement: Edge ML processes the data locally on the device itself,
reducing the cost of internet bandwidth and cloud storage.

Improved data security: Edge ML systems perform the majority of data processing locally i.e. on
the edge device itself. This greatly reduces the amount of data that is sent to the cloud and other
external locations.



Advantages of Edge ML

Scalability: Edge ML typically processes large amounts of data. If you have to
process video image data from many different sources simultaneously,
transferring the data to a cloud service is not required.

Improved reliability: Higher levels of security combined with greater speed
produce greater the reliability of Edge ML System.

Reduced cost: ML processing is working on the edge of the device so it is
highly cost-cost efficient because only processed, data required or valuable
data is sent to the cloud.

Reduced power: Edge ML processes data at the device level so it saves
energy costs
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Applications of Edge ML

Manufacturing: rapid collection and analysis of data produced by edge-based devices and sensors.
Energy (Oil and Gas): real-time analytics with information processing in remote locations.

Industrial loT: Inspection of devices/machines is done via ML algorithtead of human beings
performing manual inspections can save time & money.

Autonomous Vehicles: fast data processing that could take milliseconds to perform which could
reduce collision. /‘ J

Healthcare: to process all patient monitoring device data locally like glucose monitors, cardiac
trackers, blood pressure sensors, etc. v

Smart Homes: data movement time can be reduced and also the sensitive information can be

processed only on edge.
w\/
M



Lecture Summary

Limitations of loT platform

How edge ML addresses the issues of loT platform?
Work flow of edge ML

Advantages and applications of edge ML
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After Completion of this lecture you will knowing the following:

e Basics of computer vision in ML
e Different techniques of computer vision like image classification,

detection, segmentation, etc
e Object detection models like RCNN, Fast RCNN, Faster RCNN,

SDD, YOLO
e Azure compute vision as SaaS



Computer Vision: Introduction

Computer vision is a sub branch
of machine learning which deals
with giving computers the ability
to see and interpret and extract
information from images and
videos, videos can be seen as
collection of images.




How Computer Vision Works?

To train a computer vision model, you essentially feed some thousands of images of cats and it's going to do
some complex mathematics and feature extraction etc in the background.

Based on that it learns some key understanding or properties that define cats. n \('wy/

Dog: 96%

Cat:

Duck: m/
Bird: ‘/

Duck:

: .A. R "" Bird:
ﬁ .J ‘ : Feature extraction Output
Thousands of cats |mages /' V4
Y
ot




Computer Vision: Data Analytics View

With every machine learning model, the model is not
only the important part.

7

The fundamental fact that's going to determine how

good your model is the data you feed it. High Quality

Today, this is another point that we want to focus on is ¢ose

the fact that your model is only as good as your data. Good Dataset

So one of the key things that we're going to focus on ===
(1]

today’s lecture is how to make sure that our data is
good when we're building puter vision models.

w\,\AsV
NOIAE
L/




Computer Vision: Techniqué’g Ve

Computer vision deals with all the problems related to images and videos. There's a lot of techniques,
fundamentals or problems that can be tackled v:?h computer vision. A few of them inclllyes image

ﬂé{ﬁ(@tiﬁnﬂ image detection, image segmentation, pattern detectiorhédnd object loca |satiombject
detection and image classification are the two things that we're going to talk about today and we're going to

go into some of the predictive model build for an object detection model.

Instance
Segmentatior\/

Classificatior*/
+ Localization

Classification / Object Detection

CAT, DOG, DUCK CAT, DOG, DUCK

7 A _/
Y

Single ibj7f‘ / Multiple objects




Computer Vision: Architecture

A typical end-to-end pipeline of computer vision architecture is shown below.
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Computer Vision Architecture: Pre-processing

The second and important step is pre-processing of input data.

—_—

Machine learning depends on standardization, means you need to pre-process

input images to make sure that they're all of the same size.
—————

There might be some noise in the images, all of that needs to be dealt with
before the image fed into thesamodel.

If it's not done correctly, the model might learn noise or other features that are
not good features or it might learn from those that actually mean that your
model is going to be fundamentally flawed.

Therefore, pre-processing is essentially it's very important that need to be.

/7

- Pre-processing -

* Noise
reduction

» Scaling

* Changing
color spaces




[
Computer Vision Architecture: Data labeling

The third step is labeling your data.

\ H
For an object detection problem, you have images with different - Selec_tmg areas _
objects, let's say if you have an image with a cat and a dog, you would of interest
need to label that specific part of the image where there's a cat and a

dog. * Object (’T

This label or tags to that specific area where there's a dog or cat, so detection
this is essentially [abéling and this needs to be done as well. * Image
segmentatioré
OGN




Computer Vision Architecture: Feature extraction and prediction

Then feature extraction and prediction part performed by a am

learning model.

=

These are part of the el training, the model learns about what
features are present, it extracts the features.

e * Extracting | |+ Object
And if features are relevant from the images, then those features are data about recognition
learned along with thé patterns and Tater the model uses it to build a fe\aw}s * Feature
sort of rules for itself and these rules are used to predict the output. matching

el 2 Mferony
W

-



Computer Vision: Object Detection Models

The field of object detection is
not as new as it may seer: In
fact, object detection has
evolved over the past 20 years.
Popular deep learning algorithm
that achieved remarkable
results in this domain are:

® RCNN ve
Fast RCNN /

Faster RCNN

YOLO S
SSD (Single Shot Detector) ar

MobileNet SqueezeDet



Object Detection Model: RCNN

R-CNN, or Region-based Convolutional Neural
Network, consisted of 3 simple steps: R-CNN Linear Regression for bounding box offsets

1. Scan the input image for possible objects using Bboxreg || svMs | Classify regions with

/ an algorithm called Selective Search,

Bbox reg || SVMs SVMs
generating ~2000 re@g—mms
T b Forward each

2. Run aTonvolutional'neural net (CNN) on top of ConvN
g each of these region proposals ConvN ot Tegion through
3. Take the output of each CNN and feed it into ot ConvNet
/i a) an SVM to classify the region and b) a linear ConvN &
regressor to tighten the bounding box of the S et m Warped image regions

object, if such an object exists. T~

In other words, we first propose regions, then extract
features, and then classify those regions based on
their features. In essence, we have turned object
detection into an image classification problem. R-
CNN was very intuitive, but very slow.
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Object Detection Model: Fast RCNN

As we can see from the image, we are now
generating region proposals based on the last
feature map of the network, not from the original
image itself. As a result, we can train just one CNN
for the entire image. —

In addition, instead of training many different SVM’s
to classify each object class, there is a single
softmax layer that outputs the class probabilities
directly. Now we only have one neural net to train,

as opposed to one neural net and many SVM’s.

Fast R-CNN performed much better in terms of

speed. There was just one big bottleneck remaining:

the selective search algorithm for generating region

Fast R-CNN

proposars.
e ——

Soos

Linear +
Bounding-box

softmax
regressors

Softmax

classifier
FCs Fully-connected layers

t N

—R L7 /7 /=7 "RolPooling’ layer

Regions of “conv5” feature map of image

Interest (Rols)
from a proposal
method

Forward whole image through
ConvNet
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Object Detection Model: Faster RCNN_— K?/,

The main insight of Faster R-CNN was to replace the slow
selective search algorithm with a fast neural net. Specifically, it

introduced the ré sal network (RPN).
Here’s how the E{?(worked: —

/‘

e At the last layer of an initial CNN, a 3x3 sliding window
moves across the feature map and maps it to a lower
dimension (e.g. 256-d)

e For each sliding-window location, it generates multiple
possible regions based on k fixed-ratio anchor boxes
(default bounding boxes)

e Each region proposal consists of a) an “objectness” score
for that region and b) 4 coordinates representing the
bounding box of the region

In other words, we look at each location in our last feature map
and consider k different boxes centered around it: a tall box, a
wide box, a large box, etc. For each of those boxes, we output
whether or not we think it contains an object, and what the
coordinates for that box are.

Object is a cat Refine BB position

Faster R-CNN

Object or not object BB proposal

proposals i ;

Region Proposal Network "3
feature map ” :

pre-train image-net
‘_—_——? NN /
y |
- e

Rol pooling
” —



Object Detection Model: SSD
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Object Detection Mo‘dﬂ; SSD

SSD stands for Single-Shot Detector. Like R-FCN, it provides enormous speed gains over Faster R-CNN,
but does so in a markedly different manner.

Our first two models performed region proposals and region classifications in two separate steps. First,
they used a region proposal network to generate regions of interest; next, theg)fsed either fully-connected
layers or position-sensitive convolutional layers to classify those regions. SSD/does the two in a “single

shot,” simultaneously prgdicting the bounding box andgrthe class as it processes the image.
~——
Given an input image and a set of ground truth labels, SSD does the following:

e Pass the image through a series of convolutional layers, yielding several sets of feature maps at
different scales (e.g. 10x10, then 6x6, then 3x3, etc.)

e For each location in each of these feature maps, use a 3x3 convolutional filter to evaluate a small set
of default bounding boxes. These default bounding boxes are ess‘eyially equivalent to Faste‘y?-
CNN’s anchor boxes. J

e For each box, simultaneously predict a) the bounding box offset and b) the class probabilities

e During training, match the ground truth box with these predicted boxes based on loU. The best
predicted box will be labeled a “positive,” along with all other boxes that have an loU with the truth
>0.5. 7 OV

At L
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Objec;/Det ction Model: YOLOv3

\éu %I ook Once or more popularly known as YOLO is one of the fastest real-time object
detection algorithm (45 frames per second) as compared to the R-CNN family (R-CNN, Fast R-CNN,
Faster R-CNN, etc.) USees

The R-CNN family of algorithms uses regions to localise the objects in images which means the
model is applied to multiple regions and high scoring regions of the image are considered as object
detected.

Instead of selecting some regions, YOLO approaches the object detection problem in a completely
different way. A

It forwards the entire image to predict bounding boxes and their probabilities only once through the
neural network.

The authors have also improved the network by making it bigger and taking it towards residual
networks by adding shortcut connections.



Object Detection ModeyYOLOv3

First, it divides the image into a 13x13 grid of cells. The size of thgse 169 cells varies depending on the input size. For a
416%416 input size, the cell size was 32x32. Each cell is res‘?éale for predicting the number of boxes in image.

For each bounding box, the network also predicts the confidence that the bounding box actually encloses an object, and the
probability of the enclosed object being a péarticular class.

Most of these bounding boxes are eliminated because their confidence is low or because they are enclosing the same object
as another bounding box with a very high confidence score. This technique is called non-rryjohum suppression.

J /

Convolutional 1x1 Up Sampling Coavolutional Set Conv2d 1x1 Concatenate Residual : Convolutional 1x1
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Object Detection Models: Performance Metric

An overview of the most popular metrics used to compare performance of different deep learning models:
Intersection Over Union (IOU) \/‘

Intersection Over Union (IOU) is a measure based on Jaccard Index that evaluates the overlap between two
bounding boxes. IOU is given by the overlapping area between the predicted bounding box and the ground
truth bounding box divided by the area of union between them:

area (B, By)  area of overlap

[OU = - -

area (B, U By) area of union

2




Object Detection Models: Performance Metric

Precision:

Precision is the ability of a model to identify only the relevant objects. It is the percentage of correct positive
predictions and is given by:

™ TP v
TP + FP  all detections
J /

Recall: l/

Recall is the ability of a model to find all the relevant cases (all ground truth bounding boxes). It is the
percentage of true E)?ive detected among all releva‘r}ground truths and is given by:

TP

P
EP —\9}_ all ground truths

True Positive (TP): A correct detection. Detection with IOU = threshold
False Positive (FP): A wrong detection. Detection with IOU < threshold
False Negative (FN): A ground truth not detected

Precision =

Recall =
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Computer Vision: SaaS Architecture

A computer visiog architecture can easily be taken up
by a cloud secyé' e that is running a computer vision
model in the cloud.

A SaaS is a software as a service that is offered by all E
providers like azureYamazon aws, google cloud. All of
them offers some variation of these for computer yiSion
service. f

I.o

-

In that architecture, all you need to do is you need to \f l/
have your images and upload them and tag them.

Tagging 1s vital because you as the domain expert
know what informatiorn is present in the images. /

y

Once ygl've uploaded them in the c\:T'o'ud, the model Upload and

traininyand everything that is completely dependent e Train @ model in the cloud Make predictions
the cloud provider and fulli?gaged by the cloud i

t o

service provider.
puds S



Computer Vision: SaaS Architecture

It's extremely easy to scale up your dataset
and allow you to download the models that

you've built that can later be used offline. - SN .“
Once you've trained and download the model,

simply use the rest API to query that model and *
get the predictions which is extremely reliable E N
and simple.

The SaaS architecture provided py different

cloud provider offers similar sefvices. (—

There might be fundamental differences in the

ui or how you are uploading images or the api \/'Upload -

or how you're calling the services but under the  1oqimages Train a model in the cloud Make predictions
hood they're doing the same thing. /
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SaaS: Azure Custom Vision

Azure Custom VisionIs a cloud service used to build and deploy
computer vision models.

Custom Vision uses a pfetty interesting neural network technique
called transfer learning, which applies knowledge gained from A

solving one problem to!different, but related situation. This can Q‘ ))) (= ) 60—

Internet
substantially decrease the time needed for creating the models.

Features provided by Azure Custom Vision service:

e Train a computer vision model by simply uploadi?g/zﬁ/d
labeling few images.

e Build image classifier model using cio)e{free and code-first

approach.

e Deploy the model in the cloud on-premisg, or on edge
devices.
—

Edge



Azure Custom Vision on an loT Edge device

Build an image classifiiarjwith
Custom Vision.

Develop an loT Edge module
that queries the Custom

Vision web server on device.

Azure Cloud
Custom ‘m Azure Container 1T Hub
Vision Service @I Registery 08T
1
(%) Image Classifier % « -
(5
cameraCapture
o
Export Stage Deploy
Development
machine 5’; Edg
. 3 device

Send the results of the imége ﬁ

classifier to Io'yb.

)

Visual Studio

Code

docker

amn

cameraCapture =<5 Image Classifier
v
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Use Case: Creating an image recognition solution with
Azure loT Edge and Azure Cognitive Services

Although there are lots of applications for image recognition but we had chosen —
this application which is a solution for vision impaired people scannia J:d.é*(/
vegetables at a self-service checkout. _ "/ > Z

Required Components

Raspberry Pi 3B or better, USB Camera, and a Speaker.
—_—

—_—

—
Note, the solution will run on a Raspberry Pi 3A+, it has enough processing
power, but the device is limited to 512MB RAM. A Raspberry Pi 3B+ has 1GB of
RAM and is faster than the older 3B model. Azure loT Edge requires an
ARM32v7 or better processor. It will not run on the ARM32v6 processor found in
the Raspberry Pi Zero.

S

Desktop Linux - such as Ubuntu 18.0

This solution requires USB camera pass through into a Docker confainer
as well as Azure loT Edge support. So for now, that is Linux. d




/ '7 WelwmexoRaspbﬂﬁPi ! B
Guide for installing Raspberry Pi '

Before you start using it, there are a few things to set up
Set up Raspbian Stretch Lite on Raspberry Pi: Be sure to configure the correct Country )

e — . ress 'Next' to get started
Code in'your wpa_supplicant.conf file.

P:192.168.1.124

Azure subscription: If you don’t alt;c%ave an Azure account then sign up for a free Cancel [ Next )

Azure account. If you are a student thes sign up for an Azure for Students account, no
credit card required. J % @ 1

Create an Azure loT Hub, and an Azure loT Edge device: Install Azure |oT Edge run
on Raspberry Pi and download the deployment configuration file that describes the Azure
lo ge Modules and Routes for this solution. Open the deployment.arm32v7.json link I

and save the deplo ment.arm3\»2/v7.json in a known location on your computer.
Install Azure CLI and Azure CLI command line tools: With CLI open a command line Azure | Hub
console/terminal and change directory to the location where you saved the

deployment.arm32v7_json file. Azure loT Edge Device Microsoft Azure Cloud Services
Ed, time“ Results
— ) ®
1 o @ ﬁe; — E
cke

Deploy edge lot-ta device: The modules will now start to deploy to
L°°
Azure loT Hub Routeto Blob  Azure Blob

until the deployment completes. Approximately 1.5 GB of Dockers

your Raspberry Pi, the Raspberry Pi green activity LED will flicker T W
Tmagel ||
modules will be downloaded and decompressed on the Raspberry \ ?é’.ddf, User ota in
o Endpoint Storage

Pi. This is a one off operation. DOﬁ

vV




Considerations and constraints for the solution

The solution should scale from a Raspberry Pi (running
Raspbian Linux) on ARM32v7, to my desktop development
environment, to an industrial capable loT Edge device such
as those found in the Certified loT Edge Catalog.

The solution needs camera input, uses a USB Webcam for
image capture as it was supported across all target devices.

The camera capture module needed Docker USB device
pass-through (not supported by Docker on Windows) so that
plus targeting Raspberry Pi meant that need to target Azure
loT Edge on Linux.

To mirror the devices plus targeting, ir requires Docker
support for the USB webcam, so develop the solution on
Ubuntu 18.04 developer desktop.




Create Classification model using Azure Custom Vision

The Azure Custom Vision service is a simple way to create an image classification machine learning

model without having to be a data science or machine learning expert.

You simply upload multiple collections of labelled images. For example, you could upload a collection of
banana images and label them as ‘banana’.

It is important to have a good variety of labelled images so be sure to improve your classifier.

/]\

/]\

/[\

o

P

(o]

/\/\

o}

P~

Upload Images

/

Bring your own labeled images, or use

Custom Vision to quickly add tags to any

AV o / \/

Train

Use your labeled images to teach Custom
Vision the concepts you care about.

unlabeled images. .
[ aa?

OE BE BE
50 BE OO

Evaluate

Use simple REST API calls to quickly tag
images with your new custom computer
vision model.



v
Create Custom Vision Classification model

1. Create a project in custom vision service mentioning the project type, classification type and domains.
2. Gather initial data (images) and separate them in different folders.
3. Once data is uploaded, train your model by clicking “Train” button on the navigation bar.

=
Jetection Training Images Performance Predictions B Train B3 )

[E Add images Delet 0 Tagimag Select all

1. When the training is ended, the performance metrics will be shown. Click on the “i” bubble to

see the meaning of each performance metric.
Precision ® Recall ® L/

‘ 97.4% ’ ‘ 93.3% ’



Create Custom Vision Classification podel

5. Custom Vision offers fluent prediction thresholds adjustment to improve model performance. In our case
we prefer higher Recall over high Precisjon. It is important not to lower those thresholds too much as the
model performance will suffer significantly. E.g., having low probability threshold will lead to increased
number of false positives. If the model is supposed to be deployed in a production setting, we can’t be
stopping the production line for every false positive detection produced by the model.

———

For the problem that we are working with right now we decided to set our KPIs as follows:

—_—

va
® The main metric to optimize for is mAP — it cannot be any lower than 85%
® The Recall gnd Precisiow’are equally important, and both should stay above 80% o’

&2 |terations

& RBrations

Probabiligf Threshold{50% (i) Probability Threshold: 25% ()
u

|
% @ Overlap Threshold: 25% @
O

/ Overlap Threshold: 5
|



Export Custom Vision Classification model

Step 1: From the Performance tab of your Custom Vision project click Export.

Training Images Predictions |:
@ Prediction URL v/ Make default il Delete

% @
Iteration 8
Finished training on 9/19/2018, 6:04:03 PM using General (compact) domain
Classification type: Multiclass (Single tag per image)

omain

Precision ® Recall ®

S N



Export Custom Vision Classification model

Step 2: Select Dockgrfile from the list of available options

Dockerfile

Azure loT Edge, Azure Functions,

AzureML \/



Export Custom Vision Classification model

Step 3: Then select the Linux version of the Dockerfile.

Choose your platform X

e Dockerfile

Linux

/

Step 4: Download the docker file and unzip and you have a ready-made Docker solution with a Python Flask REST API. This
was how the Azure loT Edge Image Classification module is created in this solution.



Installing the solution

Step 1: Clone the repository for creating an image recognition solution with Azure loT Edge and Azure
Cognitive Services.

Step 2: Install the Azure loT Edge runtime on your Linux desktop or device (eg Raspberry Pi).
Step 3: Install the following software development tools.

Visual Studio Code
Plus, the following Visual Studio Code Extensions

Azure loT Edge
JSON Tools useful for changing the “Create Options” for a module.

Docker Community Edition on your development machine

Step 4: With Visual Studio Code, open the loT Edge solution you cloned to your developer desktop.



Building the Solution

Step 1: Pushing the image to a local Docker repository with specifying the localhost.

Step 2: Confirm processor architecture using the Visual Studio Code

SOR.. vV O | Sele ure loT Edge Solution Default Platforn
Message (press amd64
arm32v7
CHANGES

README.md

o
Jo)
®

windows-amd64

<

Q0A0 Azure B8 arm32v7 ® Golive Ln190,Col82 Spaces:4 UTF-8 CRLF Markdown @ A

P master*



Building the Solution

4 modules
b CameraCaptureOpenCV

Step 3: Build and Push the solution to ) '";afec'a“'“efsefv'ce .

i . . b modules-create-options
Docker by right mouse clicking the s "createOption
deployment.template.json file and select |
« . . » Openito the Side BHRELE image-classifier-service”: {
Build and Push loT Edge Solution”. version.py Reveal in Explorer Shift+Alt+R "status"

Open in Terminal “restartPolicy”:
"versi
Select for Compare “type":
“settings": {
Copy Ctri+C "image":
Copy Path Shift+Alt+C "createOption

Copy Relative Path Ctrl+K Ctri+Alt+C

Rename F2
emModules™: {

Delete Delete

edgeAgent
Add loT Edge Module
Build loT Edge Solution Ctrl+E Ctri+B

Build and Push loT Edge Solution "createOption
Build and Run loT Edge Solution in Simulator X

Generate loT Edge Deployment Manifest ;daeHub"
o




Deploying the Solution

X {} deploymentjson config
GROUP 2
21 Preview README.md
4 IOT-EDGE-IMAGE-CLASSIFICATION-WIT...

When the Docker Build and Push

process has completed select the Azure S e T

loT Hub device you want to deploy the 4 config

solution to. Right mouse click the b { }1 deploy: — S
deployment.json file found in the config ) ;:Docdsules N s AR
folder and select the target device from 2

the drop-down list. b ImageC

Select for Compare
b modules- P

.gitignore Copy Ctri+C
{} deploym:e Copy Path Shift+Alt+C

Copy Relative Path Ctrl+K Ctrl+Alt+C
version.p

Rename F2

Delete Delete

Create Deployment for Single Device

Create Deployment at Scale

Run loT Edge Solution in Simulator



Monitoring the Solution on the loT Edge Device

Once the solution has been deployed you can monitor it on the loT Edge device itself using the

iotedge list command.

File Edit View Search Terminal Help
Every 2.0s: iotedge list

NAME STATUS
image-classifier-service running

edgeHub running
camera-capture running
edgeAgent running

DESCRIPTION
minutes
minutes
minutes
minutes

rpi3plus: Mon Oct 22 17:21:19 2018

CONFIG
glovebox/image-classifier-service:0.1.9578-arm32v7
mcr.microsoft.com/azureiotedge-hub:1.0.2
glovebox/camera-capture-opencv:0.1.1990-arm32v7
mcr.microsoft.com/azureiotedge-agent:1.0.2




Monitoring the Solution on the loT Edge Device

You can also monitor the state of the Azure loT Edge module from the Azure loT Hub blade on the
Azure Portal.

Home > Resource groups > iotedgedev-rg > glovebox-iothub - IoT Edge

,x glovebox-iothub - 1oT Edge
- oT Hub

« =} Add an loT Edge device  ¥=% Add an IoT Edge deployment &) Refresh

2 1P Filter

a = Deploy Azure services and solution-specific code to on-premises devices. Use loT Edge devices to perform compute and analytics
Cestiicates tasks on data before it's sent to the cloud.
Built-in endpoints

= loT loT A

i= properties oT Edge devices  loT Edge deployments

& Locks = =

EX Automation script

Explorers

B Query explorer

( ) loT Edge devices

Learn more about the device twin query ax

SELECT * FROM devices == Add a WHERE clause  [EJ Write query text

WHERE
W 10T devices =
Sl ~ o m
Automatic Device Management
» Run
10T Edge
# 10T device configuration DEVICE ID RUNTIME RESPONSE 10T EDGE MODULE COUNT CONNECTED CLIENT COUNT  DEPLOYMENT COUNT
Messaging ( rpi3plus oK 4 1 o j
File upload

Message routing



Monitoring the Solution on the loT Edge Device

Click on the device from the Azure IoT Edge blade to view more details about the modules running

box-iothub - loT Edge > Device details

on the device. Fome > resource groups > ictedgeden-ro >
__X‘ Device details
L rpi3plus

icetwin Q' Regeneratekeys ) Refresh

5] IC: Setmodules  «f» Manage child devices (Preview) =

e
hub.azure-devices.netD { 3 3e0i:N T QCTFopkiUKe= N

N Vs —

dary key) @
o iom i T sharedaccesskey QD322 16- (R <625 M= N

Modules  IoT Edge hub connections  Deployments

Verify that your modules are included in the deployment, and whether your modules have been reported by the device. Click Set modules to change the modules that appear.
Each device can host a maximum of 20 modules.

NAME TYPE SPECIFIED IN DEPLOYMENT REPORTED BY DEVICE RUNTIME STATUS EXIT CODE
SedgeAgent loT Edge System module v/ Ves v Yes running
SedgeHub loT Edge System module v Yes V Yes running

(lmage-dass\fler-servlce loT Edge Custom module v/ Ves V Ves runr\lng)

(camera-capture loT Edge Custom module v/ Yes v Yes running )




Lecture Summary

Computer Vision

O Introduction
O How it works?
O Techniques
O Architecture

Objection detection models
RCNN

Fast-RCNN

Faster-RCNN v

SSD

YOLO

Azure compute vision as SaaS /
Usecase

O OO 0O
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After completion of this lecture you will be knowing the following:

e [ntroduction to Kubernetes

O Containers
O Orchestration

e Concepts of Dockers
e Power of kubernetes to deploy software on edge devices



Introduction to Kubernetes

Kubernetes is the greek word for helmsman or captain of a ship.

b 393
also known as \ ‘g built by Google based on their

experience running containers in production—

It is now an open source project and is one of the best and most
popular container orchestration technologies out there. /

As applications grow to span multiple containers deployed across
multiple servers, operating them becomes more complex.

To manage this complexity, Kubernetes provides an open source API
that controls how and where those containers will run.

. Containe?’and iy
e  Orchestration " ,_,D’
Vi Sy N



Introduction to Kubernetes

Q{Jntainers are isolated environments,
have their own processes, services, App1
networking interfaces, mounts similar to

virtual machines except the fact that they

all share the same operating system
Guest 05 Guest 0S Guest C3
kernel.

Bins/Lib Bins/Lib Bms/le

BInS/LIb

Container Engine

J Operating System
Orchestration consists of a set of tools and Hypervsor —
scripts that can help host containers in a P =
production environment. An orchestration =
consists of multiple container hosts that
can host containers, if one fails the Virtual Machines Containers
application i accessible through the 4 — J‘
others. /956“

g™



Introduction to Kubernetes
e computepthat gets designated as the

Kubernetes consists of d

ertrk’olil_age,.and lots of other computers that get designated as
worker nodes. Each of these has a complex but robust stack making
orchestration possible,

Kubernetes orchestrates clusters of virtual machines and schedules
containers to run on those virtual machines based on heir available
compute resour\cef/ and the resource requirements gt each container.

Kubernetes also automatically manages service discovery,
incorporates load balancing, tracks resource allocation and scales
based on comapute utilisation. And, it checks the health of individual
resources 2hd enables apps to self-heal by automatically restarting or
replicating containers.

Now get familiar with each of the kubernetes components:

e Control plane component
e Worker node component

User
Interface

ul CLlI

API Server

Scheduler '

Controller—Manager

Worker node 1

Cohved o
GovrorF

Pod 1 Pod 2 Pod 3
Container 1 Container 1 Container 1
Container2 #

Container 3 Container 2

| Container runtime (Podman, CRI-O, Docker)
kubelet ‘ kube-proxy ‘
Worker node 2 v

Pod 1 Pod 2 Pod 3
Container 1 Container 1 Container 1
Container 2 Container 2 Pod 4

Container 3

Container 1

Container runtime (Podman, CRI-O, Docker)

Kubelet

|

kube-proxy ‘




Kubﬁrnetes: Control plane Components

V4

Worker node 1

e S — p— p
Etcd is a fast, dis’gy)ﬁted, and consistent key-value store used Container2
as a backing stor&’for persistently storing Kubernetes object e e Container3 Container2
datay.ch as pods, replication controllers, secrets, and services. ,
e— — —_— Y . Container runtime (Podman, CRI-O, Docker)

Etcd is the only place where Kubernetes stores cluster state : > _ e ey |
and metadata. The only component that talks to etcd directly is == ™
the Kubemetes API server. All other components read and write
data fo etcd indirectly Through the APJ server. Worker node 2

i Pod 1 Pod 2 Pod 3
Etcd also implements a watch feature,cyaich provides an event-f| 1" eted VA conainer || conaners |1 conaiver:
based interface for asynghronously mohitoring changes to keys. Container2 | | container2 | POAA
Once you change a key, its watchers get notified. The API | Container3 | | Container

server component heavily relies on this to get notified and move
the current state of etcd towards the desired state.

Container runtime (Podman, CRI-O, Docker)

Kubelet ‘

kube-proxy ‘

OM};LW

wl
%M}twﬁé\(@mﬁ ditun



Kubernetes: Control plane Components

API Server: User
The API server is the only component in Kubernetes that directly interacts with gpiace
etcd. All other components in Kubernetes must go through the API server to ul cLI

work with the cluster state, including the clients (kubectl). The API server has
the following functions:
v

Provides a consistent way of storing objects in etcd.

API Server
Scheduler

Provides a RESTful API to create, lﬂﬁate, modify, or delete a resource.

Performs authentication and authorization of/a request that the client sends. m

Performs validation of those objects so cIie\l}ls can't store improperly
configured objects.

Responsible for admission control if the,(equest is trying to create,_modify, or
delete a resource. For example, AlwaysPulllmages, DefaultStorageClass, and
ResourceQuota.

Worker node 1

Pod 1 Pod 2 Pod 3
Container 1 Container 1 Container 1
Container 2
Container 3 Container 2

Container runtime (Podman, CRI-O, Docker)
kubelet kube-proxy ‘
Worker node 2
Pod 1 Pod 2 Pod 3

Container 1

Container 2

Container 1 Container 1

i

Container 2 Pod 4

Container 3 Container 1

i

Container runtime (Podman, CRI-O, Docker)

Kubelet

‘ kube-proxy ‘




Kubernetes: Control plane Components__

Controller Manager:

User
Interface

In Kubernetes, controllers are control loops that watch the state

of your cluster, then make o

r\?,uest changes where needed. ul CLI

Each controller tries to move the current cluster state closer to

the desired state. The controller tracks at leas eff
resource type, and these objects have a spec field that
represents the desired state.

Controller examples:

Node controller /
Service controller
Endpoints controller
Namespace controller
Deployment controller
StatefulSet controller

e Kubernetes

API Server
Scheduler

Controller—Manage!

orker node 1

Pod 1 Pod 2 Pod 3

Container 1 Container 1 Container 1

Container 2

Container 3 Container 2

Container runtime (Podman, CRI-O, Docker)

kubelet kube-proxy ‘

Worker node 2

Pod 1 Pod 2 Pod 3

Container 1 Container 1 Container 1

i

Container 2

Container 2 Pod 4

Container 3 Container 1

i

Container runtime (Podman, CRI-O, Docker)

kubelet ‘ kube-proxy ‘




Kubernetes: Control plane Compone

Scheduler: User

Interface
The Scheduler is a control plane process that assigns pods to
nodes. It watches for newly created pods that have no nodes ul CLI

assigned.

Tl?/every pod that the Scheduler discovers, the Scheduler
ecomes responsible for finding the best node for that pod to
run on.

API Server %
Scheduler

Nodes that meet the scheduling requirements for a pod get
called feasible nodes. If none of the nodes are suitable, the pod | eed |
remains unscheduled untiI? Scheduler can place it.

Once it finds a feasible node, it runs a set of functions to score —

the nodes, and the node with the highest score gets selected. It
then notifies the API server about the selected node. They call
this process binding.

nts),_/

Pod P Pod 2 / Pod 3

Container 1 Container 1 Container 1

Container 2

Container 3 Container 2

Container runtime (Podman, CRI-O, Docker)

kubelet kube-proxy

Worker node 2

Pod 1 Pod 2 Pod 3

Container 1 Container 1 Container 1

Container 2

Container 2 Pod 4

Container 3 Container 1

Container runtime (Podman, CRI-O, Docker)

kubelet kube-proxy




Kub

Kubelet:

User
Interface

Kubelet is an agent that runs on each node in cluster and is
responsible for everything running on a worker node. ul CLI

It ensures that the containers run in the pod.

The main functions of kubelet service are:

API Server
Scheduler
Controller—Manager

Register the node it's running on by creating a node resource in
the API server.

Continuously monitor the API server for pods that got scheduled
to the node.
Start the pod's containers by using the configured container
runtime. -

Continuously monitor running containers and report their status,
events, and resource consumption to the API server.

Run the container liveness probes, restart containers when the
probes fail and terminate containers when their pod gets deleted
from the API server (notifying the server about the pod
termination).

L/

Worker node 1

e/rnetes: Worker node components V/

|

Pod 1 Pod 2 Pod 3

Container 1 Container 1 Container 1

Container 2

ntainer 3 Container 2

L4

Container runtime (Podman, CRI-O, Docker)

kubelet kube-proxy

Worker node 2

Pod 1 Pod 2 Pod 3

Container 1 Container 1 Container 1
Container 2 Container 2 Pod 4

Container 3 Container 1

| Container runtime (Podman, CRI-O, Docker)

< kubelet h kube-proxy

)

C—



Kubernetes: Worker node components

Service proxy (kube-proxy) : User

Interface

The service proxy (kube-proxy) runs on each node/ ui CLI
and ensures that one pod can taIk\}Kanother pod,
one node can talk to another node, and one
container can talk to another container.

API Server
Scheduler

It is responsible for wa?c{r.]ing the API server for
changes on services and pod definitions to

maintain that the entire network configuration/ic/ﬁp I
to date.

When a service gets backed by more than one
pod, the proxy performs load balancing across

those pods. /

Worker node 1

Pod 1 Pod 2 Pod 3

Container TS| Container 1 Container 1
Container 2 >
Com:iner/ Container 2
N\ 1
A { L | ¥
Containerwotime (P n, CRI-O, Jocker)
kubelet kube-proxy
Worker node 2
Pod 1 Pod 2 Pod 3

Container 1 Container 1 Container 1

Container 2 Container 2 Pod 4

Container 3 Container 1

Container runtime (Podman, CRI-O, Docker)

kubelet kube-proxy




Kubernetes: Worker %de components

Container runtime: User
Interface

There are two categories of container runtimes:
—_— ul cLl

Lower-level container rightimes: These focus on running containers
and setting up the namé&space and cgroups for containers.

Higher-level container runtimeg (container engine): These focus on
formats, unpacking, management, sharing of images, and providing

APIs for developers. J
. . Controller—Manager
Container runtime takes care of: _

e Pulls the required container imagjfrom an image registry if it's
not available locally.

e Prepares a container moynt point.

e Alerts the kernel to assign sorDZtesource limits like CPU or
memory limits.

e Pass system call (syscall) to the kernel y/start the container.

Worker node 1

Pod 1

Pod 2

Pod 3

Container 1

Container 2

Container 3

Container 1

Container 1

Container 2

‘ Container runtime (Podman, CRI-O, Dg

kubelet ‘

kube-proxy ‘

Worker node 2

Pod 1

Pod 2

Pod 3

Container 1

Container 2

Container 1

Container 2

Container 3

Container runtime (Podman, CRI-O, Docke

Container 1

Pod 4

Container 1

N —

—

Kubelet

kube-proxy
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Introduction to Dockers |

The most popular container technology out in the market is Docker

Docker is an open platform for developing, shipping, and running
applications.

Docker enables you to separate your applications from your
infrastructure so you can deliver software quickly.

With Docker, you can manage your infrastructure in the same ways you

manage your applications. N
By taking advantage of Docker’s methodologies for shipping, testing, o C Q r

and deploying code quickly, you can significantly reduce the delay
between writing code and running it in production.

Docker provides the ability to package and run an application ﬁ—
loosely isolated environment called a container. , _.L_

\Wmlc ’(V\odafrj




Docker Architecture J/
Docker uses a client-server architecture. @7 DRCKER_HOST

J

= )

The Docker client talks to the Docker docker build ‘79-;* D:ckerdaemon — | KA
daemon, which does the heavy lifting of i \ B Y
building, running, and distributing your docker pull = i| [Containers}—\  (Images}— T\
Docker containers. / Y, \ . \ ‘

docker run - \,\ L NGIMX
The Docker clientand daemon can run on S, /

NS /
v e

the same system, or you can connect a
Docker client to a remote Docker daemon. v \

The Docker client gffd daemon communicate
using a REST API, over UNIX sockets or a )
network interface.

Q& & &
€

Another Docker client is Docker Compose,
that lets you work with applications consisting
of a set of containers.




Docker Architecture: Components

The Docker daemon:

The Docker daemon listens for Docker API requests and
manages Docker objects such as images, containers,
networks, and volumes. A daemon can also communicate
with other daemons to manage Docker services.

The Docker client:

The Docker client is the primary way that many Docker

users interact with Docker. When you use commands

such as grocker run, the client sends these commands to

dockerd, which carries them out. The docker command

uses the Docker API. The Docker client can communicate

with more than one daemon. _—
—

DOCKER_HOST
/

v

h Docker daems”” I

i o < TS
\

Containers)— Y, Images)—':—

\

QGO

=

7
2

~

Registry
K9 %
&

\

\
G e NGinX




Docker Architecture: Components

Docker registries: J
(Cllent}————— (DOCKER_HOST M

A Docker registry stores Docker images. Docker Hub is a public '
registry that anyone can use, and Docker is configured to look docker build -] CETT— KA
for images on Docker Hub by default. You can even Fun your ; G N %
; . docker pull ~[ | , \ )

own private reglstry\./- i | [Containers}— X Images | —— v

docker run  —{” Al *é NGX
Docker objects: L M

] / N /’
./

N

When you use Docker, you are creating and using images,
containers, networks, volumes, plugins, and other objecis™

Docker Desktop: ~/ / \/

Docker Desktopjf(:ludes the Docker daémon, the-Blocker client,
Docker Compose, Docker Content Trust, Kubernetes, and
Credential Helper. For more information, see Docker Desktop.

@&

&Q&E




Power of Kubernetes o deploy software on edge devices ( "’Fq@

Architecture diagram showgzorks flow from the /
cloud through the vjrtual cubelet through the edg
provider down to all of your edge devices

——

First, the virtual cubelet project lets you create a
virtual nodéin your kubernetes cluster, a virtual
node is not a VM like most other nodes in the
kubernetes cluster instead it is an abstraction of
kubernetes node that is provided by the virtual
cubelet.

Backing it, is an 10T hub, it can schedule
workloads to it and treat it like any other
kubernetes node.

Kubernetes Nodes

b .“
)

Update |/
Deployment
v



Power of Kul?netes to deploy software on edge devices

When workloads are scheduled to this virtual node 0

edge provider comes in and that's depicted.
‘

The edge connector or the edge provider which
are working in tandem with the virtual cu tit
takes the workload specification that comes in frc
kubernetes and cths it into an IOT edge
deployment.

Then the IQT_edge deployment is shipped back t
the backing IOT hub for this virtual node.

Lastly, the IOT hub in turn pushes this deployme
down to all the targeted devices.

D

Opemt = ‘
W
Pod [ﬁ Virtual Machine
‘ Specification
L
A\ Virtual Machine
——
>
m FE.! L2
25

o

Kbeet

IoT Edge
Deployment

) .ﬂ

Update
Deployment
v

On-prem Edge devices

Ve




Lecture Summar
e SUMMAYY i o
e Understanding of Kubernetes including

O Containers
O Orchestration

e Concepts of Dockers S
e Power of kubernetes to deploy software on edge devices

v/
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Lecture Overview

In this lecture, we combine the Machine Learning (ML) and loT together.

The primary objective of this lecture is to introduce the processing of loT data with machine
learning, specifically on the edge.

While we touch many aspects of a general machine learning workflow, this lecture is not intended
as an in-depth introduction to machine learning

We do not attempt to create a highly optimized model for the use case, it just illustrates the
process of creating and using a viable model for loT data processing.



ML Development at loT Edge

Operator
or System
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achine Learning: Background \q;{

7

rtificial intelligence (A.l.) is defined as the property of machines that mimic
human intelligence as characterized by behaviours such as cognitive ability,
memory, learning, and decision making.

ARTIFICIAL INTELLIGENCE

\j/Iachine learning is a branch of artificial intelligence (Al) and computer A program that can sense, reason,
science which focuses on the use of data an rithms to imitate the way act, and adapt

that humans learn, gradually improving its accuracy. /

J/Deep" machine learning can use labeled datasets, algp known as
supervised learning, to inform its algorithm, but it dogén’t necessarily
require a labeled dataset. MACHINE LEARNING
{ Algorithms whose performance improve
Deep learning can ingest unstructured data in its raw form (e.g., text or as they are exposed to more data over time

images), and it can automatically determine the set of features which
distinguish different categories of data fronj}de another-., Ll( L.gc

DEEP
LEARNING

Subset of machine learning in
"Non-deep", machine learning is more dependent on human intervention to ol iloniions L
learn. Human experts determine the set of features to understand the st )
differences between data iansually requiring more structured data to

learn. /

The “deep” in deep learning is just referring to the number of layers in a
neural network.
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ML for Predictive Maintenance: Example

Using simple machine learning techniques we can create a simple model
of a machine with normal operating conditions for any application and
determine the values that fall outside of that normal area.

Example: Train a model for the motor vibration with two sensors namely
A and B, in normal operating conditigpé. That means, using normal data
points, model has good understanding of what the motor vibration value
could be approximately when the motor is operating in normal mode and
without any problems.

Now, let’s say, one day/at a ranho/m point in time, model observes that
the value of sensor ATs 8, and at the same time, the value for sensor B is
2. This is clearly an unusual value. The trained model can easily say that
this new value is not normal and can indicate that there might be

something wrong with the motor. This is how machine learning works to
detect the unusual behavior of a machine. / ]

o
poet?
«'Ny\ 7 e

o

Machine
Learning

Sensor B

Predictive
Maintenance

Normal mode

This is not normal

Sensor A

% Je
Y\ff"‘"" "



Predictive Maintenance: Introduction

P

In the past, companies have used reactive maintenance, ' . ' Manual inspection with preventive
which focused on preparing an asset once f#filures had Fix when/quipment is down. maintenance. Replace parts on

occurred.

Then they moved to preventive maintenance, also known
as the schedule-based or planned maintenance. This

refers to performing périodh ased on Reactive
manufacturers' recommendajfon. The focus was on

reducing the failures by replacing p based on worst
case lifetimes for critical pieces of rr:a)dgfztur?ooling. Sched:%menance failures™=

Next came condition-based maintenance methods, which repairs or replaces equipment when they begin to show
signs of failure. However, this condition-based method requires an experienced maintenance team to inspect the
equipment at regular intervals.
J"Y o
SOors;

Whe explosion of computers and companies are now engaging in w_ﬁgdw_hasﬂj
aintenance to redumywﬁleﬁ;gm the uptime of factories. Predictive maintenance takes condition-pased
maintenance a step fafher. In this methodology, machine learning analytig§ are used to predict a macwure
eM examining the real-time sensor data and detecting chan\gyza1

Predictive

Condition

Monitoring

Use analytics to predict

in machine health status.
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Predictive Maintenance: Introduction

Predictive maintenance employswon the machine data collected from end sensor nodes to draw meaningful
insights that more accurately predict machine failures. It is comprise ; Se, compute, and act.
€ a—

B \/
DD > I > B

Predict Remaining Useful Life / Time to Failure V

— Event Generatlon

%D sensor S|gnals

— RUL

Information .« W&T

* Reuse existing ¢ - Wo!‘lf or(.ier

g ’_‘ sensors Notification
+ Add new sensors — Visualization

.- « Control inputs
fSOI'S and actuators \/
Q4 \/
wi

Maintenance |




Predictive Maintenance: Introduction

Data is collected from sensors that are already available \/ f
in machines or by adding new sensors, or by using
control inputs. > >

Dependmg up the machine types and the required Predict Remaining Useful Life / Time to Failure

fallurea erent se signals, sych as @
temper re, so d magpz: field, cur?\izt, voljage, o‘&

4

- Event Generahon

failure. ™ —  w
ultrasonigr vibrationére analyzed to prédict th€ failure e \ ‘M l l ! || l L RU
. . . .. Reuse existing ! L“ ! 1 N,lf‘ e h,, ¢ A m/;::czrtcli:r:
The predicted information from sensor data analysis is a i S W Ny il
used to generate an e\@ﬁt, work o der\,gpd notificatjon. + Contlnpus '/L '
Senflors and actuators
The sensor data is also used to visualize the machine's \/ n e
overall operating condition. 4 ey
Maintenance |

An action is taken when the event reports an gaomaly, a
machine that is nearing the eﬂd of its useful}?ea, or when

wear and tear is detected in/machine parts.



Predictive Maintenance:\;roblems

Will this equipment fail in a given period of time? ‘/
What is the remaining useful life or the time to failure? /

How to quantify wear and tear of expandable components. v
® This is a subset of remaining useful life and focuses on shorter
living subsystems. -
For detecting anomalies in equipment behavior. -
® With further analysis, it can provide failure classification.
To optimize equipment settings. \/ @

time

Stock option

time

ife event:

)
€
[
@
-

L
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Machine Learjning Workflow: Predictive Maintenance

A six-step process:

Clearly define the problem and the intended

goals. Then you can decide how to tackle
the project, including which softwafe to use.

Define the problem and
the outcome

STEP2

It is essential r
daty. Depending on the time series, the

observations might ke daily, weekly,
Prepare the data STEP3 === monthly, quarterly or yearly, ===
Now your data has been prepared, you can . PREPARE — Lo/
. . start to analyse it. Time series can be J
Analyse the time series decomposed into several components, 4

including trend and seasonpfity.
o sees e

Combine the trend and seasonality to

i i create a forecast. Refine the we|gﬁtings
MOdeI the predICt usmg of each component to produce an accurate
|nS|ght from the ana'ySI model. If needed, edit the forecast to
account for any specighfactors like a sale.

Once you have a good model, it's time to
deploy it and make the forecasts Iive.y
may take the form of a performance
dashboard, a report or a web app.

Deploy the predictive
model

Once the forecast is live, make sure to
monitor its pegfermance. This might involve
updating \y?o:ercast as new data _becomes
available, or c3 B\its accysacy (for

example, usi

Monitor the predictive
performance

MONITOR
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Machine Learning Workflow: Define

As in any successful project, the first step is to clearly define
the problem.

This includes the motivation behind creating a predictive and
the intended goals and outcomes. ‘

After this, you can decide how to tackle the task at hand,
including which software to use at each stage.

For example, we might use Excel for_ data preparation, R for
the analysis and modelling and Power Bl for deployment.
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Machine Learning Workflow: Prepare

It is essential to properly prepare and clean the data that will be
used to\greate\{\he predjclion. “T< win Wt waad e ooy 30"‘

ace\
Data cleansing might involve removing duplicated or inaccurat
records, or dealing with missing data points or ouygrs.

In the case of a predictive maintenance project, the data will take
the form of a time series.

Depending on what is being predicted, the observations might be
daily, weekly, monthly, quarterly or ygarly.



/S

Machine Learning Workflow: Analyse
Once the data has been prepared, the next step is to analyse it.
7 7°

For a time series, this involves decomposing the series into its
constituent parts. These include tr\eyﬁ and seasonal effects.

The trend is the long-term oyéall pattern of the data and is not
necessarily linear. /

Seasonality is a recurring pattern of a fixed length which is
caused by seasonal factors.



w\-
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Machine Learning Workflow: Modelelling

Predictions are created by combining the trendzand seasonality components.

There are functions that can do this for you in Excel, or it can be done by hand in a
statistical package like R.

If modelling manually, refine the weightings of each componght to produce a more
accurate model. -

The model can be edited to account for any special factors that need to be included.

However, be careful to avoid introducing bias into the predictian and making it less
accurate.

Whether using Excel or R, your model will include prediction intervals (or confidence
intervals). These show the level of uncertainty in the prediction at each future point.



Machine Learning Workflow: Deploy/

Once you are happy with your%el, it's time to deploy it and make the
predictions live.

This means that decision makers within the businessybrganisation can utilise
and benefit from your predictions.

Deployment may take the form of a visualisaticy(,a performance djé/hboard, a
graphic or table in a report, or a web app%tion.

You may wish to include with the prediction ir:t;.ﬁ/als calculated in the previous
step.

These show the user the limits within which each future value can be expected
to fall between if your model is correct.



Machine Learning Workflow: Monitor

After the prediction goes live, it is important to monitor itsﬂormance.

A common way of doing this is to calculate the accu\rngusing an error
measurement statistic.

Popular measures include the mean absolute peygcentage error (MAPE)
and the mean absolute deviation (MAD).

Depending on what is being predicted, it may be possible to update your
model as new data becomes available.

This should also lead to a more accura%diction of future values.



Machine Learnipng Methods: Predictive Maintenance

Problem definition: Classification and Regression approach —

— Classification: Will it fail? v l oL [L 9

. My-class classification: Will it fail for reason X?

— Regresgion: After how long will it fi?. / \/ M

* Methods:

v
— Traditional machiniaéarning: /
e Decision trees”’Random forests, gradjent boosting trees, isolation forest
e SVM (Support Vector Machines)

— Deep learning approach: / v
e CNN (Convolution Neural Network)/Multilayer Perceptrons (MLPs)
o RNN (Recurrent Neural I\\J?fwork)/ TM (Long Shcyérm Memory)/Gy){Gated Recu\r;u( Unit)

— Hybrid of deep Iea[g?{g and Physics-Based Modeling (If’?/l):
e Use PBM to generate training data where lacking
e Use PBM to reduce the prgblem space (fegture engineering)
e Use PBM to inform and validate DL moggé((ue.g., to identify catastrophic failures, most notably in
scenarios with low amounts of training data and a high degree of mission criticality)



Deep Learning Methods

Deep learning has proven to show superior performance in certain domains such as
object recognition and image classification. \/_

It has also gained popularity in domains such as finance where time-series data plays
an important role.

Predictive Maintenance is also a domain where data is collected over time to monitor
the state of an asset with the goal of finding patterns to predict failures which can also
benefit from certain deep learning algorithms. —
Yl S
Among the deep learning methods, Long Short Term Memory (LSTM) networks are
especially appealing to the predictive maintenance domain due to the fact that they are
very good at learning from sequences.

—_—

This fact lends itself to their applications using time series data by making it possible to

look back for longer periods of timgto detect failure patterns.




Deep Learning Methods: Multilayer Perceptrons (MLPs) v

Generally, neural networks like Multilayer Perceptrons or MLPs provide capabilities that are offered
by few algorithms, such as:

e Robust to Noise. Neural networks are robust to noise in input data and in the mapping function
and can even support learning and prediction in the presence of missing values.
e Nonlinear. Neural networks do not make strong assumptions about the mapping function and

readily learn linear and nonlinear relationships.
e Multivariate Inputs. An arbitrary number of input features can be specified, providing direct

support for multivariate forecasting.
e Multi-step Forecasts. An arbitrary number of output values can be specified, providing direct

support for multi-step and even multivariate forecasting.

For these capabilities alone, feedforward neural networks may be useful for time series forecasting.



Deep Learning Methods: Convolutional Neural Networks (CNNs)
Convolutional Neural Networks or CNNs are a type of neural network that was designed to efficiently
handle image data.

The ability of CNNs to learn and automatically extract features from raw input data can be applied to
time series forecasting problems. A sequence of observations can be treated like a one-dimensional
image that a CNN model can read and distill into the most salient elements.

e Feature Learning. Automatic identification, extraction and distillation of salient features from
raw input data that pertain directly to the prediction p\rﬂﬁ’ém that is being modeled.

CNNs get the benefits of Multilayer Perceptrons for\%e series forecasting, namely support for
multivariate input, multivariate output and learning arbitrary but complex functional relationships, but
do not require that the model learn directly from lag observations. Instead, the model can learn a
representation from a large input sequence that is most relevant for the prediction problem.



a

Deep Learning Methods: Long Short-Term Memory Networks (LSTMs)

Long Short Term Memory networks — usy;ﬂyjust called “LSTMs” — are a special kind of RNN,
capable of learning long-term dependencies. They were introduced by Hochreiter & Schmidhuber
(1997), and were refin\e},and popularized by different researchers. ——

LSTM add the explicit handling of order between observations when learning a mapping function
from inputs to outputs, not offered by MLPs or CNNs. They are a type of neural network that adds
native support for input data comprisec‘jjf sequences of observations.

e Native Support for Sequences. Recurrent neural networks directly add support for input
sequence data. /

This capability of LSTMs has been used to great effect in complex natural language processing
problems such as neural machine translation where the model must learn the complex
interrelationships between words both within a given lazaguage and across languages in translating
from one language to another. \/?\ﬂ

e Learned Temporal Dependence. The most relevant context of input observations to the
expected output is learned and can change dynamically.



/

Deep Learning Methods: Long Short-Term Memory Networks (LSTMs)

The model both learns a mapping from inputs to outputs and learns what context from the input «/~
sequence is useful for the mapping, and can dynamiczeyy change this context as needed.

LSTMs are explicitly designed to avoid the long-term dependency’problem. Rememb@w’fion
for long periods of time is p:eyﬁcally theireefault behaw%% Ls-rM

All recurrent neural networks have the form of a chain of repeating modules of neural network. In
standard RNNs, this repeating module will have a very simpie

——————————
such as a single tanh layer.




Deep Learning Methods: Long Short-Term Memory Networks (LSTMs)

LSTMs also have this chain like structure, but the repeating module has a different striicture. Instead of
having a single neural network layer, there are‘fo,u}, interacting in a very special way.

In the below diagram, each line carries an entire vector, from the output of one node to the inputs of
others. The pink circles represent p0|ntW|se operations, like vector addition, while the yellow boxes are
learned neural network Iayers Lines merging denote concatenation, while a line forking denote its
content being copied and the copies going to differenfTocations.

®_



Deep Learning Methi)}s: Long Short-Term Memory Networks (LSTMs)

An LSTM has three of gates, to protect and control the cell state. The first part is called Forget gate, the
second part is known as the Input gate and the last one is the Output gate.

Forget Gate: The first step in our LSTM is to.decide what information we’re going to throw away from
the cell state. This decision is made by a @»: yer called the “forget gate layer.” It looksat A7 and
{t/‘ﬁd outputs a number between 0 and TTor each number in the cell state C,_,. \""

A 1 represents “gOmpletely keep this” while a 0 represents “co

etely get rid of this.”

@{/ﬂ fi =0 (Wi-The_1, 24 + by)
TN



Deep Learning Methods: Long Short—Termynory Networks (LSTMs)

Input Gate: The next step is to decide what new inforr\r;ation we’re going to store
in the cell state. This has two parts. First, a sigmoid layer called the “input gate
layer” decides which values we’ll update. Next, a tanh layer creates a vector of
new candidate values, C, that could be added to the state. In the next step, we'll

e

combine these two to create an update to the state.

iy = 0 (Wi-[hi—1,2¢] + by)
Cy = tanh(We - [he—1, 2] + be)

hi—1 Y
Tt [




Deep Learning Methods: Long Short-Term Memory Networks (LSTMs)
o

It's now time to update the old cell state, Ct:{, into the new cell state C;. The
previous steps already decided what to do, we just need to actually do it. We
multiply the \o)dstate by f,, forgetting the things we decided to forget earlier. Then
we add i;+C,. This is the new candidate values, scaled by how much we decided

to update each state value. <

Ci1 N\ T\ Ci
STy 3 v o S
- Cy = fr % Cr_1 + i+ C;



Deep Learning Methods: Long Short-Term Memory Networks (LSTMs)

Output gate: Finally, we need to decide what we're going to output.a}his output will be based
on our cell state, but will be a filtered version. First, we run a sigmoid layer which decides what
parts of the cell state we're gg}p{g to output. Then, we put the cell state th@u’gh tanh (to push
the values to be between -1 and 1) and multiply it by the output of the sigmoid gate, so that we
only output the parts we decided to.

he A\ /‘ )\
/7
’ op =0 (Wy [he-1,2¢] + b,)
ht_1 m J ht, ht - Ot i tanh (Ct)

A



Performance Metric: R-squared ‘/f
The stationary R-squared is used in time series forecasting as a measure that
compares the stationary part of the model to a simple mean model. It is defined

> S 55,
R2 — 1 res /
SStot ‘/

Where SS,,, denotes the sum of squared residuals from expected values and
SS,,:denotes the-sum of squared deviations from the dependent variable’s
sample mean. It denotes the proportion of the dependent variable’s variance
that may be explained by the independent variable’s variance. A high R? value
shows that the model’s variance is similar to that of the true values, whereas a
low R?value suggests that the two values are not strongly related.




Performance Metric: Mean Absolute Error (MAE?/

The MAE is defined as the average of the absolute difference n for alues.
Where y; is the expected value and x; is the actual value (shown below formula). The letter n
represents the total numberaf values in the test’set.
¢ / Zn k&\/_ T
=1 (S i
E 2
YA~ ==

The MAE shows us how much inaccuracy we should expect from the forecast on average. MAE =0

means that the anticipated values are correct, and the error statistics are in the original units of the
forecasted values. ad N

The lower the MAE value, the better the model; a value of zero indicates that the forecast is error-
free. In other words, the model with the lowest MAE is dgemed superior when comparing many
models.
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Performance Metric: Mean Absolute Percentage Error (MA\\%

MAPE is the proportion of the average absolute difference between projected
and true values divided by the true value. The anticipated value is F;, and the
true value is A,. The number n refers to the total number of values in the test

set. /

MAPE = —
n

At - Ft /
It works better with data that is free of zeros and extreme values because of the

in-denominator. The MAPE value also takes an extreme value if this value is
exceedingly tiny or huge.

t=1
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Performance Metric: Mean Squared Error (MSE)

MSE is defined as the average of the error squares. It is also known as the metric
that evaluates the quality of a fore ' del or predictor. MSE also takes into
account variance (the difference between anticipated values) and bias (the distance
of predicted value from its true value).

n v JF

A v
MSE = — 3 (¥; — Vi)

TL 1=1

Where y’; denotes the predicted value and y; denotes the actual value. The number n
refers to the total number of values in the test set. MSE is almost always positive,
and lower values are preferable. This measure penalizes large errors or outiiers
more than minor errors due to the square term (asSeen in the formula above).
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Performance Metric: Root Mean Squared Error(RMSE)

This measure is defined as the square root of mean square error and is an extension
of MSE. Where y’; denotes the predicted value and y; denotes the actual value. The
number n refers to the total number of values in the test set. This statistic, like MSE,
penalizes greater errors more.

N\ /Iy vy
RMSE = nzl(Y Y;))2 Vv

This statistic is likewise always positive, with lower values indicating higher
performance. The RMSE number is in the same unit as the projected value, which is
an advantage of this technique. In comparison to MSE, this makes it easier to
comprehend. —_—




A-
Use Case: Prognostics and Health Management w’

The objective of this use case is to build an LSTM mddel that can predict the @\ w I
number of remaining operational cycles before failure in the test set, i.e., the '
number of operational cycles after the last cycle that the engine will continue to \
operate. Also provided a vector of true Remaining Useful Life (RUL) values for the

test data. —

The data was generated using C-MAPSS, the commercial version of MAPSS

(Modular Aero-Propulgion System Simulation) software. This software provides a

flexible turbofan @Qg:) simulation environment to conveniently simulate the /
health, control, and engine parameters.

o &

Simplified diagram of engine simulation

==

The simulated aircraft sensor values is used to predict two scenarios, so that
Bypass | | Bypass

maintenance can Ee/planned in advance: Path Nozle
. . . . . . E S
* Regression models: The question to ask is "Given these aircraft engine = EI .E

operation and failure events history, can we predict when an g -service engine will
fail?" P

bien

Burner
HPT

L= Core
I

* Binary \cl;?eification: We re-formulate this question “Is this engi[lefﬁing to fail A layout showing various modules and their

| Fuel
L

within w1 gicles?” connections as modeled in the simulation



LSTM model: Dataset

Dataset consists of multiple multivariate time series, such data set is divided
into training and test subsets. Each fr iff
The engine is opera \l;g(normally at the start of each time series and

@\ﬂ

LPC lIIL N2

develops a fault at sorple point during the series.

In the training set, the fault grows in magnitude until system failure. In the
test set, the time series end?‘gxne time priopto system failure.
Public dataset (Nasa Turbo tan) /

® Damage propagation for aircraft engine

® Runto fallurymulatlon

Aircraft gas turbine. Dataset contains time series (cycles) for all
measurements of 100 different engines.

Simplified diagram of engine simulation

Bypass | | Bypass
Path Nozzle

A layout showing various modules and their
connections as modeled in the simulation

Fan

[Ambient

| Fuel
L
Burner
HPT
|

LPT
E
@ o

The data used in this use-case is taken from the
https://www.nasa.qov/intelligent-systems-division




LSTM model: Data Ingestion

We ingest the training, test and ground truth datasets.

The training data consists of muIti;?\I%ultivariate time series with "cycle" as the time unit, together witli 21 slnsor readings for

each cycle. i v -

Each time series can be assumed as being generated from a different engine of the same type.

The testing data has the same data schema as the training (?a/t;. The only difference is that the data does not indicate when the
failure occurs. -_— -

Finally, the ground truth data provides the number of remaining working cycles for the engines in the testing data.

train_df = train df.sort_values(['id', 'cycle'l}
train_df.head()

id cycle settingl setting2 setting3 1 s3 s6 ... s12 s13 s14 s15 s16 s17 s18 s19 s21

o 1 ) 1 -0.0007 -0.0004 100.0 518.67 641.82 1589.70 1400.60 14.62 .. 521.66 2388.02 8138.62 84195 0.03 392 2388 100.0 39.06 23.4190
1 0.0019 -0.0003 100.0 518.67 642.15 1591.82 1403.14 14.62 .. 522.28 2388.07 813149 84318 0.03 392 2388 100.0 39.00 23.4236

1 j -0.0043 0.0003 100.0 518.67 642.35 1587.99 1404.20 14.62 .. 52242 2388.03 8133.23 8.4178 0.03 390 2388 100.0 38.95 23.3442

i 0.0007 0.0000 100.0 518.67 642.35 1582.79 1401.87 14.62 .. 522.86 2388.08 8133.83 8.3682 0.03 392 2388 100.0 38.88 23.3739

a4 1 5 -0.0019 -0.0002 100.0 518.67 642.37 1582.85 1406.22 14.62 .. 52219 2388.04 8133.80 8.4294 0.03 393 2388 100.0 3890 23.4044

/5 rows x 26 columns
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LSTM model: Data Preparation and Feature Engineering

First step is to generate labels for the training data which are Remaining Useful Life (RUL), label1 and label2.
Each row can be used as a model training sample where the s_k columns are the features and the RUL is the model
target. The rows are treated as independent observations and the measurement trends from the previous-eyeles-are
ignored. The featureg. are normalized fo y = 0, 0 = 1 and PCArts applied.
j £ 7 Vi
For the LSTM maddel, opt for more advanced featupe engineering and chose to incorporate e teerfds f b’ww previous
cycles. In this case, each training sample sj#tS of measurements at cycle i as well as i-5, i-10, i-20, i-30, i-40. The
model input is a 3D tensor with shape (n, 6, 24) where n is the numberor training samples, 6 is the number of cycles
(timesteps), and 24 is the number of principal components (features).
——

id cycle settingl setting2 setting3 S s4 s5 .. 6 s17 s18 s19 s20 52> cycle_nor @ label1 label2
J 1 1 0632184 0.750000 0.0 0.0 0.545181 0.310661 0.269413 0.0 .. 0.0 0.333333 0.0 0.0 0558140 0.661834 0.0000p 142 0 0
11 2 0.344828 0.250000 00 0.0 0150602 0.379551 0.222316 0.0 .. 0.0 0416667 0.0 00 0682171 0686827 0.0027% 141 0 0

2 1 3 0517241 0583333 0.0 0.0 0.376506 0.346632 0.322248 00 .. 0.0 0416667 0.0 0.0 0728682 0.721348 0.005548 140 0 0

3 1 4 0741379 0.500000 0.0 0.0 0.370482 0.285154 0.408001 0.0 .. 0.0 0250000 0.0 0.0 0.666667 0.662110 0.00839 139 0 0

4 1 5 0.580460 0.500000 0.0 0.0 0.391566 0.352082 0.332039 0.0 .. 0.0 0166667 0.0 0.0 0658915 0.716377 0.0110§ 138 0 0

5 rows x 30 columns



LSTM model: Modelli

:?

When using LSTMs in the time-series dontain, one important parameter to pick is the sequence length which is the
window for LSTMs to look back. \/ —_—

This may be viewed as similar to picking window_size = 5 cycles for calculating the rolling features which are rolling
mean and rolling standard deviation for 21 seni?alues\/\ -

The idea of using LSTMs is to let the model extract abstract features out of the sequence of sensor values in the
window rather than engineering those manually. The expectation is that if there is a pattern in these sensor values
within the window prior to failure, the pattern should be encoded by the LSTM.

One critical advantage of LSTMs is their ability to remember from long-term sequences (window sizes) which is hard to
achieve by traditional feature engineering. For example, computing rolling averages over a window size of 50 cycles
may lead to loss of information due to smoothing and abstracting of values over such a long period, instead, using all
50 values as input may provide better results. While feature engineering over large window sizes may not make sense,
LSTMs are able to use larger window sizes and use all the information in the window as input.



LSTM model: Modelling

Let's first look at an example of the
sensor values 50 cycles prior to the
failure for engine id 3. <

We will be feeding LSTM network this
type of data for each time step for each -
engine id.

LSTM layers expect an input in the
shape of a numpy array of 3

dimensions (samples, time steps,
features) where samples is the number -

of training sequences, time steps is the

look back window or sequence length .
and features is the number of features ..
of each sequence at each time step.




LSTM model: Network Configuration

The first Iayer\é.;n LSTM layer withﬂ_u,njjs_f_ollowed by another LSTM layer with 50 units.
Dropout is also applied after each LSTM layer to control overfitting. ~.”""

Final layer is a Dense output layer with single unit with sigmoid a;ivation for the binary classificatigh problem and linear
activation for the regression problem.

Network for binary classification problem Network for regression problem
Layer (type) Output Shape Param # Layer (type) Output Shape Param #
&( lstm 13 (LSTM) (None, 50, 100) 50400
lstm_11 (LSTM) (None, 50, 10 50400 -
/ dropout_13 (Dropout) (None, 50, 100) 0
dropout_11 (Dropout) \/ (None, 50, 100) 0
1lstm 14 (LSTM) (None, 50) 30200
lstm 12 (LSTM) (None, 50) 30200
dropout_14 (Dropout) (None, 50) 0
dropout_12 (Dropout) (None, 50) 0
/ dense_7 (Dense) (None, 1) 51
dense_6 (Dense) V (None, 1) Bl activation_3 (Activation) (None, 1) 0

Total params: 80,651 Total params: 80,651
Trainable params: 80,651 Trainable params: 80,651
Non-trainable params: 0 Non-trainable params: 0



LSTM model;: Model Evaluation

nnnnnnnn

Results of Regression problem: """ \M J f\\'

Mean Absolute Error  Coefficient of Determination (R*2)

12 0.7965

model MAE

model r*2




LSTM model;: Model Evaluation

nnnnnnnnnn

Results of Binary Classification problem:

Accuracy Precision Recall F-Score

0.97 0.92 1.0 0.96
model loss
model accuracy
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Azure Time Series Insights (PaaS): Predictive Maintenance

Azure Time Series Insights (TSI) is a cloud-based service offered by Azure that can be
used to ingest, model, query and visualize fast-moving time-series data generated by loT
devices.

Intelligence & insights

Self serve models

It is a fully managed Platform as a Service(PaaS) soulution built in for loT.

Advanced analytics

am Y b 2) S
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2| < v D D 'i 0/ Eh =
< L —_— - EJ_J 3 —_—
loT device, gateway, and Azure loT Hub Time Series Insights Azure Azure Azure Predictive Al
application data on Databricks Batch Al Machine Leaming dashboards

the edge

®

Statistical
analysis



Azure Time Series Insights (PaaS): Predictive Maintenance

Real-time data in the form of a time-series can be generated by various devices like mobile devices,

sensors, satellites, medical devices etc.
Data from these devices can be fetched to the Azure environment using Azure 0T Hub. Azure 10T hub acts
as a data integration pipeline to connect to the source devices and then fetch data and deliver it to the TSI
platform.

Once the data is in the TSI, it can then be used for visualization purposes, and can be queried and
aggregated accordingly. Additionally, customers can also leverage existing analytics and machine learning
capabilities on top of the data available in TSI.

Data from TSI can be further processed using Azure Databricks and machine learning models can be
applied based on pre-trained models that will offer predictions in real-time. This is how an overall
architecture of Azure Time Series Insights can be enabled.

nmwb’)_ —
iiiiD D :}C w ‘ Eé_“ @

Time Series Insights Azure Azure Azure Predictive Al
Databricks Batch Al Machine Learning dashboards

Intelligence & insights

loT device, gateway, and Azure loT Hub
application data on
the edge



Azure Time Series Insights (PaaS): Components

Azure TSI provides the following four components using which users can consume data from varied data
sources as follows.

Integration — TSI provides an easy integration from data generated using loT devices by allowing
connection between the cloud data gateways such as Azure IoT Hub and Azure Event Hubs. Data from
these sources can be easily consumed in JSON structures, cleaned and then stored in a columnar
store

Storage — Azure TSI also takes care of the data that is to be retained in the system for querying and
visualizing the data. By default, data is stored on SSDs for fast retrieval and has a data retention policy
of 400 days. This supports querying historic data for up to a period of 400 days

Data Visualization — Once the data is fetched from the data sources and stored in the columnar stores,
it can be visualized in the form of line charts or heat maps. The visuals are provided out of the box by
Azure TSI and can be leveraged for easy visual analysis

Query Service — Although, visualizing the data will answer many questions, however, TSI also provides
a query service using which you can integrate TSI into your custom applications.

Usually, a time series data is indexed by timestamps. Therefore, you can build your applications by using TSI
as a backend service for integrating and storing the data and using the client SDK for Azure TSI for building
the frontend and display visuals like line charts and heat maps.



Predictive Maintenance: Steps

Step 1: Sensor data are collected from edge devices and are forwarded to Azure 0T Hub.
Step 2: Azure loT hub then drives these gathered data to the TSI platform and Stream Analytics.

Step 3: At TSI, data can be visualised, queried and aggregated with other services.

Step 4: Azure machine learning service provides the training of ML model or using a pretrained model on top of

the data available in TSI.

Step 5: Once the training is completed, inference is provided using Azure loT Hub and lot Edge service.

=

-
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Lecture Summary

Understanding of predictive maintenance

Machine learning models for predictive maintenance
Use case of predictive maintenance using LSTM model
Azure Time Series Insights
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Content of this Lecture:
* |n this lecture, we will discuss how Collaborative cloud-edge

approaches can provide better performance and efficiency
than traditional cloud or edge approaches.

* To understand how resource allocation strategies can be
tailored to specific use cases and can evolve over time

based on user demand and network conditions.

Deep Reinforcement Learning for Cloud-Edge




The Collaborative Cloud-Edge Environment

Introduction:

The ‘"user-edge-cloud" model refers to a
distributed computing environment where
resources are allocated across user devices, edge
nodes, and cloud servers.

Resource allocation is important for optimizing
system performance while ensuring efficient use of
resources.

Collaborative cloud-edge approaches can be more
effective than traditional approaches that focus

solely on cloud or edge resources.

Cloud Services:

Cloud services can be divided into private and public cloud.
Private cloud is dedicated to a single organization and provides greater control and

security.

E E E cloud service

E = edge node

Public cloud is shared by multiple organizations and provides more flexibility and

scalability.

Deep Reinforcement Learning for Cloud-Edge



The Collaborative Cloud-Edge Environment

Edge Nodes:
. Edge nodes are local computing resources that are " loud service
closer to the user than the cloud node.

. Edge nodes can provide low-latency, high-bandwidth I
services to users and can offload some processing from E- edge node
the cloud. / r\
Resource Allocation Strategies: L L] [ v

. Cloud Resource allocation strategies can be based on various factors, such as user
demand, network conditions, and available resources.

. Collaborative cloud-edge approaches can use machine learning algorithms to optimize
resource allocation over time.

. Load balancing, task offloading, and caching are some common resource allocation

techniques that can be applied to both cloud and edge resources.

Multi-Edge-Node Scenario:

. Cloud In a multi-edge-node scenario, resource allocation becomes more complex as the
cloud and edge nodes must coordinate with each other to allocate resources effectively.
. Collaborative cloud-edge approaches can use communication protocols and data sharing

to enable effective coordination.

Deep Reinforcement Learning for Cloud-Edge



Public vs Private Cloud

Public Cloud Environment:
. In a public cloud environment, the cloud provider offers different pricing modes for
cloud services based on demand characteristics.
. Pricing modes have different cost structures that affect resource allocation strategies.
. Cloud service providers like Amazon, Microsoft, and Alicloud provide three different
pricing modes, each with different cost structures.
* The edge node must select the appropriate pricing mode and allocate user demands

to rented VMs or its own VMs.

Private Cloud Environment:

. In a private cloud environment, the edge node has its own virtual machines (VMs) to
process user demands.

. If the number of VMs requested exceeds the edge node's capacity, the edge node can
rent VMs from the cloud node to scale up.

e The cost of private cloud changes dynamically according to its physical computing cost,
so the edge node needs to allocate resources dynamically at each time slot according to
its policy.

. After allocating resources, the computing cost of the edge node and private cloud in this
time slot can be calculated and used to receive new computing tasks in the next time

slot.

Deep Reinforcement Learning for Cloud-Edge




The time is discretized into T time slots.

We assume that in each time slot ¢, the demand submitted by the user can be
defined as the following:

D.=(d,l)

D ,is a pair of d ,and [ ,, where d ,is the number of VMs requested of D ,, and [ ,is the
computing time duration of D ..

Computing Resources and Cost of Edge Nodes:

The total computing resources owned by the edge node are represented by E.
As the resource is allocated to users, we use e; to represent the number of
remaining VMs of edge node in time slot t.

The number of VMs provided by the edge node is expressed as dy.

The number of VMs provided by the cloud node is expressed as dtC :

It should be noted that if the edge node exhibits no available resources, it will
hand over all the arriving computing tasks to the cloud service for processing.
So, no. of VM provided by edge node in time t is given as:

e _ Jde— e =0
t O,et:()
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Computing Resources and Cost of Edge Nodes:

When the resource allocation is successfully performed on the edge node,
each demand processed by the edge node will generate an allocation record.
ht — (del lt)
When a new demand arrives and resource allocation is completed, an
allocation record will be generated and added to an allocation record list:
H =< hq, hy,.... hy; >

At the end of each time slot, the following actions are taken:

The edge node traverses the allocation record list and subtracts one from the
remaining computing time of each record.
If a record's remaining computing time reaches 0, it means that the demand
has been completed. The edge node releases the corresponding VMs and
deletes the allocation record from the list.
The number of VMs waiting to be released at the end of time slot t is denoted
as ng.

Ne = ?il dg

S.t.li = O,hi € H
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Computing Resources and Cost of Edge Nodes:

 The number of remaining VMs at the next time slot t+1 is calculated based on
the number of remaining VMs at the beginning of time slot t, the quantity
allocated in the end of time slot t, and the quantity released due to completion
of the computing task in time slot t. Then, the number of remaining VMs of the
edge node at the time slott + 1 is

— e
er+1 =€ —dg +n¢

e The cost of the edge node in time slot t is calculated as the sum of standby
cost (etpe) and computing cost ((E — e¢)py).

Cf =erpet+ E—e)ps
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Cost of Collaborative Cloud-Side Computing

Cost in Private Cloud:
. In time slot t, the cost of collaborative cloud-edge in private cloud environment is the
following:
Cfn = dipc + (¢

Where,

d¢: number of VMs provided by cloud node

pc: unit cost of VMs in private cloud

C£: cost of the edge node

Cost in Public Cloud:

. In time slot t, the cost of collaborative cloud-edge in public cloud environment includes the
computing cost of cloud nodes and the cost of edge node, which is the following:
b
Ctpu = X1Poadf + szupfront + X3preds + Xupedf + Cf
Y. — 1, The service is used
Y~ | 0, The service is not used

Where,
X1poqds : cost of on-demand instance
XoPupfront T X3preds : cost of reserved instance

X4peds: cost of spot instance
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The time is divided into T time slots, and at the beginning of each time
slot t, the user submits its demand to the edge node.

The edge node allocates the demands to either cloud VMs or its own VMs
based on its resource allocation strategy.

In a public cloud environment, the edge node determines the type of cloud
service to be used based on the allocation and the price of the corresponding
cloud service set by the cloud service provider.

The cost of the current time slot t, denoted as (, is calculated based on the
allocation and the price of the corresponding cloud service set by the cloud
service provider.

The long-term cost of the system is minimized over the T time slots by
minimizing the sum of the costs over all time slots i.e.

T
2.6
t=1
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Resource Allocation Algorithms: 1.Markov Decision Process

» The resource allocation problem is a sequential decision-making problem

» It can be modeled as a Markov decision process.

« Markov decision process is a tuple (S, A, P, r, y), where S is the finite set of
states, A the finite set of actions, P is the probability of state transition, r and y

are the immediate reward and discount factor, respectively.

- s, = (e,n: 1,Dt,p;) € S ,is used to describe the state of the edge node at the
beginning of each time slot, where

e :number of remaining VMs of the edge node in t,

N«-1 :number of VMs returned in the previous time slot

D; :user’'s demand information in t

p: :unit cost of VMs in private cloud in t.

 a; = (x.,,x,) € A, where
X, :ratio of the number of VMs provided by the edge node to the total number of VMs.
Xy :ratio of the number of VMs provided by the cloud node to the total number of VMs.
« r, = —C/#"is the reward in each time slot

Note :
We want to reduce the long-term operation

cost R =Y1_,r(s;a;) therefore, the reward
function is set as a negative value of the cost.
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2. Parameterized Action Markov Decision Process

* In the public cloud environment, first, the edge node needs to select the pricing mode of
cloud service to be used and then determine the resource segmentation between the
edge node and the cloud node in each time slot t.

* The resource allocation action can be described by parametric action.

* In order to describe this parameterized action sequential decision, parameterized action
Markov decision process (PAMDP) is used.

* Similar to Markov decision process, PAMDP is a tuple (S, A, P, r, y).

 The difference with the Markov decision process is that A is the finite set of
parameterized actions.

* The specific modeling is as follows.

* s, = (et, ni—1, Dy, py, &) €S, where p;is the unit cost of spot instance in t, and §; is the
remaining usage time of reserved instance. When the edge node does not use this type
of cloud service or it expires, this value is 0.

* a;=(x, (k x)) € A, where K = {k1, k2, k3} is the set of all discrete actions, k; is the on-
demand instance, k, is the reserved instance, and k3 is the spot instance.

« 1r,=—CV" is the reward in each time slot.

Deep Reinforcement Learning for Cloud-Edge




3.Resource Allocation Based on Deep Deterministic Policy
Gradient

« The DDPG algorithm is the classical algorithm of the ActorCritic algorithm

« Actor generates actions based on policies and interacts with the environment

« Critic evaluates Actor’'s performance through a value function that guides Actor’s
next action

« This improves its convergence and performance.

DDPG introduces the idea of DQN and contains four networks, where the main Actol
network selects the appropriate action a, according to the current state, s and interacts
with the environment:
a=mg(S)+N
where WV is the added noise
For the Critic master network, the loss function is,

(@) = 52 (5, - 0(0(5). )’ W
j=1

Where y; is target Q value , calculated as,

vy =1+vQ (¢(S,j):ﬂ9 (6(s"))) (w’)> (2)
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3.Resource Allocation Based on Deep Deterministic Policy

Gradient

For the Actor master network, the loss function is:

m

1
Vj(0) = m z - Va.Q(si, a;, w) |s=si,a=n9(s)van6 (s) |s=si (3)
]:

The parameters w of the Actor target network and the parameters 6 of the Critic
target network are updated using a soft update:

wle—tw + (1 -7’

O'—t+ (1—-1)6' )
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Resource Allocation Algorithms

3. Resource Allocation Based on Deep Qu(s, a)
Deterministic Policy Gradient T
* DDPG structure is shown in figure s ™
w
* Input of the algorithm contains information about the user requests
demands D, and the unit cost of VMs in private cloud 9
—
* At beginning of each iteration, the edge node first obtains state s, of o
the collaborative cloud-edge environment
* |t then pass the state as the input of the neural network into the main \_ w
Actor network to obtain the action a,. a = 74150(8) + N
* After the edge node gets the action, the number of demands to be 7 =%
processed by the edge node and the number of demands to be 3]
processed by the private cloud will be calculated by the action value, ;,’
i.e., dfand df, respectively. §
*  Then, interaction with the environment based on dfand d, to get the
next state, reward, and termination flag. L
&
* Storing this round of experience to the experience replay pool
* CERAI will sample from the experience replay pool and calculate the
loss functions of Actor and Critic to update the parameters of the
master and target networks. [ State 3 }
* After one round of iterative, the training will be continued to the

maximum number of training rounds set to ensure the convergence of
the resource allocation policy.
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CERAI(Cost efficient resource allocation with private cloud ) Algorithm

0 N

10.

11.
12.
13.
14.
15.

Initialize Actor main network and target network parameters 0, 8’ Critic main network and target
network parameters w,w’, . soft update coefficient 7. number of samples for batch gradient
descent m, maximum number of iterations M, random noise V' and experience replay pool K
Fori=1to Mdo
Receive user task information and obtain the status s of collaborative cloud-edge
computing environment;
Actor main network selects actions according to s: a = mg(S) + INV;
The edge node performs action a and obtains the next satus s', reward r and termination flag
isend
The edge node generates an allocation record h; according to the allocation operation. Add it
to the allocation record H;
Add the state transition tuple (s, a, 7, s’, isend) in the experience replay pool K;
Update status: s =¢’;
Sample m samples from experience replay pool P calculate the target Q value y according to the
eq 2;
Calculate the loss function according to (1) and update the parameters of the Critic main
network;
Calculate the loss function according to (3) and update the parameters of the Actor main network;
update the parameters of the Critic and Actor target network according to (4)
Update allocation record H and release computing resources for completed tasks;
If s’ is terminated, complete the current round of iteration, otherwise goto step 3;
end.
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4. Resource Allocation Based on P-DQN

The basic idea of P-DQN is as follows. [ k= argmaz(); ]

 For each action a € A in the parametric action space, because
of x, + x,, = 1, we can only consider k and x, in the action value
function, thatis Q (s, a) = Q (s, k, x,), where s € S, k € K is the
discrete action selected in the time slot t, and x, € X is the [ Qe Ok J
parameter value corresponding to k. ]
« Similar to DQN, deep neural network Q (s, k, x,; w) is used in
P-DQN to estimate Q (s, k, x,), where w is the neural network
parameter.

« For Q (s, k, x,; w), P-DQN uses the determined policy network ' \
X (s 0): S — X, to estimate the parameter value x,‘f (s), where 0 W
is used to represent the policy network. That means the goal of

—__

P-DQN is to find the corresponding parameters 8, when w is
fixed. It can be written as the following

Q()*, x4 (s;0); w = Q(s, k, x3; @) ()

« Similar to DQN, the value of w can be obtained by minimizing
the mean square error by gradient descent.

* In particular, step t, w, and 6, are the parameters of value
network and deterministic policy network, respectively.

* y;can be written as :

y =1 +maxQ(s; k,x,(s',0,); w,) (6)

ke[k] { 5,2

Q-Network

State s

Actor
% :
=
— 3

where s'is the next state after taking the mixed action a = (k, x,).
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4. Resource Allocation Based on P-DQN

The loss function of value network can be written as the following:

12(w) =5 [Q(s, k, x;; W) — y]? (7)
loss function of a policy network can be written as

lG (0) - - le;: l,l(S, k! xk (S; 0); (D) (8)

P-DQN structure is shown in Figure .

Cost Efficient Resource Allocation with public cloud (CERAU) is a resource allocation algorithm based on P-
DQN,. The input of the algorithm contains information about the user requests demands Dt and the unit cost of
spot instance in public cloud in time slot t p..

At the beginning of each iteration of the algorithm, the edge node first needs to obtain the state s, of the
collaborative cloud-edge environment

Then pass the state as the input of the neural network into the strategy network to obtain the parameter values
of each discrete action.

After the edge node gets the action, it will select the appropriate public cloud instance type based on the
discrete values in the action and determine the number of public cloud instances to be used based on the
parameter values.

Then, interaction with the environment occurs, to get the next state, reward, and termination flag.

Storing this round of experience to the experience replay pool, CERAU will sample from the experience replay
pool and calculate the gradient of the value network and the policy network.

Then, it will update the parameters of the corresponding networks.

After one round of iterative, to ensure the convergence of the resource allocation policy, the training will be
continued to the maximum number of training rounds set.
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CERAU Algorithm

Algorithm: Cost efficient resource allocation with public cloud (CERAU)

1. Initialize exploration parameters €, soft update coeficient t; and 7, , number of samples for batch
gradient descent m, maximum number of iterations M, random noise V' and experience replay
pool P;

2. fori=1toMdo

3. Receive user task information and obtain the status s of collaborative cloud-cdge computing
environment;

4.  Calculate the parameter value of each instance type in the cloud service; x;<x, (s 0;) + N ;

5. Selects discrete actions according to € —greedy strategy:

random discrete action, rnd > €
a= {(k, xk), k = argmaxpeQ(s, k,xy; w), rnd = €

6. The edge node performs action and obtains the next status s’, reward r and termination flag isend;

7. The edge node generates an allocation record h; according to the allocation operation. Add it to
the allocation record list H;

8. Add the state transition tuple (s, a,r, s’ isend) in the experience replay pool D;

9. Sample m samples from experience replay pool P, calculate the target Q value y according to (6);

10. Update satus: s =s’;

11. Calculate gradient 7,19 (w) and V1% (0) according to (7) and (8);

12. Update network parameters: o’ « w — 71 V,,19(w),0" « 6 — 1, V419(8)

13. Update allocation record H and release computing resources for completed tasks:

14. If s’ is terminated, complete the current round of iteration. otherwise go to step 3:

15. end
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Content of this Lecture:

* |n this lecture, we will discuss how Collaborative cloud-edge
approaches can provide better performance and efficiency
than traditional cloud or edge approaches with the help of
some examples
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Consider the resource allocation problem where a client submits the following demands in
three consecutive time slots:

2N

(10, 1)

(20, 2)

where (d;) represents the number of VMs requested and (I;) represents the duration of
service request. Assume that time slot (1) is the starting slot such that no VMs have been
allocated a priori. There are 80 VMs available at the edge node.
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(a) Resource allocation using private cloud: Suppose that we have our own private cloud and

a policy has been deployed to allocate VMs as per client demands which outputs the following
actions at each timeslot:

Time-Slot (t) Policy Action (xf)

0.4
0.7

0.8

The action (xf € [0,1]) represents the ratio of VMs allocated from the private cloud to the total VMs
requested by client at time slot t. The remaining VMs (1 — x{‘) are allocated from the edge node.

Calculate the cost of collaborative cloud side computing (Cfri) in the given private cloud setting at each of

the three time slots. Also, find out the number of VMs that will be available at the edge node at the
beginning of fourth time slot

Given Constants:
e

Stand-by cost of a VM at the edge node (p,) 0.03

Computing cost of a VM at the edge node (py) 0.20

Computing cost of a private cloud (p,.) 3.00
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(b) Resource allocation using public cloud: Assume that we have replaced the private cloud
with a public cloud setting with a new policy that outputs the following actions at each

timeslot:

(1,0.4)

(2,0.8)

where (k; € {0=on_demand,1=reserved,2=spot}) represents the type of public cloud instance that was
allocated. Calculate the cost of collaborative cloud side computing (Ctpub) in the given public cloud setting at

each of the three time slot. Assume that the same demands were made by client as in part (a) and that no
customization is performed on reserved instances.

Additional Constants:

Unit price of on-demand instance in public cloud (p, ) 3.0

Unit price of reserved instance in public cloud (p;.)
Customization price of reserved instance (pyyfront)

Unit price of spot instance in public cloud (p;) 1.0
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Example : Solution

Let (e;) represent the number of VMs available at the edge node after allocation at time slot (t).
Assumee; = E =80
At time slot (t = 1):
Demand: D; = (d4,11) = (30, 2)
Action: xf = 0.4
No of VMs allocated from cloud: d = x¥ « d; = 0.4 % 30 = 12
No of VMs allocated from edge node: df = d; —d{ =30—-12 =18
No of VMs remaining at the edge node: e; = e; — df =80 — 18 = 62
Resources can be successfully allocated from edge node; hence, allocation record will be generated:
Allocation record: hy; = (d$,1;) = (18,2)
Allocation Record List H: < h; >:< (18,2) >
Updated Allocation Record List H: < h; >:< (18,1) >
Number of VMs waiting to be released: n; = 0
Number of VMs available at next time slot: e, = e; + ny =62 + 0 =62

Cost at the edge node: Cf = e;p, + (E —e;)pr = 62 % 0.03 + (80 — 62)*0.2 =1.86 +3.6 = 5.46

Cost at the private cloud: Cfri =dip.+C; =12+ 3.0+ 5.46 = 41.46

Cost at the public cloud: CP*? = d¢p. + C¢ = 12 % 1.5 + 5.46 = 23.46
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Example : Solution

At time slot (t = 2):
Demand: D, = (d,, ;) = (10,1)
Action: x¥ = 0.7
No of VMs allocated from cloud: dS = x¥ * d, = 0.7 %10 = 7
No of VMs allocated from edge node: d5 =d, —d5 =10—-7 =3
No of VMs remaining at the edge node:e, = e, — d5 =62 — 3 = 59
Resources can be successfully allocated from edge node; hence, allocation record will be generated:
Allocation record: h, = (d5,1,) = (3,1)
Allocation Record List H: < hqy,h, >:<(18,1),(3,1) >
Updated Allocation Record List H: < hy,h, >:< (18,0),(3,0) >
Number of VMs waiting to be released: n, = 18 + 3 = 21
Number of VMs available at next time slot: e3 = e, + n, =59 + 21 =80

Cost at the edge node: (7 = e;p, + (E — ex)pr = 59 % 0.03 + (80 — 59) x 0.2 = 1.77 + 4.2 = 597

Cost at the private cloud: Cfri =dsp. +C5 =7+3.0+597 = 2697

Cost at the public cloud: Cémb = d5poq + C5 =7 +3.04+ 597 = 26.97
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Example : Solution

At time slot (t = 3):
Demand: D; = (d3,l3) = (20,2)
Action: x¥ = 0.8
No of VMs allocated from cloud: d§ = x¥ * d; = 0.8 %20 = 16
No of VMs allocated from edge node: d§ = d; —d§ =20—16 = 4
No of VMs remaining at the edge node:e; = e; — d§ =80 — 4 = 76
Resources can be successfully allocated from edge node; hence, allocation record will be generated:
Allocation record: h, = (d$, 1) = (4,2)
Allocation Record List H: < hz >:< (4,2) >
Updated Allocation Record List H: < h3 >:< (4,1) >
Number of VMs waiting to be released: n; = 0
Number of VMs available at next time slot: e, = e3+n, =76 + 0 =76

Cost at the edge node: C5 = e3p, + (E — e3)py = 76 0.03 + (80 — 76) x0.2 = 2.28 + 0.8 = 3.08

Cost at the private cloud: Cfri =dip. +C§ =16 3.0 + 3.08 = 51.08

Cost at the public cloud: C,ﬁ,m =dsp; + C5 =16+ 1.0 + 3.08 = 19.08
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Contents of lecture

In this lecture, we will cover a Public Cloud Services,
a case study of AWS services




Reference Model

We will use a reference model to explain AWS services systematically as 5-layered model

r >

Deployment & Administration

App Services

Compute Storage Database

Networking

AWS Global Infrastructure
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Global Infrastructure

' = Regions
‘ ‘ 0
- . |

Availability Zones

Edge Locations

AWS Global Infrastructure . s global DNS infras fure (Ro
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Global Footprint

AWS is available today in the U.S., Brazil, Europe, Japan, Singapore, Australia,
and China. Additional regions in the UK, Canada, China, and Ohio are
expected to come online over the next 12 - 18 months

Over 1 million active customers per month
across 190 countnes

SR SL S SR

2, 300 government! agencies »
B ST Lald s AU
-

7,000 educational institutions _ T -

- e L T
M g ) UL L y

o regions pp—
NG YA

35 availabikty zones +
4 more coming soon Faarons
ob edge locations

AL
ey
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AWS Global Datacenter

> 20 Regions + 5 Coming
soon

> 61 Availability Zones

> 158 Edge locations

> 11 Regional Caches

> 130 + Services
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Region

AZ

\\

/1

AZ

AZ

AZ

AZ

Transit

\

Transit
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Geographic area where
AWS services are
available

Customers choose
region(s) for their AWS
resources

Eleven regions worldwide




AWS Region

Example AWS Region

\\~¥// p . . ,
+ 1 of 13 AWS worldwide AWS regions
Redundant paths to transit centers
7’

/’A—Z\‘ +  Trangsit centers connect to:

AT /" Private links to other AWS Regons

’- Private links 1o AWVS Direct Connect customers
/’

/ Intemet through peenng & paid transit
7’

@ ,’* Metro-area DWDM links between AZs
¢ 82,864 fiber strands in region

AZs <2 ms apart & usually <1 ms
25 Tbps peak inter-AZs traffic

hitd
ﬁ‘{l amazion

RO ANS
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Availability Zone(AZ)

Availability Zone (AZ)

« Each region has multiple, GEGION e, \ \
Isolated locations known as
Availability Zones EC2

 Low-latency links between AZs :

in a region <2ms, usually <1ms Sl o
® When |aunching an EC2 ..............................................................................

Instance, a customer chooses
an AZ """ - .
* Private AWS fiber links %\A\/AILABILITY ZONE 2 é_’AVAILABILITY ZONE 3
R onneclalimaior raa b \ .............................................................................. P,
oo
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Availability Zone(AZ): Example

Example AWS Availability Zone

AZ — T 5

l A r— T30S

« 1 of 28 AZs world-wide
« All regions have 2 or more AZs
« EachAZis 1 ormore DC

— No data center is in two AZs
— Some AZs have as many as 6 DCs

« DCsin AZless than ¥4 ms apart

amazon
webservices
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AWS Data Center: Example

Example AWS Data Center

- Single DC typically over 50,000
servefs & often over 80,000
- Larger DCs undesirable (blast radius)
op? "Up to 102Tbps provisioned to a
“  single DC
« AWS custom network equipment:

—  Multi-ODM sourced
— Amazon custom network protocol stack

amazon

webservices
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AWS Security

Security is shared between AWS and its customers

Customers have
their choice of

Operating System, Network, & Firewall Configuration .Secur.'ty
configurations IN
Server-side Data Network Traffic the Cloud
Encryption Encryption Protection

amazon responsible for
e the security OF

Edge Locations the Cloud
oS

0 womAnG

Platform, Applications, Identity & Access Management

(72
—
Q
=
O
17
=
O
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Virtual Private Cloud(VPC)

Virtual Private Cloud (VPC)

VPC B REGiON)

 Logically isolated section of
the AWS cloud, virtual EC2
network defined by the || T L. AVAILABILITY ZONE {
customer

« When launching instances
and other resources, AVAILABILITY ZONE 2
customers place themin a
VPC o)

« All new customers have a \\ X oMy zomy
default VPC

amazon

webservices
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Networking

o ﬁ Direct Connect

‘ s VPN (Co.nnectio’rllv
Virtual Pri\;ate Clégd
Route 53 -
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Region and Availability Zones

REGION

Region = Independent Geographic Area

Availability Zone = Multiple isolated
locations / data centers within a region
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Why Availability Zones

Why Availability Zones?

Challenges with traditional asynchronous replication between

distant data centers

Committing to an SSD order 1102 ms
But Sydney to Melbourne is 20 ms
You can't wait 20 ms to commit a transaction

Traditional failure, difficult decision:

Faillover & lose transactions, or

Or don't falover & lose availabiity
Difficult choice

AZs for no-admin failover

Sync works when <2 ms

Combine with regional replication for
very high availability (VHA)

Public Cloud Services: AWS Services



AWS Account, Users and Service scope

AWS Account ]
IAM Users da o .’.ﬁ

| ,
\J

VPC, ELB

. . -
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Global Billing, IAM, Routeb3




AWS Compute and Analytics Services

|| EC2
Elastic Compute Cloud

2)¢x Auto Scaling
V¥ EC2 Horizontal scaling

A\ Lambda
\/ Serverless Computing

=4 ELB
@/ Elastic Load Balancer

"}: ElaEcs

stic Container Service
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"“ Elastic Mapreduce

Real time data/video streaming

‘l’n Kinesis
=

| Athena
'I.I' " Interactive Quer '
: Vv ry Engine
-

Q QuickSight
Business Intelligence

( l - Glue
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Compute Services

Elastic Compute Cloud (EC2)

Auto-scaling

Elastic Load Balancing
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Elastic Compute Cloud (EC2)

- I~ rn ¥ ™ 2 a8} i1r)
Ly i | L LN

y i ,:l 1 ™ ) )
11 ‘A'}
Feature Detalls
Flexible Run windows or linux distn butio ns
Scalable Wide range of instance types from micro to duster
compute
Machine Images Configurations can be saved as machine images [AMIs
from whic h néw instances can be created
Compute Full control Full root or administrator nghts
Secure Full firewall control via Security Groups
Monitoring Publishes metricsto Cloud Watch
Inexpensive On-demand, Reserved and Spot instance types
VM Import /Export mport and export VM images to transfer configurations

nandout of EQ2
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Compute : Auto-scaling

w =

MyGroup
MyConfig
eu-west-la
q
200

Auto-scaling

‘ m " 11t T, ) '
\ Il | /I I i

Feature Detalls

Control Define minimum and maximum instance
Compute pool sizes and when scaling and cool
down occurs

Integrated to Use metrics gathered by CloudWatch to
CloudWatch drive scaling

Instance types Run auto scaling for on-demand instances
and spot. Compatible with VPC
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Compute : Elastic Load Balancing

Feature Detalls

Auto-scaling Automatically scales to handle request colume

Available Load balance across instances in multiple

availability zones
Compute
Health checks Automatically checks health of instances and

takes them in or out of service

Session stickiness Route requests to the same instance

Secure sockets layer Supports SSLoffload from web and application
servers with flexible cipher support

Monitoring Publishes metrics to Cloud Watch
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S3 - Durable storage, any object

w I

Elastic Block Store
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Storage

' e N S3 - Durable storage, any object

d Feature Detaily
L LU KT N
~L e ";‘,;_- - Flexible object store Buckets act hke drives, folder structures within
Access control Granular control over o bject permissions
Server-side encryption 256bit AES encryption of objects
Multi-part uploads Improved throughput & control
Object versioning Archive old objects and version new ones
Automatically remowe ( &cts
Storage Object expiry Automatically re old obyects
Accesslogging Full audnt log of bucket/object actions
Web content hosting Serve content as web site with bullt in page handling
Not#ications Recelve notifications on key events
Import /Expont Physical devic @ |mport fex port service
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Storage

Elastic Block Store

Feature Detalls

High performance Mount EBS as drives and format as
file system required
Flexible size Volumes from 1GB to 1TB in size
Secure Private to your instances
Available Replicated within an Availability Zone

Backups Volumes can be snapshotted for point in
tume restore

Monitoring Detailed metrics captured via Cloud
Watch

Public Cloud Services: AWS Services




Relational Database Service
~EFERRS- T
-
m My SQL Server
DynamoDB
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Application Services

Amazon SQS
s Simple Workflow
Amazon SES

CloudFront
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What is Amazon SES ?

Amazon-grade Web Service for Sending
High-Quality High-Volume (HQHV) email

Our users are free to concentrate on
email Strategy and Quality; SES
manages the complexity of IP Reputation
and Deliverability

Robust, Hardened API-Driven

Infrastructure = minimal downtime
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Application Services

CloudFront

Lona
App Services
1
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Deployment and Administration

Elastic Beanstalk

T B

Cloud Formation

SE Identity & Access Management
Deployment & Administration

Software Developer Kits

net @D @ python

.ﬁp
‘RUb‘ y—— l\.” A1 17" v/ | -
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AWS Storage and Database Services

RDS
Relational Database Service

—
EBS
Elastic Block Storage

33 DynamoDB
Simple Storage Service AWS NoSQL Database
Redshift

L
e EFS
v Elastic File System

f Elasticache

- Fast and Flexible caching

Public Cloud Services: AWS Services
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AWS Network and Management Services

5 pc ‘ CloudWatch
" Virtual Private Cloud " Application & Infrastructure monitoring
Routed3 CloudFormation
- AWS DNS Service Provision Infrastructure as a Code
f Direct Connect Elastic Beanstalk
\, . Dedicated Network Application Orchestration Service

s CloudFront

Opsworks
| ' i Content Delivery Network p
Infrastructure Configuration Management
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AWS Application and Development Services

CodeCommit
Hosted GIT Repository by AWS

:11 AP| Gateway

Managed REST and Websocket APIs

SQS iR CodeBuild

Continuous Integration Service
Simple Queue Service g

“l SNS
- Simple Notification Service

‘lV SES
Simple Email Service

CodeDeploy

Automated Deployments

Code Pipeline

Continuous Delivery Service

'
“
-
=
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Development and Test Environments

Development and Test Environments

Source Code

Repositor
P y EC2
I A 5
Developers Project EC2
Management
Tools
Project —

Tools database m

Management
Amazon

RDS

Amazon

:  Builder

i instances

' Build output
Build
Queue  Auto Ec2 oagy
a Scaling D '
Amazon EC2 ;
SQS Amazon

. AWS Dev./Test Scenarios
. On-demand Dev. environments
' On-Demand Builds
Automated Test environments
Load Testing
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Big Data

Big Data
Amazon EMR Amazon Redshift AWS Data Pipeline
(Elastic MapReduce)
Managed Hadoop Petabyte-scale data More data among AWS
Service warehouse service Services and on-premises datasources

Easily launch, customize, and resize your
managed Hadoop cluster

amazon

webservices

Amazon Kinesis - Fully-managed service for real time processing of
'" streaming data, at any scale.

‘ Plug and play with a simple, pre-built client library
\ Deploy Amazon Kinesis-enabled applications to Amazon EC2

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
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High Performance Computing (HPC)

High Performance Computing (HPC)

C3instances

\ "N
Instance vCPU Total
, Némo Cound ECU RAM Local Storage
Amazon Glacier 3.75
e c3.large 2 7 g 2x 16 GB SSD
Elastic MapReduce DynamoDB GiB
- c3.xlarge 4 14 7GB  2x40GB SSD
502 *) EC2
¢3.2xlarge 8 28 15GiB  2x80GB SSD
Amazon S3 : R
‘. ; ! : . x 160 GB
quﬁ ;{;2 EC2 P c3dxlarge 16 55 30 GiB $SD
2 2x320GB
forid Engine Tler P c3.8xlarge £p) 108  60GB
EC2 - SSD
w
Grid client App Source Data

Improved Network Performance
SSD based Platform
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Storage, Backup, and Archival

Storage, Backup, and Archival

On-premises Data Center

-------------------------------------------------------------------------------------------------

AWS Storage Gateway |
: Corporate File Sharing & seamless
Disaster : i backup of enterprise datato Amazon S3 |}
Recovery i
Amazon Elastic Block Store
Gateway Appliance/ AWS PersistentBlock Storage for EC2

Storage Gateway

QY Amazon S3

_ Redundant, High-Scale Object Store

A AWS Cloud v

AT T N . N

' — ‘\ = § Amazon Glacier §

X A t, , i Low-cost Archive Storage in the Cloud |

Amazon EBS Amazon S3 Amazon Glacier ’
llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll ee?sgrsi?eg
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Disaster Recovery

Disaster Recovery

Files AMis Snapshots .
Corporate Data Center E U J AWS DR Scenarios

. AWS Storage IS Amazon Backup and Restore
g Gateway : Gateway EBS ; ) :
§ g ‘ Amazon S3 PI|Ot nght fOF S|mp|e
5 g ~— ( Recovery into AWS
- ' — Warm Standby Solution
- - — :«Dp 2 5

‘;j = s Multi-site Solution

=== =+

App Database m

erve Server

Amazon
VPC

On-premises i AWS Cloud

Amazon RDS - Cross Region Read Replicas #
Improved disaster recovery operations.
Readable copies for cross-region applications.
Easy migration between regions
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Web, Mobile, and Social Apps

Web, Mobile, and Social Apps

a@
Amazon S3 £c2 Ec2
S|
| 1 Nl =~ =
- i ‘ F: 3 i
\ v |
. ‘ . \\/ . \—/ ==

Route Amazon Elastic Load Elastic Load

CloudFront Balancer 8 Balancer
C < Ba e
—

: Amazon AppStream
Amgzon . Amazon ' . HD Video Quality Application Streaming
> Captures user input to send back to the
i cloud. Responsive and consistent
- experience across devices

amazon
webservices
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fb.com

PP 00
'-.. users |  Web Mobile - ®@®
fb.com Browser 5
fb.com | DNS Content Delivery Network (Cache)
PIiVELg: e s ovanmn minesmus i s st e fonihsustons i DS SO s sons 22
Network :
/ Load Balancer

i A — \ v \
SMS i Web VM VM | ) | o0 I N e Business i
M°‘?}'e Fush v | Server Bisk o] g | —» | Video' _ Intelligence | |
Notifications | — — External Convert External i
_ | v ¥ Storage Storage |
Email |« : Content |
: App_>y) W || W | Filter I
i Server Disk L { Disk : ¥ :
| YN S Click | | . |
Message |4 i » Stream > » Spark/ Lol l
Queue . | Analysis F2ac0op |
i : : Storage i
i DB Cache Data Warehouse !
e |
I « i
| ¥ | NosQL |
\ Relational B DB /

"Database
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fb.com on AWS

000 i
Y '6. users Web | ClogdFront | iohile | 8@
fbo.comon £ ~ Browser | ‘ . | &
1 Edge - | & __J
fb.com 1 Route53 Location s O Eggstmn
Lambda
Quicksight
-
4 nea- Il E Q
Video'
Fies | e Convert ¢
Rekognition
Us_er clicks / Athena*l.' l
Actions \‘;,4"
£ di = ‘L
‘r"‘
K|ne5|s s3 M B

N

| v .
CloudWatch « | 4 : 8 l | -
Glue

RDS DynamoDB
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Content of this Lecture:

 An Edge-Cloud system architecture that includes the required components
to support scheduling offloading tasks of loT applications.

 An Edge-Cloud latency models that show the impact of different tasks’
offloading scenarios/schemes for time-sensitive applications in terms of
end-to-end service times.

«  Evaluation of the offloading latency models that consider computation and
communication as key parameters with respect to offloading to the local
edge node, other edge nodes or the cloud..
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Introduction

Internet of Things (loT) technology has quickly evolved in recent years, where
the number of devices that are connected to the internet (loT) has increased
massively.

More than 50 billion devices will be connected to the internet , which will
produce a new set of applications such as Autonomous Vehicles, Augmented
Reality (AR), online video games and Smart CCTV.

Thus, Edge Computing has been proposed to deal with the huge change in the
area of the distributed system.
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For enhancing customer experience and accelerating job execution, loT task offloading
enables mobile end devices to release heavy computation and storage to the resource-
rich nodes in collaborative Edges or Clouds.

Nevertheless, resource management at the Edge-Cloud environment is challenging
because it deals with several complex factors (e.g., different characteristics of loT
applications and heterogeneity of resources).

Different service architecture and offloading strategies quantitatively impact the end-
to-end service time performance of loT applications .

Consequently, the latency depends on the scheduling policy of applications offloading
tasks as well as where the jobs will be placed in order to meet the requirements of
latency-sensitive applications.
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System Architecture

Recently, the number of Internet of Things (loT)
devices connected to the Internet has increased
dramatically as well as the data produced by these
devices.

This would require offloading loT tasks to release
heavy computation and storage to the resource-rich
nodes such as Edge Computing and Cloud
Computing.

Different service architecture and offloading
strategies have a different impact on the service time
performance of loT applications.

An Edge-Cloud system architecture that supports
scheduling offloading tasks of loT applications in
order to minimize the enormous amount of
transmitting data in the network.

Also, it introduces the offloading latency models to
investigate the delay of different offloading
scenarios/schemes and explores the effect of
computational and communication demand on each
one.

Mathematical formulations for task-offloading in Edge-Cloud Environment
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System Architecture

* The Edge-Cloud system from bottom to
the top consists of three layers/tiers: loT
devices (end-user devices), multiple
Edge Computing nodes and the Cloud
(service provider).

« The loT level is composed of a group of

connected devices (e.g., smartphones,
self driving cars, smart CCTV);

« These devices have different
applications where each application has
several tasks

 Difference in the given architecture is the
introduced layer between the edge
nodes and the cloud. This layer
responsible for managing and assign
offloading tasks to the edge nodes.

Figure 1: An overview of edge-cloud system
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System Architecture: Edge Controller

« Edge Controller (EC) is also called Edge Orchestrator,
which is a centralized component responsible for
planning, deploying and managing application services
in the Edge-Cloud system.

+ EC communicates with other components in the
architecture to know the status of resources in the
system (e.g., available and used), the number of loT
devices, their applications’ tasks and where loT tasks
have been allocated (e.g., Edge or Cloud).

+ EC consists of the following components: Application
Manager, Infrastructure Manager, Monitoring and

Planner.
_
- . ]
« The location of the Edge Controller can be deployed in k‘l" ‘1”
any layer between Edge and Cloud. ——

* For example, EC act as an independent entity in the
edge layer that manages all the edge nodes in its

1

I

control. It is also responsible for scheduling the o [we] [ww| [ LIRS r o
offloading tasks in order to satisfy applications’ users |’ P Eg? h - ==

and Edge-Cloud System requirements. The EC is

synchronizing its data with the centralized Cloud Figure 1: An overview of edge-cloud system
because if there is any failure, other edge nodes can
take EC responsibility from the cloud .
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System Architecture: Application Manager

« The application manager:

It is responsible for managing
applications running in the Edge-Cloud
system. This includes requirements of
application tasks, such as the amount of
data to be transferred, the amount of
computational requirement (e.g., required
CPU) and the latency constraints.
Besides, the number of application users
for each edge node

Figure 1: An overview of edge-cloud system
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System Architecture: Infrastructure Manager

* The Infrastructure Manager :

The role of the infrastructure
manager is to be in charge of the physical
resources in the entire Edge-Cloud
system. For instance, processors,
networking and the connected IoT

devices for all edge nodes.

Edge-Cloud is a virtualized
environment; thus, this component
responsible for the VMs as well. In this
context, this component provides the EC
with the utilization level of the VMs.

Figure 1: An overview of edge-cloud system
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System Architecture: Monitoring and Planner

* The Infrastructure Manager :

The main responsibility of this
component is to monitoring application tasks (e.g.,
computational delay and communication delay)
and computational resources (e.g., CPU utilization)
during the execution of applications’ tasks in the
Edge-Cloud system. Furthermore, detecting the
tasks’ failures due to network issues or the
shortage of computational resources.

Planner:

The main role of this component is to
propose the scheduling policy of the offloading
tasks in the Edge-Cloud system and the location
where they will be placed (e.g., local edge, other
edges or the cloud). This offloading tasks works on
this component and passes its results to EC for
execution.

Figure 1: An overview of edge-cloud system

Mathematical formulations for task-offloading in Edge-Cloud Environment



Latency Sensitive Applications

CLOUDI

FOG | Nod

EDGE | ey
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Latency Sensitive Applications

« Latency-sensitive applications have high sensitivity to any delays accrue
in communication or computation during the interaction with the Edge-
Cloud system.

« Forinstance, the lIoT device sends data to the point that processing is
complete at the edge node or the cloud in the back end of the network,
and the subsequent communications are produced by the network in
response to receive the results.

» For example, self-driving cars consist of several services, classified these
services in categories based on their latency-sensitivity, quality
constraints and workload profile (required communication and
computation).

» First, critical applications, which must be processed in the car’s
computational resources, for instance, autonomous driving and road
safety applications.

» Second, high-priority applications, which can be offloaded but with
minimum latency, such as image aided navigation, parking navigation
system and traffic control.

« Third, low-priority applications, which can be offloaded and not vital as
high-priority applications (e.g., infotainment, multimedia, and speech
processing).
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Latency Sensitive Applications

Latency-sensitive applications

Industry Applications

Industrial automation Industrial Control
Robot Control
Process Control

Healthcare Industry Remote Diagnosis
Emergency Response
Remote Surgery

Entertainment Industry Immersive Entertainment
Online Gaming
Transport Industry Driver Assistance Applications

Autonomous Driving
Traffic Management
Manufacturing Industry Motion Control

Remote Control
AR and VR Applications
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Latency Models

* Modelling the various offloading decisions for IoT tasks that can increase the Quality of Service (QoS).

« With the increasing number of loT devices, the amount of produced data, the need for an autonomous
system that requires a real-time interaction as well as the lake of support from the central Cloud due to
network issues; service time has been considered as one of the most important factors to be handled
in Edge Computing.

«  One of the main characteristics of Edge Computing is to reduce the latency level.

« Additionally, using Edge Computing will enhance application performance in terms of overall service
time comparing to the traditional Cloud system.

* However, different offloading decisions within the Edge-Cloud system can lead to various service time
due to the computational resources and communications types. The current real-world applications
measure the latency between the telecommunication service provider and the cloud services.

« Compare the latency between offloading to the edge or the cloud, latency between multiple edge
nodes that work collectively to process the offloading tasks. investigating the latency of the Edge-Cloud
system is an essential step towards developing an effective scheduling policy.

« Firstly, task allocation in the Edge-Cloud system is not only two choices (e.g., either at loT device or in
the cloud), but could be on any edge nodes. Moreover, edge nodes connected in a loosely coupled
way on heterogeneous wireless networks (i.e., WLAN, MAN and WAN), making the process of
resource management and the offloading decision more sophisticated.

« Secondly, given that task processing is allocated among multiple edge nodes working collectively and
the cloud, it is challenging to make an optimal offloading decision. The latency models to investigate
the delay of different offloading scenarios/schemes.
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Latency Models: Latency to Local Edge

This is known as a one-level offloading
system, which is basically offloading to

“Cloudlet” or “Local Edge”. § Task to be

It aims to provide a micro-data center that & oot e o
supports loT devices within a specificarea = T ST

such as a coffee shop, mall center and p ; T
airport . E :
Thus, loT devices can offload their tasks z | ,

to be processed on the edge or cloud, as Edge'node -------------------------------- e — n;de —
an example. T | receive the task the task to IoT
This offloading scenario/scheme provides L Task is queued gﬁ:“s‘;‘: Tas“lf’m“;:;ss‘ng
ultra-low latency due to the avoidance of 3 T
network backhaul delays. The end-to-end - Service Delay Legends:

service time composed of two delays, Processing delay: ——» Processing delay: ~ -------- >

network delay and computational delay.

The network delay consists of the time of
sending the data to the edge and the time
to receive the output from the edge to the

loT device. . . ! .
The computation time is the time from To clarify, loT devices send their offloading

arriving the task to the edge node until the tasks through the wireless network, and
processing has completed. Therefore, the then the tasks will be processed by the

Rt UL UL UN cdge node and finally send the results to
of communication delay and computational .
loT devices,

delay, which can be calculated as follows:
LLocal_egde = tte_up + tce + tte_down

Figure 2: Latency to local edge
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Latency Models: Latency to Local Edge with Cloud

In this offloading scenario/scheme, rather than
relying on only one Edge node, the loT tasks can be ("z")
processed collaboratively between the connected 10T Device Bdge Node Cloud
Edge node and the cloud servers.
This will combine the benefits of both Cloud and
Edge Computing, where the cloud has a massive to b Networking
amount of computation resources, and the edge has S
lower communication time.

In this scenario/scheme, the edge can do part of the
processing such as pre-processing, and the rest of
the tasks will be processed in the cloud.

loT sends the computation tasks to the connected
edge and then part of these tasks forwarded to the Servi tramsmision
cloud.
Once the cloud finishes the computation, it will send
the result to the edge, and the edge will send it to the

loT devices.
This scenario/scheme consists of communication
time (e.g., the time between the loT device to the
edge node and the time between edge nodes to the b
cloud) and computation time (e.g., processing time in
the edge and processing time in the cloud). Thus, the
end-to-end service time can be calculated as follows:

LL_C = tte_up Tl t+ ttc_up Tl + ttc_down + tte_down

Lt ‘Ncwv«oikliimc(WlAN]

Figure 3: Latency to local edge with the cloud
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Latency Models: Latency to Multiple Edge Nodes with Cloud

(@)
A

IoT Device Edge Node Other Edge Cloud

to

ta

------ Network time (WLAN

-~ retwork ¥ M°

Figure 4: Latency to multiple edge nodes with the cloud

loT sends the computation tasks to the connected edge
and then part of these tasks transferred to other
available resources in the edge level through the edge
controller and the rest to the cloud.
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Latency Models: Latency to Multiple Edge Nodes with Cloud

« This is known as a three-level offloading scenario/scheme that aims to utilize more resources at
the edge layer and support the lIoT devices in order to reduce the overall service time.

« It adds another level by considering other available computation resources in the edge layer.

« Basically, it distributes loT tasks over three levels: connected edge, other available edge nodes
and the cloud.

« The edge controller (edge orchestrator) controllers all edge servers by Wireless Local Area
Network (WLAN) or Metropolitan Area Network (MAN), which have low latency compared to Wild
Area Network (WAN).

» This will help to decrease the dependency of cloud processing as well as increase the utilization of
computing resources at the edge.

» This scenario/scheme consists of communication time (e.g., the time between the IoT device to the
edge node, the time between edge node to other collaborative edge node and the time between
edge nodes to the cloud) and computation time (e.g., processing time in the edge, processing time
in other collaborative edge node and processing time in the cloud). Thus, the end-to-end service
time can be calculated as follows:

Lthree_off = tte_up + tce + tceo + ttc_up + tcc + ttc_down + tteo_down + tte_down
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Assumptions:

+ We have three edge nodes connected to the cloud.

* Each edge node has two servers, and each of them has four VMs with a similar configuration.
* The cloud contains an unlimited number of computational resources

Key parameters of the simulation environment :

Key parameters: Values

Simulation Time :30 min

Warm-up Period :3 min

Number of Iterations: 5

Number of loT Devices: 100-1000

Number of Edge Nodes :3

Number of VM per Edge Server: 8

Number of VM in the Cloud :not limited

Average Data Size for Upload/Download (KB) :500/500
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NETWORK TIME

03 02
0.18
025 / 0.16
0.14
0.2
g l o
- R 9 «4—One-off E o M «4—One-off
- F 008 B8
o M Two-off 0.06 Two-off
S G 0.04 et Three-off
0.05 Three-off
goz L et 1 L 1 33;;:~¢—W"""""'°
i " -
OO0 0000000 O0OO0OO0ODO0OOO0ODOOOCCO (=20~ I~ I~ T - T - T~ B O T~ O~ L - I~ T~ A~ T - I - I = I - ]
OM O VMO WVMO MO MO MO MO W!mOoOwmw=Oo O N O MO ;MO ;MmO WwmOoOwmOoOumOoOwmOownwao
HEH NNMMYE TN NOONN®DOONNO "‘"‘NN"'M‘?vmV\'D‘D'\'\wOOmmS
10T DEVICES - 10T DEVICES
Figure 5: End-to-end service time for three offloading scenarios/schemes Figure 6: Network time for three offloading scenarios/schemes
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Figure 7: Processing time for three offloading scenarios/schemes
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Summary

* We presents an Edge-Cloud system architecture that enables the offloading of
tasks for loT applications.

* The architecture includes several components that interact with each other to
support task offloading, such as loT devices, edge nodes, and cloud servers.

 Offloading latency models were explained that consider computation and
communication as key parameters for offloading tasks to different destinations,
including local edge nodes, other edge nodes, and the cloud.

*The experiments conducted on EdgeCloudSim to evaluate the latency models
for three different offloading scenarios .
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Preface

Content of this Lecture:

. A joint decision-making problem for cost minimization in loT edge computing is

modeled, taking into account processing latency, energy consumption, and task
throw rate.

* The Online Predictive Offloading (OPO) algorithm is proposed based on Deep
Reinforcement Learning and Long Short-Term Memory.

e The algorithm predicts the edge server's load in real-time and allocates
resources in advance, improving the convergence accuracy and speed of the
offloading process.
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Introduction

* Modeling the problem of computing offloading in a multi-edge, multi-device
computing scenario as a nonlinear optimization problem.

* Moreover, the goal of task offloading is minimizing long-term costs in terms
of latency and energy consumption.

» By predicting the characteristics of tasks and edge server loads, tasks are
dynamically offloaded to the optimal edge server

» . In the decision model, the prediction is combined with task decision to
dynamically allocate resources for different tasks to further reduce latency
and improve service quality.
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*Task offloading can result in additional transmission delays and energy consumption.

*Task offloading problem is modelled as a joint decision-making problem for cost
minimization, considering processing latency, energy consumption, and task throw rate.

*The Online Predictive Offloading (OPO) algorithm based on Deep Reinforcement
Learning (DRL) and Long Short-Term Memory (LSTM) networks is used to solve the task
offloading problem.

*In the training phase, the OPO algorithm predicts the load of the edge server in real-time
with the LSTM algorithm, improving the convergence accuracy and speed of the DRL
algorithm in the offloading process.

*In the testing phase, the LSTM network predicts the characteristics of the next task, and
the DRL decision model allocates computational resources for the task in advance,
reducing the response delay and improving offloading performance.
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System Model

* The model is built on a multi-terminal,
multi-edge network scenario

» Here the set of terminal layer devices are Procesing Tsk
denoted by M ={1,2, ..., M}.

* On each MD (Mobile device), there exists
a task queue and a computation queue

» the task queue stores the tasks to be
decided for offloading

» the computation queue processes the
tasks that are executed locally.

» the set of edge layer servers are denoted
by N ={1,2,..., N}

« Multiple computation queues are included
in each edge server for parallel
computation of transmission queue offload
tasks.

»  Figure shows an illustration of EC system Nobie Deie Edge Node
with a mobile device and an edge node.

Making Decisions

Predictive Task Information

Computaion Quene Computaton Queve

,\":0 100

Computation Queue

) o=l

T

Transmmission Queve

Computation Queue

Figure 1, An llustration of EC system with a mobile device and an edge node.
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Task Model

» For any MD, the tasks generated in different time slots are identified by
T=1{1,2,...,T}
« Each arriving task is first stored in corresponding MD task cache queue, and then
the decision model gives where the task will be offloaded to be executed.
« Forte T,new task generated by the terminal device m eMis denoted as

Am(t) - (Drtnr prtn’ Trtn,max)-

Where ,

DL : size of the task data

pt. : computational resources required per bit
Th max . Maximum tolerated delay of the task
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Decision Model

When the terminal device m has a new task 4,,(t) in time slot t the decision
model has to give the offloading scheme.

xt, € {0,1}, indicates whether the current task is offloaded
xt, = 0 indicates that the task is executed on the MD,
xt, = 1 indicates that the task will be offloaded to an edge server for execution

Vmn € {0, 1} represents the edge server to which the task is offloaded for
execution

ymn = 1, the task is offloaded to the edge server n € IV for execution
The tasks in this model are atomic level tasks

Each offloaded task can be executed in only one edge server, and the tasks
offloaded to the edge server for execution are constrained by

SNENYm,=1,m eM,t €T, x}, =1
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Computation model: Terminal Layer Computing Model

» The task generated by the t time slot must wait until the computation queue is free

to execute the computation. Then waiting delay is:
+

* Thowait = reqd0AX_ Ly P () —t+ 1 (1)
Where,

17" (t): completion time slot of the task

processing delay in the computational queue is

t . Drtnprtn (2)
Tm,exe - f%evice

Where,
“device: nrocessing capacity (bits/s) of the MD

By 1 and 2,

lf?fmp (t) = minf{t + Trtn,wait» T?%l,,exe» Trtn,max}

energy consumption E&¢vi¢¢ required for the task to be executed locally

device— pexe .-t wait -t
Em _Pm Tm,exe+Pm Tm,wait
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Computation model: Edge Layer Computing Model

the processing latency of the task at the edge layer

t Lt
t _ Dmpm
Tm,exe - fﬁllevice

completion time for edge layer tasks

comp — mi t tran t t

Total delay of task on edge server n,

t — : t tran t t
Tmnec = mm{Tm,wait» Tm,n »Tm,n,exehTm,max}

Where,
Th, waic:Waiting delay in the local model

tran. S
Tm.n -transmission delay

Trtn,wait +T,t,ff§? +Tfn,n,exe,: time slot required for a task to be offloaded from the endpoint to the edge
server and executed to completion

T max:Maximum tolerated delay

energy consumption incurred when tasks are offloaded to the edge server

edge_ pwait .t tran tran exe .t
Em,n - Pm Tm,wait + Pm,n Tm,n + Pm,n Tm,n,exe

Where, Py ©), aie »BEA™ TG, BEX Tk, 1 exe dENOte waiting energy consumption,
transmission consumption, and edge node computation consumption of the task,
respectively.
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» The overall model of the system is a trade-off between the time delay and energy
consumption of the task computation to create a minimization cost problem

» The solution goal is to minimize the total cost of the tasks generated in the system
over time.
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Prediction Model: Task Prediction Model

» A decision process is required after task generation,
and there will be a certain time delay from task

generation to give a decision.
* Although task generation is a dynamic and random S

process, considering the long-term nature of the
task, it will have a strong correlation with time.

«  Therefore, based on the history of user devices, we Traimthe LSTM predictive model =
can predict the tasks that will be generated in the
next network time slot

* As shown in Figure, we can predict the information Predict the next task information End
of the future task by the prediction model, and -
determine the decision and allocate computing Making dcison

resources for the task.

» If the error between the real task and the predicted
task is within the allowed threshold, the task is
directly offloaded and computed according to the
assigned decision information.

+  Otherwise, the offloading decision is given using
the decision model and the information of the new L —
task is added to the historical data as training | Putnew sk informatonnf hedecsion
samples. model o making decison

« By training the LSTM network, the weights and
biases of each gate in the network are updated to . .
improve the accuracy of the prediction model. figure . Flow chartof task predlctl(m.

Add task nformation to training samples

The error s within
the threshold

Follow the decison o offloading
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Prediction Model: Load Prediction Model

*Historical load sequence data is logged and
used to train an LSTM load prediction model. | |
*The predicted idle server (H;) is obtained 7 v A~argmax (Q)
from the trained model using historical load '

. »  DRL Model
sequence data as input. @
*The predicted idle server is used as the

3 o > ¢, Random Action
offload computing node when training the

o < ¢ Prediction Action

A

DRL. {4,
*The DRL training process involves selecting e
actions with a certain probability (). w4,
*When a random action is selected, the size @ LoD, N/ §~,A,=Prediction (A)
comparison between a random value o and redicimA )
the probability € is used to determine 1
whether it is a Random Action or a Prediction s
ntl

Action.

*Using Prediction Action with the pre-
selected idle server can reduce the number
of explorations by the agent and improve
convergence speed of the algorithm.

Figure 3. Illustration of offloading decision.
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Model Training

*The goal of DRL is to maximize the total reward by making optimal actions.

*DRL typically uses e-greedy strategies for exploration and exploitation.

*Exploration involves random selection of any action with probability in expectation of a higher reward,
while exploitation selects the action with the largest action estimate.

*The stochastic strategy fully explores the environment state, but requires extensive exploration and low
data utilization.

*In the model, action selection is the offloading decision of the task, with the action space known whether
to execute locally or offload to an edge server.

*During stochastic exploration, LSTM is used to predict the load of the edge server and give an optimal
action.

*The optimal server at the next time slot is predicted based on historical load situation to obtain a higher
reward and avoid edge server load imbalance.

Reward

! |

Environment

Agent
_—

e
DNN I O T
R
Stike ]‘ Action
s ¢l T
e LSTM Predict = = —_—
L] L] k=3
|

",

ILLearn
s }
= = -
ot EASHS

Action

Observe state

Figure 4. Illustration of model training phase.
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Offloading Decision

*Each MD generates different types of tasks at different time slots.

*There is a system response delay to the task's decision request and a waiting delay in the queue between
the generation of a task and giving a decision.

*The edge system processes data from MD and stores processed records.

*Based on historical records, feature information of the next arriving task can be predicted by LSTM.

*The predicted information is given to the reinforcement learning decision model to make an offloading
scheme for the predicted task.

*When the real task arrives, the offloading decision is given directly if the error between the real task and
predicted task is within the allowed range.

*If the error is not within the allowed range, the decision is made according to the real task using the
decision model.

*Predicting the task's information can reduce the task's response and waiting delay in the system.

Reward

| l

Environment

DNN I 6T =

Agent

| Action
State - -

N a i
T LSTM Predict — -— =
- 4 503“1 - - =
Predict Task Task %}

Y

Record!

Predict

information

Observe state

Figure 5. Illustration of offloading decision phase.
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Algorithm Design: DQN(Deep Q Network)

» A typical DQN model is composed of agent, state, action, and reward

» the policy is generated as a mapping 1 : S — A of states to actions to obtain a
reward R, 1,(s;, a;), denotes the reward that can be obtained by choosing
action a; in state s;

* Ry = Y(p=0)¥'r: (st ap) , is the long-term reward

» when the state space and action space dimensions are large, it is difficult to put all
state-action pairs into Q-table.

» To solve this problem, the DQN model in DRL combines deep neural networks and
Q-learning algorithms, and it transforms the Q-table tables into the Q-networks and
uses neural networks to fit the optimal Q-functions.

» There are two neural networks with the same structure but different parameters in
DQN, i.e., the target network and the main network.

« When iteratively updating the network, the algorithm first uses the target network to
generate the target Q-value as the label f(t), and uses the loss function Loss(0) to
update the parameters of the main network.

« After the introduction of the target network, the target Q value generated by the
target network remains constant in time j, which can reduce the correlation between
the current Q value and the target Q value and improve the stability of the
algorithm.
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Algorithm Design: Replay Memory

» In order to break the correlation within the data, DQN uses the experience replay
method to solve this problem.

» After interacting with the environment, the agent is stored in the replay buffer in the
form of (s¢, as, 15, Spq1 )-

« When executing valuation updates, the agent randomly selects a small set of
experience tuples (s;, as, 13, S:4+1 ) from the replay buffer at each time step

« Then the algorithm updates the network parameters by optimizing the loss function

» Using experience replay can not only make training more efficient, but also reduce
the problem overfitting that generated by the training process
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Algorithm Design: Double DQN

» Double DQN is proposed to solve the overestimation problem.

* DAQN takes the maximum value with max each time, and the difference between
this maximum value and the weighted average value introduces an error,

« this will lead to overestimation after a long time accumulation.

 The Double DQN is composed of two networks, QA and QB ,

« it utilizes these two networks to proceed the state valuation and the action output
alternatively.

« Thatis, one network is used to select out the action, and the other network is used
to update the Q value according to the selected action.

« The Double DQN makes the learning process more stable and reliable by
separating the two steps of selecting the action corresponding to the Q value and
evaluating the Q value corresponding to the action,

 this eliminates the overestimation brought by the greedy algorithm and obtains a
more accurate Q estimation.

» Instead of finding the label value of parameter update directly from the target
network, Double DQN finds the action corresponding to the maximum Q value in
QA and then uses this selected action to compute the target value of parameter
update in QB .
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Algorithm Design: Dueling DQN

« Compared with DQN, Dueling DQN considers the Q network into two parts

the first part is only related to the state S, and the specific action A to be
adopted has nothing to do with this part is called the value function part, noted as

V™ (s),

second part is related to both the state S and action A, this part is called the
action advantage function, noted as A™ (s, a), the final value function can be
expressed as

Q™(s,a) = A™(s,a) + V™ (s)
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Algorithm Design: Decision Model Elements

« Agent:

1.Each MD is considered as an agent that selects the next action according to the
current state of the environment and improves the ability of the agent to make
decisions by continuously interacting with the environment.

2.The goal of the agent is to make the optimal action in any state, thus minimizing the
total cost in the edge computing system.

« State:
1.At the beginning of each time slot, each agent observes the state of the environment
2.It includes the properties of the MD task, the waiting queue state, the transmission

queue state, bandwidth information, and the real-time load of the edge nodes, all the
states are closely related to the action to be selected by the agent.

« Action:

1. Based on the current state, the agent first decides whether the newly generated
task needs to be offloaded for computation.

2. if it needs to be offloaded, it chooses which server to offload

3. It also chooses the appropriate transmission power when offloading the
transmission
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Algorithm Design: Decision Model Elements

 Reward:

1. After observing the state at time slot t, the agent takes an action according to
the policy and then receives a reward at time slot t + 1 while updating the
scheduling policy network to make an optimal decision in the next time slot.

2. The goal of each agent is to maximize its long-term discounted reward by
optimizing the mapping from states to actions so that the agent tends to make
optimal decisions in its continuous interaction with the environment.

3. The reward function is shown below,

T
E [z Vtrt (S, at)
t=0
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Algorithm: Online Predictive Offloading Algorithm

1:Input: input different tasks in each time slots

2: Output: Optimal offloading decision and total cost
3: Initialize Q4, Q8 and s

4: Initialize replay memory D to capacity N;

5: for episode =1, M do

6:
7
8.

9.

10:
11:
12:
13:
14:
15:
16:
17:
18:

Initialize sequence s, and preprocessed sequence
fort=1,Tdo
With probability 1 — € select a random action or LSTM predict action
Generate another random number ¢
if 0 > € then
a; = Random Action Selection(s;)

end if
if 0 < € then

a; = Prediction Action Selection(s;)
end if

Otherwise select a by a* = argmax,Q4(s,a) or b* = argmax,Q*(s,a)
Execute action a; and receive r; and s;,4
Store (s;, a;, 1, Sgqq )into D
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Algorithm: Online Predictive Offloading Algorithm

19: Randomly sample a mini-batch of experience from D

20: Preform a gradient descent step on Loss(0) with respect to the
network parameters

21: Choose a, based on Q“(s, *) and Q? (s, *), observe r,s’

22: if UPDATE(A) then

23: Q*4((s, @) < Q*((s, @) + plr + y max,, Q° (s', ax ) - Q* (s, a)
24: else if UPDATE(B) then

25: Q%(s, @) < Q(s, a) + p[r + ymax,, Q* (s, bx ) = Q° (s, a)
26: end if

27 end for

28: end for

29: Repeat

Task Offloading Based on LSTM Prediction and Deep Reinforcement Learning




Assume,
« We use a dataset from Google Cluster, which includes information about the arrival
time, data size, processing time, and deadline of the tasks.

» Each type of task processing density, task processing time and the size of data
volume are related

» preprocess the raw data according to the characteristics of the data and make the
data size compatible with the established model by normalization and
denormalization

» Considering following Simulation parameters.

Parameter Value
fevice 2.5GHz
fEC 41.8 GHz
B!, 10 MHz
poe 5 Watt
prrak 0.2 Watt
P 2 Watt
pexe 10 Watt
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Experiment: Task Prediction

AT times history window is used to predict the task at T + 1 times.
« Set the history window to 50

« Set different thresholds for the optimization target |D, — D; |.

* The experimental results are shown in Figure .

Observations:
* When the threshold value is set small, the LSTM prediction model describes the

historical data volume with higher accuracy and can fully explore the changing

pattern of the data volume
 However, it will introduce a larger prediction overhead, such as will increase the

training time of the LSTM model.

O
T

Data size (M)
IS
ata size (M)

W

N

O 20 40 60 80 100
Number of tasks Number of tasks

(@) (b)

Effect of threshold size on LSTM prediction task features. (a)
Threshold size = 0.5 M; (b) Threshold size = 0.1 M.
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Experiment: Training Process of LSTM & DRL

« When performing training on the DRL offload decision model, it takes a longer time
to explore and select the better result due to the initial random selection action of
the agent.

« We predict the server load based on the edge server record history data

« Based on the prediction results, the server predicted to be non-idle is selected with
a certain probability as the offload choice for the next moment

« This solution allows the agent to effectively avoid selecting servers with high loads,
thus reducing task processing latency and task dropping rates.

 We use LSTM for load prediction and compare the impact of decisions with load
prediction (LSTM & DRL) and without load prediction (DRL) on offloading
performance.

« As result, DRL is significantly slower than the LSTM & DRL for load prediction in the
early stages of training decision making

 after certain training, the average delay, energy consumption, and the number of
task throw volumes is reduced rapidly by using LSTM for load prediction
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Experiment: Results

Impact of the Tasks Number

We use different time slots to verify the impact of the number of tasks on the
system cost, average task delay, and task discard rate.

Set the time slots in the dataset to T = 100, 200, 500, 1000, and compare the
performance of DQN, double DQN, dueling DQN, and OPO under different time
slots

As the running time of the system increases (i.e., the number of tasks increases),
OPO reduces at least 6.25% of the average latency, 25.6% of the offloading cost,
and 31.7% of the task drop rate compared to other algorithms in terms of cost,
average latency, and task dropped rate.

Impact of the Learning Rate

We study the convergence of the algorithm at different learning rates (denoted as Ir)
when Ir = 0.001, the algorithm is able to achieve a relatively fast convergence rate
and a small convergence cost

As the learning rate decreases (i.e., below 0.0001), the convergence is slower and
takes longer to reach a better value.

When the learning rate is larger, the convergence cost increases and may even be
higher than that of the stochastic strategy.
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LSTM Prediction: Numerical

Suppose you are managing a data center that provides cloud computing services to
customers. You want to use an LSTM model to forecast the hourly CPU utilization of the
data center for the next 24 hours in order to optimize resource allocation and minimize
energy consumption.

You have a dataset with hourly CPU utilization data for the past year, which contains 8,760
data points. You decide to use the first 7,000 data points for training and the remaining
1,760 data points for validation. You set the batch size to 64 and the number of epochs to
50.

Assuming the model takes 5 seconds to process one batch of data on a GPU, how long will it
take to train the model?

Note: This question assumes that the data has already been preprocessed and formatted for
input into the LSTM model.
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LSTM Prediction: Numerical

Solution:

The time it will take to train the model can be calculated as follows:

e Batch size = 64

* Number of training data points = 7,000

* Number of epochs = 50

* Number of iterations per epoch = Number of training data points / Batch size = 7,000 / 64
= 109.375 ="~109 (rounded down to nearest integer)

Total number of iterations = Number of epochs x Number of iterations per epoch =50 x 109
= 5,450

Time taken to process one batch of data on a GPU =5 seconds

Total time taken to train the model = Time taken per iteration x Total number of iterations =

(5 seconds x Batch size) x Total number of iterations
= (5 seconds x 64) x 5,450 = 1,760,000 seconds = ~20.4 days (rounded to 1 decimal
place)

Therefore, it will take approximately 20.4 days to train the LSTM model using the given
dataset, batch size, and number of epochs.
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Summary

* The lecture considers the computational offloading problem in edge computing.

* The optimization objective is to minimize long-term cost by jointly optimizing task latency,
energy consumption, and discard rate.

 The model combines the prediction method of LSTM networks and the decision method
of DQN.

 An OPO algorithm based on deep reinforcement learning is proposed, combining the
advantages of Double DQN and Dueling DQN.

 The training speed and accuracy of the DRL model are improved using LSTM's prediction
capability.

* The proposed algorithm reduces the offloading decision delay of tasks in the actual
inference process.

* Future research will migrate the method to experimental testing and combine the latest
algorithms and techniques to improve its performance in real loT application scenarios.
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Content of this Lecture:

* |n this lecture, we will discuss a generic architecture of
cloud-edge computing with the aim of providing both
vertical and horizontal offloading between service nodes.

 An approximation algorithm which applies a branch-and-
bound method to obtain optimal solutions iteratively.
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Cloud-Edge Computing Environment

Introduction:

Edge computing is a paradigm that enables virtualized computational and
communication resources to be deployed near the source of service workloads
instead of relying on massive data centers.

This allows for a reduction in end-to-end delay for accessing these resources, and
makes it more suitable for real-time or delay-sensitive services.

Additionally, edge computing enables virtualized resources to be geographically
distributed which can address the requirements of mobility and geo-distribution of
mobile and loT services.

Cloud Edge Computing: v~

Cloud-edge computing can efficiently accommodate different types of services,
with end devices and network edges suitable for real-time and delay-sensitive

- \' . . .
services and central offices and data centers able to handle services which require a
large amount of computing capacity.

Integration of cloud and edge computing is proposed to take advantage of the
benefits both technologies offer.
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Cloud-Edge Computing Environment

Example: M

* A smart home system that utilizes edge computing could provide a more secure,
efficient, and cost-effective solution for controlling and monitoring devices such as
lights, thermostats, cameras, and door locks.

* The system would have a gateway device, such as a router, that would provide a
) —_—
local connection for each device.

e The gateway would run a virtualized instance of a cloud application, allowing for
local processing of data and commands.
’—/

e  This would reduce the latency for any commands sent to the devices, providing a
more responsive system.

. Additionally, all data would be stored on the local gateway, providing a more secure
solution than if the data were stored in a cloud.
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Cloud-Edge Computing Environment

*  The concept of cloud-edge computing is an effective way to manage and guarantee
the quality of services while efficiently managing capital and operating expenses.
Research has been conducted to address the requirements of cloud-edge computing
in order to meet the increasing demand for service workloads.

. Cloud-edge computing should consider both veg}él and ho iyrﬁl
between service nodes.

Overtical Offloading : /

. Vertical offloading refers to the process of transferring tasks or services from cloud or
datacenters to edge_nodes in order to reduce latency or increase efficiency. It is also
known as cloud-edge computing and is used to reduce the burden on the cloud.

O Horizontal Offloading :

. Horizontal offloading, on the other hand, is the process of transferring tasks or services
between edge nodes in order to reduce latency or increase efficiency. It is used to

improve the capacity of edge nodes and can also be used to reduce the load on the

=

cloud. — -
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Architecture of Collaborative Cloud-Edge Computing

The novel aspect of the design
is that it deploys virtualized

___________________________________ :
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Architecture of Collaborative Cloud-Edge Computing

2. Second Tier: /5 Af Q
The second tier comprises access network
technologies such as Ethernet, Wi-Fi, and

4G/5G. The edge nodes are capable of

processing part of the workloads.

3. Third Tier:

The third _tier consists of horizontal and
vertical offloadi‘r,/oLfrom the edge nodes to
the central offices.

4. Fourth Tier: \/

The fourth tier consists of horizontal
offloading from the central offices to
neighboring central offices and vertical
offloading to a remote federated data
center. The data center is the top-most tier

of the cloud-edge computing hierarchy and

is responsible for processing the remaining
workloads.
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Architecture of Collaborative Cloud-Edge Computing

This generic architecture is designed to provide a framework for building and
deploying different types of services.

For example: J

In the case of a vehicle congestion avoidance service in a smart city:

e |IP cameras are used to monitor tr?ﬁie and detect abnormal behavior that might
indicate an emergency event.

* The data captured by the came\ryis then sent to an edge server for further
analysis and processing.

* The server can then send the refined data to drivers or news outlets throughout
the city. o
 If there is a lack of computational power, the data can be redirected to other edge
servers or even to a remot_e_?a/tai&:nter. -

v~ W

The proposedyrchitecture is designed to be flexible and customizable, allowing
service nodes to be merged or removed as needed. This flexibility allows for specific
architectures to be built and deployed, such as Edge server, Coordinate device, and
Device cloud. These architectures are designed to accommodate different types of
cloud-edge services and applications.
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Architecture of Collaborative Cloud-Edge Computing

aATLE €dea)

1) Workload Model: N
Let f € F denote an offered service of a cloud-edge computing system. Each
service f has a computation sizg_;;,cwhich is the number of mega CPU cycles

requir(;?p process a request for service f. Also, communication size_Zl“f indicates
the da i’ze/;f therequest in megabytes. —

/Let |2, 1B, I¥, and 1° be the sets of devices, network edges, central offices and data
centers of the system, respectively. A service node i € | could process a set of

ices F, € Fwhere | is the set of all service nodes of the system,
ile, I=12UIBU IV

a) Local processing: S

Let pf; denote the workload (in requests per second) of a service f which is locally
processed by a node i. We have

f_{ >0, iffeF;, viel
Pizl =o,iffeF, viel
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Architecture of Collaborative Cloud-Edge Computing

v e

b) Sibling node and horizontal offloading:
The set of siblings Hi of a node i€l consists of service_nodes which are located in the

same tier as i, and to which i can horizontally offload its w s. Also, let xf;be the

workload of a service f which is horizontally offloaded from i to a service node j € Hi.

Similarly, let uf; ; be the workload of a service f which is horizontally offloaded from j € H;
to i. Here, we assume that a service node i can offload the workload of a service f to a

sibling node j on condition that j is able to process
f,i.e., f € F;. In addition, to prevent loop situations, a node cannot receive the workloads
of a service f from its siblings if it already horizontally offloads this type of workload.

Thus, we have

y ={f0,/.ffEFj,|7’/EH,-,WEI, Va
. =0,iff¢ F, vjeH;, viel,

>0,iffeF;, Vj€EH, viel, -~
=0,iffeF, vjeH;, viel,
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Architecture of Collaborative Cloud-Edge Computing

c) Parent/child node and vertical offloading:

The set of parents V, of a service node i € | consists of the nodes located in the next tier up
with i, and to which i can vertths workloads. Let yf; ; be the worklm
service f which is vertically offloaded fromitoanodej€V,.

The set of children K; of i consists of the nodes which are located in the right lower tier with
i, and from which i receives incoming workloads. Let vf; ; denote the workload of a service f
which is vertically offloaded from j € K; to i. Since a device i€l directly receives service
workloads from external sources, it has no child nodes, i.e., K;= @, Vi € |«

Similarly, a data center i € 15 is in the most-top tier of the system, and hence has no parent
nodes, i.e., V;= @, Vi € 1%,

Opposed to horizontal offloading, a service node can carry out vertical offloading for all
services f € F. In other words, it can dispatch all types of workloads to its parents. Thus, we
have

Vi 20, VfEF, VjeV,, Vi €l UB Ul

Vii20, VifeF VjeK;, vielPulyul.

Let A\, denote the submitted workload of a service f from external sources to a device i €
2. We have
N, 20 VfeF, viel.
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Architecture of Collaborative Cloud-Edge Computing

J N
Computation and Communication Delay consists of:

a) Computation delay of device and edge nodes s

b) Computation delay of central office and data center Nodes
c) Communication delay of network connections ¢

d) Computation and communication delay of the cIouc[—;déé computing system

v

3) System total cost: \/
e

The total system cost C of a{wﬁmmputing is defined as
C=C+CN)

Where C is Computat\igﬁ costof-service nodes and CN is Co\l;ar(unication cost of

network connections.
Since we aim to minimize the total cost of the cloud-edge computing system while
guaranteeing its delay constraints, we hence have an optimization problem.

-
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Algorithm: Branch-and-Bound With Parallel Multi-Start Search Points

* We try to solve a problem (P) which has variables that are integers and nonlinear
delay constraints. —

* This type of problem is usually very hard to solve, so we are using the Branch-and-
bound algorithm. ’

*We search the tree looking for solutions with integers and when we find one, we use it
as an upper bound for the original problem.

*We keep searching until all the nodes of the tree have been solved or the search
conditions have been met.
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ALGORITHM DESIGN - BRANCH-AND-BOUND WITH PARALLEL MULTI-

START SEARCH POINTS

1. Attempt to find an initial solution by applying a Feasibility Pump relaxation heuristic

2. If a feasible solution C*(N*,0%*) is reached, set it to the current optimal solution C(N,O)

3. Add an NLP sub-problem SP, generated by removing the integrality conditions of variables
n;of the problem P, to the tree data structure T

v

4. Start the branch-and-bound procedure iteratively solve the sub-problem SP using
Interior/Direct algorithm with parallel multiple initial searching points

5. If a feasible solution C*(N*,0%*) is smaller than the current optimal solution C(N,0) and N*
are integers, set C*(N*,0%*) to the current optimal solution and prune the node SP, removing

it and its sub-nodes from T

6. If N* is not an integer, perform a branching operation on a variable n; € N* creating two
new sub-problems SSP1 and SPP2 of SP, added to T using the Pseudo-cost branching method

7. 1f C*(N*,0*), >= C(N,0), or there is not a feasible solution, prune the node SP

8. Repeat the branch-and-bound procedure until all nodes of T have been resolved
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ALGORITHM DESIGN - BRANCH-AND-BOUND WITH PARALLEL MULTI-

START SEARCH POINTS

/* Attemp to find an initial solution * /
Solve P by Feasibility Pump heuristic:
if find a feasible solution C*(N™,O) then
| CNV,0)— C*N™*,0%):
end
/* Begin branch-and-bound procedure * /
SP — Relax integrality constraints of P:
Add(7,8P).
while ISP € .7 has not been reached or pruned do
Select a subproblem SP € .7 by depth-first strategy:
10 Solve &P by Parallel Multi-start Interior/Direct
algorithm;
1 if find a feasible solution C*(N™, O%)<C(N, O) then
12 if ¥ € N then
13 C(N, o) — C*WN*.0%):
14 Pr une(.7,S8P);
15 else
16 Create 2 subproblem nodes SSP1, SPP2 of
SP by Pseudo-cost branching on a n; € N'*;

w

T’ &

E<IER-REE )

17 end

18 else

19 Prune(.7,SP):
20 end

21 end
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Experiment:

1. Summarize the cloud-edge computing system and its parameters.

2. Compare the cloud-edge computin§/s§s\tem with a traditional design (NH) which does not
support horizontal offloading.

3. Adjust the arrival rate to generate workloads whose total demanded computation
capacity is 10%, 50%, and 100% of the maximum capacity of all service nodes.

4. Optimize the system to minimize the total system cost C which consists of the
computation cost of service nodes and the communication cost of network connections.

5. Present results of other metrics such as computation capacity allocation, workload
allocation, and horizontal offloading workloads.
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Analysis of the result:

\

Evaluate p(if?ance of cloud-edge computing architecture design and traditional

. . \ .
design in unbafanced and balance\d)erﬂBad scenarios.
Unbalanced Workload: \/

Unbalanced input workload scenarios refer
to scenarios where incoming wor s are
not evenly distributed across cloud

computing and edge computing resources.

This could occur due to a sudden spike in
requests from one geographical location or
due to a particular type of workload that is
more suited to being processed locally at
the edge.

In such cases, the cloud resources may be
overloaded, leading to degraded
performance, while the edge resources
may be underutilized.

I8 m
j€ ‘ _____________
Ag=2.0 A =25
/ /
/ II \\ / : \\
// | D // | 3
/ I \\ / I \\
i€ Kol B S ic K,E/ JE) &
A T A
—f‘
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Analysis of the result:

Balanced Workload: f

e Balanced input workload scenarios, on the
other hand, refer to scenarios where
incoming workloads are evenly distributed
across cloud computing and edge compu:ciqr\g
resources.

e This can be achieved through careful
planning, careful monitoring of incoming

workloads and the wuse of intelligent
algorithms to route the workloads to_the
most appropriate resources. /

e This ensures that both cloud and edge
resources are being utilized eff|C|entIy,
leading to improved performance and cost
savings. —

——

W = >
411 ]
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25 25 25 25 25 25
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Analysis of the result:

/

2. Test two service allocation strategies: homogeneous and heterogeneous.

)z

A. Homogeneous Service Allocation Scenario:

* In a homogeneous service allocation scenario, services are allocated to the same type of
cloud-edge computing environment and resources.

* This means that the same type of hardwai‘e and software is used across all the cloud-edge
sites.

* This type of scenario is useful when the same types of applications are running across
multiple sites or when the same types of services need to be provided.
/
* For example, if the same type of virtual machine is allocated to different tasks on the
cloud and edge, then it would be a homogeneoug}eﬁlice allocation scenario.
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Analysis of the result:

B. Heterogeneous Service Allocation Scenario:

* In a heterogeneous service allocation scenario, services are allocated to different types of
cloud-edge computing environments and resources.

* This means that different types of hardware and software are used across different cloud-
edge sites.

* This type of scenario is useful when different types of applications are running across
multiple sites or when different types of services need to be provided.

* This type of scenario also allows for more flexibility in the types of resources that can be
used, allowing for a more customized experience for each site.

* For example, if different types of virtual machines are allocated to different tasks on the
cloud and edge, then it would be a heterogeneous service allocation scenario.
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Analysis of the result:

3. Observe impact of different computzﬁ’lo/n‘capacity costs on cloud-edge computing
architecture design and traditional de\si}«rf:

The impact of different computation capacity costs on cloud-edge computing architecture
design and traditional design is largely based o‘ry;he cost efficiency of the solution.

Cloud-edge computing architectures typically provide more cost-efficient solutions than
traditional designs, as they leverage the cost-effectiveness of the cloud while providing
more localized processing power.

For example, if computation capacity costs are high, cloud-edge computing architectures
can be more cost-effective by utilizing the cloud for its cost-effectiveness and leveraging
localized processing power for more efficiency.

This allows for cost savings in both cloud and edge compute costs, as cloud capacity is

leveraged for less expensive_.compute and edge compute resources can be used as
needed to meet performance and latency requirements.

—_—
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Content of this Lecture:

e In this lecture, we will discuss about the Global
states (i.e. consistent, inconsistent), Models of
communication and Snapshot algorithm i.e. Chandy-
Lamport algorithm to record the global snapshot.
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Snapshots

) .
Here’s Snapshot: Collect at a place Distributed Snapshot

How do you calculate a
“global snapshot” in this
distributed system?
What does a “global
snapshot” even mean?
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In the Cloud: Global Snapshot

e In a cloud each application or service is running on
multiple servers

e Servers handling concurrent e\}effts and interacting with
each other

e The ability to obtain a “global photograph” or “Global
Snapshot” of the system is important

o};me uses of having a global picture of the system
« Checkpointing: can restart distributed application on failure

Garbage collection of objects: objects at servers that don’t have any other

/objects (at any servers) with pointers to them /

Deadlock detection: Useful in database transaction systems
« Termination of computation: Useful in batch computing systems
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Global State: Introduction

e Recording the global state of a distributgd system on-the-fly is an
important paradigm.

e The lack of globally shared memory, global clock and unpredlctable
message delays in a distributed syste\Vl’a‘ke this problem no/fvlal

=

e This lecture first defines consistent global states and discusses issues
to be addressed to compute consistent distributed snapshots.

—_—

e Then the algorithm to determine on-the-fly such snapshots is
presented.
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System Model

@ =S5 @p;

e The system consists of a collection of‘n”p?&:evsz,es p1, P2 2By —
that are connected by channels. —> e

e There are no globally shared memory/an7d physical?gbal clock
and processes communicate by passing messages through
communication channels. -

e Cjj denotes the channel from process pj to process pj and its
state is denoted by SCj;.

e The actions performed by a process are mpdeled as three types
of events: Internal events, the message g,e/éljevent and the
message recei\@/eve t.

e For a message mjj that is sent by process pj to process pj,
let send (myj ) and rec(mijj) denote its send and receive events.

Ot o) o3 )




System Model

/ \ \
f At any instant, the state of process p;, denoted b is a result
of the sequence of all the events executed by p; till that instant.

e For an event e and a process state LS; \iff e belongs to the
sequence of events that have taken process Di to state LS;j.

e For an event e and a process state LSj, e¢LSj iff e does not
belong to the séquence\@e&ents that have taken process p; to
state LS;. v

e For achannel Cjj, the following set of messages can be defined
based on the ates,Of the processes p; and p; v <

= {mij |sen\oﬁmij) g/ks;/\ rec(\n}ij) ¢ LSj }
&

Transit:

g

Global State and Snapshot




Consistent Global State

o

e The global state of a distributed system is a collection of the local
states of the processes and the channels. T

o Notatlonall y, i||bal state GS is deflned as,

e A global state GS is a Mlobal state iff it satisfies the
following two conditions<—__—" — v

v S S S

J
send(mijj )ELS; = mijj €SCjj @D rec(mijj)ELS;

D is Ex—f)}? ope}ator) J /

send(mijj ) LSi = mijj ¢SCjj A rec(mijj)&LS;
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Global State of a Distributed System

v

e In the distributed execution of Figure 6.2:

e A global state GS, consisting of local states {LS,?, LS,®>, LS;?, LS} is
inconsistent because the state of p, has recorded the receipt of
message m,,, however, the state of p, has not recorded its send.

e On the contrary, a global state GS, consisting of local states
{LS,;?, LS,*, LS;*, LS} is consistent; all the channels are empty except
C,; that contains message m,;.
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Global State of a Distributed System

e Aglobal state GS = {U; LS’ , UjlkSCjkyj'Zk} is transitless iff

Global State and Snapshot

Vi, Vj 115 j<sn::SCyYh?K = @

Thus, all channels are recorded as empty in a transitless global state.
A global state is strongly consistent iff it is transitless as well as
consistent. Note that in figure 6.2, the global state of local states
{LS,?, LS,?, LS;*, LS,?} is strongly consistent.

Recording the global state thribute system is an impagrtant
paradigm when one s interested_in_analyZing, monitoring, testing, or
verifying properties of distributegrapplications, systems, and algorithms.

Design of efficient methods for recording the global state of a distributed
system is an important problem.



Example:

e3 1 632 633 \ 634 63 5

P3 0 .
S;3, LS4} is inconsistent
554, LS5%, LS, 2} is consistent
e,! 572, L84, 1S5%, LS,2} is strongly consiit‘ent
P4 0 R

Figure 6.2: The spacéAime diagram of a distributed execution.
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Issues in Recording a Global State

e The following two issues need to/(e addressed:

I1: How to distinguish between the messages to be recorded in
the snapshot from those not to be recorded.

e -Any message that is sent by a p{péss before recording its
snapshot, must be recorded in the global snapshot (from C1).

e -Any message that is sent p/y/a‘ process after recording its snapshot,
must not be recorded in the gleb/rsnapshot (from C2).\/

/

"{2: How to determine the instant whey process takgﬂts snapshot.

-A process pj must record its snapshot before processing a message
mjj that was sent by procesypj after recording its snapshot.
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Example of Money Transfer
W, S

e Let S1 and S2 be two distinct sites of a distributed system which
maintain bank accounts A and B, respectively. A site refers to a process
in this example. Let the communication channels from site_S1 to site S2
and from site S2 to site S1 be denoted by Ci; and C»1, respectively.
Consider the following sequence of actions, which are also illustrated in

/the timing diagram of Figure 6.3:

ime to: Initially, Account A=$600, Account B=$200, C1; =50, Cp1 =S0.

Ul
%ime t1: Site S1 initiates a transfer of S50 from Account A to Account B.

e Account A is decremented by $50 to $550 and a request for S50 credit
to Account B is sent on Channel Ci1; to site S2. Account A=S‘5/5'O,

Account B=$700, C1z:§’€b, C1 =$0. B (O 2, =200
|7 =
0
y Ry
s g \—\,’lgb @

2)70
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Time t; : Site S2 initiates a %fer of S80 from Account B to
Account A.

Account B is decremented by S80 to $120 and a request for $S80
credit to Account A is sent on Channel (21 to site S1. Account
A=S550, Account B=5120, Cq» =550, C1 =S80.

1
Time t3: Site S1 receives the\yessage for a S8 credit to Account

A and updates Account A.
Account A=$630 \%Jnt B=$120, C12 =550, Cz1 =S0.

Time ta: Sit receives the message for a $50 credit to Account
B and updates Account B.
Account A=S630, Account B=5170, C1, =50, Co1 =SO0.

(a2

94
C\,\ A __70
&74,30 O) " t/
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Ts: Site S1 receives the message for a
$80 credit to Account A and updates

$600 $550 $550 $630 $630

S1: A | | | .
S2:B i ! l: i i R
$200 $200 $1b0 $1D0 Sl}:’O
to t1 ts ts ta
Gz ¢ $50 $50 $50 S0
1 g0 $0 $80 $0 S0

Ta: Site S2 receives the message for a $50
credit to Account B and updates Account B
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e Suppose the local state of Account A is recorded at time tp to show
S600 and the local state of Account B and channels C12 and C>; are
recorded at time t, to show $120, S50, and $80, respectively. Then
the recorded global state shows $850 in the system. An extra $50
appears in the system. —

o The reason for the (inconsistencylis that Account A’s state was
recorded before the S50 transfer to Account B using channel Ci2
was initiated, whereas channel Ci,’s state was recorded after the
S50 transfer was initiated. Va

e This simple example shows that recording a consistent global state
of a distributed system is not a trivial task. Recording activities of
individual components must be coordinated apeya‘priately.
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Model of Communication

e Recall, there are three models of commyé\tion: FI\F}{,non-FIFO, and
Co.

In FIFO model, each channel acts as a first-ip/fi/rst-out message queue
and thus, message ordering is preserved byyﬁannel.

¢ In non-FIFO model, a channel acts like a set in which the sender process
Vadds messages and the receiver process removes messages from it in a
random order.

/ LMy A
e A system that supports causal delivery of messages satisfies the P
following property: “For any two messages mjj and mgj,

if send\(7j/)$ send (mkj ), then rec%ij )=> rec(n\vw
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Snapshot algorithm for FIFO channels

Chandy-Lamport algorithm: J /

¢ The Chandy-Lampert algorithm uses a control message,
called a markem%);)se role in a FIFO system is to separate
messages in the channels.

e After a site has recorded its snapshot, it sends a marker,
along all of its outgoing chayfels before sending out any
more messages.

e A marker separates the messages in the channel into those to
be included in the snapshot from those r\mg/@ be recorded in
the snapshot.

e A process must record its snapshot no later than when it
receives a marker on any of its incoming channels.
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Chandy-Lamport Algorithm

e The algorithm can Igyl itiated by any process by ex%;uting the
“Marker Sending Rulé” by which it records its local state and
sends a marker on each outgoi&‘égennel. e -

e A process executes the “Marker Receiving Rule” on receiving a
marker. If the process has not yet recorded its local state, it
records the state of the channel on which the marker is received
as empty and executes the “Marker Ser@rﬁg Rule” to record its
local state. S

e The algorithm terminates after each process has received a
marker on all of its incoming channels.

e All the local snapshots get disseminategd‘to all other
processes and all the processes can determi\rye/che global state.
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Chandy-Lamport Algorithm

vMarker Sending Rule for process i
\/{ Process i records its state.
A For each outgoing channel C on which a marker has not been sent,
i sends a marker along C before i sends further messages along C.

vd

Marker Receiving Rule for process j
On receiving a marker along channel C:
if j has not recorded its state then
B Record the state of C as the empty set
Follow the “Marker Sending Rule” ¥

vd

else N
\/Record the stateof C as the\s;’e of messages
received along C after j’s state was recorded
and before j received the m\aﬁ;er along C
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Properties of the recorded global state

e The recorded global state may not correspond to any of the
global states that occurred during the computation.

e Consider two possible executions of the snapshot
algorithm (shown in Figure 6.4) for the previous money
transfer example .
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(2nd example)
Global State and Snapshot

Markers
(15t example)

Figure 6.4: Timing diagram of two possible executions of the banking example
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Properties of the recorded global state

1. (Markers shown using red dashed-and-dotted arrows.)

Let site S1 initiate the algorithm just after t;. Site S1 records
its local state (account A=5550) and sends a marker to site
S2. The marker is received by site S2 after t;. When site S2
receives the marker, it records its local state (account
B=5170), the state of channel C;; as SO, and sends a marker
along channel C;;. When site S1 receives this marker, it
records the state of channel Cz; as $80. The $800 amount in
the system is conserved in the recorded global state,

A = S$550, B =$170, C12 = S0, C2; = $80
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$600 $550 $550 $630 5630

S1: A

5 l : !
s i I
| i : | i /
i i i i '~ i /
S2: B i i E i i = g
Szbo szbo $1b0 slﬁo 51?0
110 th t2 l‘3I ta
A = $550 B=2%170 Ci2=$0 C2: = $80

The $800 amount in the system is conserved in the recorded global state

Figure 6.4: Timing diagram of two possible executions of the banking example
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Properties of the recorded global state

2. (Markers shown using green dotted arrows.)

Let site S1 initiate the algorithm just after to and before sending the
S50 for S2. Site S1 records its local state (account A = $600) and
sends a marker to site S2. The marker is received by site S2 between
t> and t;. When site S2 receives the marker, it records its local state
(account B = $120), the state of channel C:2 as SO, and sends a
marker along channel C21. When site S1 receives this marker, it
records the state of channel C2: as $80. The $S800 amount in the
system is conserved in the recorded global state,

A = S600, B = 5120, C1> = SO, C2: = S80
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$600 $550 $550 $630 $630

S1: A

v

S2: B

v

A = $600 B=$120 Ci12 =50 C21 = $80

The $800 amount in the system is conserved in the recorded global state

Figure 6.4: Timing diagram of two possible executions of the banking example
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Properties of the recorded global state

e In both these possible runs of the algorithm, the recorded global
states never occurred in the execution.

e This happens because a process can change its state asynchronously

before the markers it sent are received by other sites and the other sites
record their states.

eBut the system could have passed through the recorded global states in
some equivalent executions.

eThe recorded global state is a valid state in an equivalent execution and
if a stable property (i.e., a property that persists) holds_jin the system
before the snapshot algorithm begins, it holds in the recorded global
snapshot.

e Therefore, a recorded global state is useful in detecting stable
properties.
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Conclusion

e Recording global state of a distributed system is an
important paradigm in the design of the distributed systems
and the design of efficient methods of recording the global
state is an important issue.

e This lecture first discussed a formal definition of the global
state of a distributed system and issues related to its
capture; then we have discussed the Chandy-Lamport
Algorithm to record a snapshot of a distributed system.
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Content of this Lecture:

In this lecture, we will discuss Real-time data processing
in loT edge platform with Spark Streaming and Sliding

Window Analytics.

We will also discuss a case study based on Twitter
Sentiment Analysis using Streaming.
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loT platform: Overview
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loT platform: Data Flow

The data is routed to one of the three different paT(si.e. the hot
path or the cold path or the warm path. \/ E—
Hot path data is the data that is processed in real time. It gets
processed within seconds of that happening, so when the message
hits the hot path it's p\pdcessed and then it's presented to something
in the consumption layer. The consumptio\ryﬁr consume that data
immediately once it's been processed in thé hot path.

The output from a hot path ‘tpéc\ofld storage system can be written
that is consumed by an api. The data is written in real time but the
api might be querying that data that was writtgr(an hour ago.

J
The main thing about hotpath is that you're processing data in real
time as it's happening however what's consuming that might be
querying old data that was processed an hour ago. It could be

something that's processing it and th:yesenting it in real time such

as a dashboard that is constantly monitoring things_in their present

state as comes off of the hot path and into the consumption layer.

Data Flow
Hot Path
i Stream Analytics,
Real-time Event Hub,
data Functions,
. Synapse,
Processing Kafka,
Databricks
Warm Path
Lak
Small Batch Eﬁﬁ,actign:;
Processing Data Factory,
Synapse,
Databricks,
Azure DBaas
Cold Path
Data Lake,
Data Factory,
Batch_ Synapse,
Processing Databricks,

Azure DBaas
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loT platform: Traditional Stream Processing

® Streaming datais received\érom  Recora - .
data sources (e.g. live logs, system ..,%E"”oli /ﬁ\ N
telemetry data, loT device data, . continuous [
etc.) into some data in est'gm sl oS TS i) coe=D>| oupu
system like Apache/@a Amazon - i——%ﬁf' S
Kinesis, etc. \0} W ormor

® The datais thegj?(oceﬁd In T
er

pa raIIeLon a cl \/‘ e

® Results are given to downstream systems like HBase, Cassandra, Kafka, etc.

® There is a set of worker no\yl’és, each of which runs one or more continuous
operators. Each continuous operator processes the streaming data one record at a
time and forwards the records to owér operators in the pipeline.

e Datais received from ingestjon systems via Source operators and given as output t
downstream systems via sihk operators. T

e Continuous operators are a sipiple and natural model. However, this traditional
architecture has also met sovhe challenges with today’s trend towards larger scale
and more complex real-time analytics
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Traditional Stream Processing: Limitations

e Fast Failure and Straggler Recovery In real time, the system must be able to
fastly and automatically recover from failyres and stragglers to provide results
which is challenging in\t}aditional syster\r;due to the static allocation of
continuous operators to worker nodes.

® /L’oad Balancing In a continuous operator system, uneven allocation of the

processing load between the workers can cause bottlenecks. The system
needs to be able to dynaycally adapt the resource allocation based on the
workload.

ofnification of Streaming, Batch and Interactive Workloads In many use
cases, it is also attractive/tégl ery the streaming data interactively, or to
combine it with static da@g’: (e.g. pre—comp@{ez models). This is hard in
continuous operator systems which does not designed/w/new operators for
ad-hoc gyéries. This requires a singlé engine that can combine batch,

reaming and interactive queries.
e / Advanced Analytics with Machine learning and SQL Queries Complex

workloads require continuously learning and upgéing data models, or even
qguerying the streaming data with SQL queries. Having a commqp/a’lgstraction

across these analytic tasks makes the developer’s job much easier.
Hot Data Analytics




Big Streaming Data Processing
J

Fraud detection in bank transactions

EEFLVEEy e ) ) RN =]

- (}orws

Cat videos in tweets

v ¥y v W e
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How to Process Big Streaming Data

I - f/ ; oM A R pa
: N nodes '
(ScaleSto hundreds £ ) ofoa detbAL
. Achieves/low latency < Lo e

. Efficiently recoY?(from failures/” P
. Integrates with batch and interactive processing(Mw

- < M>
\OL‘WJ \M
i Distributed h
vy ¥ ,> Processing System ﬁ “ & "

Tl
Spark Streaming



What people have been doing?

Build two stacks — one for batch, one for streaming
. Often both process sameﬂa‘ta

Existing frameworks cannot do both

. Either, stream pmféssing of 100s of MB/s with low
latency

. Or, batch processingyfTBs of data with high latency

Hot Data Analytics



What people have been doing?

Extremely painful to maintain two different stacks
. Different programming models

. Doubles implementation effort

. Doubles operational effort

Hot Data Analytics



Fault-tolerant Stream Processing

. Traditional processing model

mutable state

. Pipeline of node
input ___ > B R
. Each node maintains mut/afBIe state  records j\
node i

1

. Each input record updates the s}éte

and new records are sent out nput _,,

records

Mutablesta/te's lost if node fails
/

Making stateful streaMocessing fault-
tolerant is challenging!

Hot Data Analytics



What is Streaming?

. Data Streaming is a technique%ransferring data so that
it can be processed as a steady and continuous stream.

—

. Streaming technologies are becoming increasingly
important with the growth of the Internet. 4

/ /

V4 \ V4
facebook
/' (1" Tube)
A S
.’iTunes pandora ‘ -
User (/

Streaming Sources Live Stream Data
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Spark Ecosystem

((Used for structdred ) (‘g pjec anam_l\ Machine learning (" Graph CO”&W{@“O” A Package for R language to

data. Canrun - : ine (Similar to
A and interactive libraries beine built AL s . enable R-users to leverage
unmodified hive appW on top of Sgark Giraph). Combines Spark power from R shell

queries on existing
Hadoop deployment
\ p aeploy p N

A

data-paralleland
Y, 3 @raph-parallelconcepty }

streaming gaming data

@

s il
‘/ ' / GraphX

Spark MLIib SparkR
Sp(asrlc(nf)QL capig (acine {2t (R on Spark)
%mg Learnlng) Computation)

Spark Core Engine /

I

. : %4 :
The core engine for entire Spark framework. Provides
utilities and architecture for other components

Hot Data Analytics




What is Spark Streaming?

Extends Spark for doing big data stream processing

Project started in early‘Z/flz, alpha release wgprin'g 2017 with Spark O.
Moving out of alpha in Spark 0.9 va B

g

Spark Streaming hasyﬂpport built-in to consume from Kafka, FIun\?,
Twitter, ZeroMQ, Kinesis, and TCP/IP sockets.

In Spark 2.x, a separate technology based on Datasets, called Structured
Streaming, that has a higher-level interface is also provided to support

streaming.

Spark MLlib
StreamingJ} (machine
learning)

Apache Spark

Hot Data Analytics



What is Spark Streaming?

Framework for large scale stream processing

. Scales to 100s of nodes \/
. Can achieve second scale latencies /

. Integrates with Spark’s batch and interactive
processing v/

. Provides a simple batch-like APl for implementing
complex algorithm v

. Can absorb live data stre\ayns from Kafka, Flume,
ZeroMQ, etc.

Hot Data Analytics



What is Spark Streaming?

. Receive data streams from input sources, process
them in a cluster, push out to}atabases/ dashboards

. Sczil/[ble, fault—tolg;amt, secondjca‘lé latencies — )
/ -

Kafka * . \/f

r ,/
Flume * <’\Z | N\ L HDFS %/
HDFS 4 Spqu 3 | Databases ]/“/
Kinesis | |/ Streamlng | | Dashboards |

Twitter | R / 2
Hot Data Analytics



Why Spark Streaming ?

. Many big-data applications need to process largé data
streams in realtime (0’9

Website monitoring

Overview ©rRetresh [[ZHJ Lostoay | Lastwook | Lastmonn | Atume | Jun 16, 2010 2:56 PM - Jun 16, 2010 4

Fraud detection
0101 0101 0

(g

01010101010101000 Ad monetization

11100 P00010100010106-22 :
1010101010100 Gougle (o] e

U 1 01 01 01 01 000' Web Show options_.. \ Results 1 - 10 of about 22,100,000 for bight;uses (0.19

ponsored Links Sponsored Links

More » Traffic Sources

Bird Houses
www Scotts.com Scotts attracts colorful birds to your backyard!

Bird Houses
Specialty Bird Houses Find All Types Of Bird Feeders And

- birds-out-back.com Roosting Boxes, Purple Martins, Bat Chalets Houses At Lowe's® New Lower Pric:
Audience www_Lowes.com
- Houses at BestNest .
www._bestnest.com Over 225 different houses in stock. Free shipping! Bird Houses Sale

/1 D \
= w 3 Learn More About Bird Houses
Blrd House: JustBirdHouses.net learn more about blue bird houses and

ouses, along with our |
ustbirdhouses.net/

Authorized Dealer - New Designs
rice Guarantee- Free Shipping

mduorLMniShmwuum com

i} High Quality Bird Houses

Bird Houses Nesting boxes & decorative houses.

d Houses and Bird Feeders for north american bird species. 5-Star Senvice. Free Shipping $75+
irdhouses101.com/ - Cached - Similar - www.backyardbird.com

ird house and purple martin bird houses.
Similar -

Bird Feeders. Bird Houses - The Backvard Bird Company Decorative Bird Houses

Bird Feeders - The Backyard Bird Company has a variety of bird feeders Beautify Your Garden With Our

will accent your landscape and attract wildlife Wooden Bird Houses at a Discount.
Bird Houses - - D tive Bird Houses BirdHouse Station.com
www.backyardbird.com/ - Cached - Similar - Google
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Why Spark Streaming ?

Many important applications must process large streays of live data
and provide results in near-real-time

—

_ Social network trend;/
- Website statistics i
- Intrustion detection systems e

Q Home @ Connect # Discover
=

- etc.

categories - Find Qverview ©Retresh [[EMl Lastcsy | Lastweek | Lastmontn | Attme un 16, 2010 2:56 PM 6 "
s today
Woridwide Trends-¢t M s vesterday
#followmemegatron l
#ThingsGirlsLike P P —
lyikiDogdun RecepTayyij (" Internet O ( Internet )

#teentopnoishowcase ~ ll o -
#NigerianBloggers l %
#HocaliSoykinminiUnutm Posts
FC Twente R
Toni Cant6 Dec 16, 2
Express with the Blogger Template
sno

David Bowie

Require large clusters to handle workleads™ =

Require latencies of few seconds /
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Why Spark Streaming ?
Ve

. We can use Spark Streaming to stream real-time data

from various sources like ;leer, Stock Market and

Geographical Systems and\Berform powerful analytics to
help businesses. \\

JS

Spark Streaming is used to stream real-time

SpC)r‘lQZ data from various sources like Twitter, Stocﬁr“/
Streaming Market and Geographical Systems an

perform powerful analytics t@ help businesses.

Hot Data Analytics



Why Spark Streaming?

Need a framework for big data
stream proceyﬁng that

Scales to hundreds of Aodes
Achieves second-scale Iatf'ﬁcies
Efficiently recover from fapures

Integrates with batch and interactive processing

Hot Data Analytics



Spark Streaming Features

Scaling: Spark Streami)n;g/tan easily scale to hundreds of nodes.

Speed: It achieves low

tency.

Fault ToIergAce: Spark has the ability to efficiently recover from
failures.

Integratior/zSpark integrates with batch and real-time processing.

Business Anglysis: Spark Streaming is used to track the behavior of
customers which can be used in business analysis

Efficiently recover
from failures

Fault
Tolerance
In tegrateswith ba h
A hieves low laten y Integration and real-t |me
SSSSSSSS

ed to track
behaviourof
sssssssss

Scales to hundreds
ofnodes

Hot Data Analytics



Scalable to large clusters

Second-scale latencies

Simple programming model

Integrated with batch & interactive processing

Efficient fault-tolerance in stateful computations

Hot Data Analytics



Batch vs Stream Processing

Batch Processing

T)O}M\avv—
>
Ability-tesrocess and analyze data at-rest/stored data ﬂ |
N 27 ’ ; — ).
Request-based, bulk evaluation and short-livedprocessing

Enabler for Retro%tive, Reacti¥e and On-d\e}ﬁnd Analytics

Stream Processing &

Ability to ingest, process and analyze data in-motion in real- or near-
real-time

Event or micro-ba’gj(driven, continuous evaluation and long-lived
processing S

Enabler for real-time Prospective, Proactive and Predictive

Analytics for N\e/xt Best Action V' S
Stream Processing + Batch Processing(= All Data An@

real-time (now) historical (past)

Hot Data Analytics




Integration with Batch Processing

Many environments require processing same data in live
streaming as well as batch post-prgcessing

Existing frameworks cannot do both
. Either, stream processing of 100s of MB/s with low latency

. Or, batch processing of TBs of data with high latency

Extremely painful to maintain two differe”

. Different programming models
. Double implementation effort

Hot Data Analytics



Stateful Stream Processing

. Traditional model

mutable state

— Processing pipeline of nodes

input
— Each node maintains mutable state ,ocords \J)

— Each input record updates the state node 1
and new records are sent out \J)
input node 3
records \J)
. Mutable state is lost if node fails node 2

. Making stateful stream processing fault tolerant is
challenging!

Hot Data Analytics




Modern Data Applications approach to Insights

Traditional Analytics \) Next Generation Analytics

Structured & Repeatable Iterative & Explorato
Structure built to store data Data is the structure
[ HYPOTHESIS QUESTION k i DATA EXPLORATION R

: . L
INFORMATION : .‘.
\/‘ e

ANSWER DATA ACTIONABLE INSIGHT CORRELATION
. J . J
Start with hypothesis Data leads the way
Test against selected data Explore all data, identify correlations
4 ) 4 / N
\ y, \, pad y,

Analyze after landing... Analyze\iy(otion...

Hot Data Analytics




Existing Streaming Systems

. Storm /

. Replays record if not processed by a node
. Processes each record at least once

. May update mutable state twice!
. Mutable state can be lost due to failure!

J

. Trident — Use transactions to update state

. Processes each record.exactly once

. Per-state transaction to external database is slow

Hot Data Analytics



How does Spark Streaming work?

Run a streaming computatiov@a series of very small,

deterministic batch jobs r\"wﬁ‘:‘:\?’ﬁe&w
: : - - Spark
= Chop up the live stream into o s sl ey Str:;ming

batches of X seconds /

batches of\%onds

= Spark treats each batch of data as -
rocesses themusing —

. y
RDD operations / Eﬂ;ko}l«obéw"
@ mmmmmm | Spark
= Finally, the processed results of processeiiyults /
the RDD operations aLe/returned
in batches
B

SpoarK™ Streamin
g,

A0 | seaids | >
— results as

b hes as — /)
DDs

| data streams P

— //
L~

\——
—

Receivers |

.

RDDs

Hot Data Analytics



How does Spark Streaming work?

Run a streaming computation as a series of very small,
deterministic batch jobs

live data stream

Spark
= Batch sizes as low as % second, " | Streaming
latency of about 1 second
—_— batches of X seconds

= Potential for combining batch
processing and streaming
processing in the same Sﬁtem == wmomm | Spark

processed results

SporK Stre aamin

1 ] [ Spafks o
- | batches as ™~ — results as

RDDs RDDs

Hot Data Analytics

data streams

b 7
|

/
/
/

\ /

\/

| Receivers |

-



Word Count with Kafka

object WordCount {
def main(args: Array[String]) {
val context = new StreamingContext(new SparkConf(), Seconds(1))
val lines = KafkaUtils.createStream(context, ...)
val words = lines.flatMap( .split(" "))
val wordCounts = words.map(x => (x,1)).reduceByKey( + )
wordCounts.print()\//
context.start()
context.awaitTermination()

)
J

Hot Data Analytics



Any Spark Application

———  Driver launches

| Spark executors in
| Executor” | cluster

User code runs in

e driver process i
o . Spark
Spark i | Executor )
Driver
| e Tasks sent to . Spark /
e executors for | Executor
processing data " YARN / Mesos /
) Al  Spark Standalone
| cluster

Hot Data Analytics



Spark Streaming Application: Receive data

| \
Driver runs J | Executor

receivers as long
Data Blocks L—

o

4 Driver

object WordCount {
def main(args: Array[String]) {
val context = new StreamingContext(...)
val lines = KafkaUtils.createStrean(...)
val vords = lines.flatMap(_.split(" "))
val wordCounts = words.map(x => (x,1))
JreduceBykey(_ + _)

Receiver divides
Stream into blocks and
keeps in memory

wordCounts.print()
context.start()
context. awaitTernination()

\_ J

\

Executor

Blocks also
replicated to

another executor

Data Blocks

HREgR




Spark Streaming Application: Process data

Every batch FAGEUior
interval, driver [ Receiver]
\ |
4 Sriver \ launches tasksto | \ata Blocks
process the blocks | [ ‘ | ‘ \ f |

def main:argsi Array H’vlnp\l
val ¢ new Stre LC ntext(
val li = KafkaUtils.createStream(...)
val wi d i s.fla tM ap pl it(" ") g
val w d( words‘mapvx > (x,1))
reduceByKey(_ + _) v
wordCounts.print(

context.start()

ontext.awaitTermination()

‘‘‘‘‘

[ Executor |

|
Data Blocks | g

HEEREN
N /
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Spark Streaming Architecture

. Micro batch architecture. Receiver
. Operates on interval of time Datch blocks
P v ENEEEE
. New batches are created at H lj
regular time intervals. v Vo ]
. Divides received time batch Sewerl\/ Serverz/ —
into blocks for parallelism/ derver
. Each batch is a graph that Memory Memory | |  Memory
translates into multipfe jobs ‘s ‘s :s
. Has the ability to create HiIBREHEH HH
larger size batch window as
It processes over time. High Performance Interconnect

Hot Data Analytics




Spark Streaming Workflow

Spark Streaming workflow has four h gh—levgdgvéges. The first is to stream
data from various sources. These sources can be streaming data sources like

Akka, Kafka, Flume, AWS or Parquet for real-time streaming. The second type

of sources includes HBg/se/, My,
Cassandra for static/batch stre

amin

Once this happens, Spark can b@é;d to perform Machine Learning on the
data through its MLlib XPI. Further, Sparlg}ﬁi used to perform further
operations on this data. Finally, the s eami%utput can be stored into
various data storage systems like H\B;{etf Cassapdfa, MemSQL, Kafka, Elastic
Search, HDFS and local file system.

, PostgreSQL, Elastic Search, Mongo DB and

7 AEyakka v
PPPPPPPP . MLllb Data Storage
| f\\l -l-" Machine Learni e o e System
= —— o s e
~ ﬂﬂ <~ > H=aAsE
s kafka
R e T —r T memsql
S park tregming " &8 katka
NS e et R ~Dy
Static Dat RS B Pl . £ elasticsearct
Sources HSASE p- & L
9 mongo ] N o A T S L b -
B F N Spar
== SQL
=" elasticsearch =
Parquet
S
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Spark Streaming Workflow

/ 7 2
Input Data Batches Of Batches Of

Flume HDFS Stream Input Data Processed Data
HDFS/S3 - : ‘ Databases
L) o) SRR | g ik 1) oot
Kinesis Dashboards Streaming Engine
Figure: Data from a variety of SOU(c;/to various storage systems Figure: Incoming streams oWivided into batches

\/ RbeuN DataFrom W DataFrom [ DataFrom [ Data From
RDD @ ROD@Time2 RDD@Time3  RDD @ Time 4 W Time 0to 1 Time 1t0 2 Time 2to 3 Time 3 to 4
DSt /
_f_ef'f’ Data Fr_om Qata From IR Qata From I Qata From IR ‘ flatMap
Time 001 Time 1 to0 2 Time Zto 3 Timz3to 4 \/ Operation
= Words

BEGLUN Words From W Words From [ Words From W Words From

-

\/ Time 510 1 Time 1102 Time 210 3 Time 310 4

Figure: Input data stream divided into discrete chunks of data Figure: Extractingwords from an InputStream

-—/—7
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Example 1 — Get hashtags from Twitter

val tweets = ssc.twitterj'{r'eam()

[ DStream: a sequence of RDDs representing a stream of data ]

/ s v

Twitter Streaming AP ~batth@t  batch@t+l  batch @ t+2 —

tweets DStream “ “ “ “ “ “ “ “ “

“Jmi\\\

bbbl LLbl b

stored in memory as an RDD ]

(immutable, disyﬂfed)
\_ \

-~

Hot Data Analytics



Example 1 — Get hashtags from Twitter

val tweets = ssc.twitterStream()
val hashTags = tweets.fléjy2§(status => getTags(status))

[_n/ew\DStream ] [ transformation: modify data in one DStream to create another DStream ]

i B ;B _

tweets DStream

oo

flatMap

bl Bl

flatMap

Bl Dl

flatMap

Vv Ul

new RDDs created
for every batch

hashTags Dstream
[#cat, #dog, ... ]

I =)

bbbl LD

T
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Example 1- Get hashtags from Twitter

val tweets = ssc.twitterStream()
val hashTags = tweets.flatMap(status => getTags(status))
.saveAsHadoopFiles("hdfs://...")

j output operation: to push data to external storage ]

batch @ t batch @ t+1 batch @ t+2

tweets DStream dHHh dHHh dHFh

flatMap flatMap flatMap

\

hashTags DStream

saved to HDFS

every batch ]

Hot Data Analytics



Example 1 — Get hashtags from Twitter

val tweets = ssc.twitterStream()
val hashTags = tweets.flatMap(status => getTags(status))
.foreach(hashTagRDD => { ... })

ﬁ foreach: do whatever you want with the processed data ]

batch @ t batch @ t+1 batch @ t+2

tweets DStream dHHb dHHh dHHh

flatMap J flatMap J flatMap
JV y y

foreach foreach foreach

] |} |}

Write to a database, update analytics
Ul, do whatever you want

Hot Data Analytics




Java Example

/ /S

val tweets = ssc.twitterStreap()
val hashTags = tweeti;;;;tMap(status => getTags(status))

Scala

.saveAsHadoopFifes("hdfs://...")

/

JavaDStream<Status> = ssc.twitterStream()
JavaDstream<String> hashTags = tweets.flatMap(new Function<...> { })
.saveAsHadoopFiles("hdfs://...")

Java

Function object ]

Hot Data Analytics




Fault-tolerance

RDDs are remember the
sequence of operations that
created it from the original

. tweets
fault-tolerant input data RDD

input data
replicated
in memory

Batches of input data are
replicated in memory of

multiple worke/ nodes, hashTags “u

therefore fault-tolerant "oD lost pa”'“ons
i !UI'“ I'“ !U recomputed on

other workers

Data lost due to W&ker

failure, can be recomputed
from input data

Hot Data Analytics




Key concepts

DStream — sequence of RDDs representing a stream of data

. Twitter, HDFS, K/af,ka, Flume, ZeroMQ, Akka Actor, TCP
sockets

Transformations — modify data from on DStream to another

. Standard RDD operations — map, countByValue, reduce,
join, ...

. Stateful operations — window, countByValueAndWindow, ...

Output Operations — send data to external entity
. saveAsHadoopFiles — saves to HDFS
. foreach —do anything with each batch of results

Hot Data Analytics



Example 2 — Count the hashtags

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)
val hashTags = tweets.flatMap (status => getTags(status))
val = hashTags.countByValue()

batch @t batch @ batch @

tweets
flatMa \/ flatMa flatMa
hashTags lm lm i lm
ap ap : ap

110 r

tagCoqyés {rEd“CGBVKeV {reducerKey {reduceByKey
[(#cat, 10), (#dog, 25), ... ]

Hot Data Analytics



Example 3 — Count the hashtags over last 10 mins

val tweets = ssc.twitterStream()
val hashTags = tweets. flatMap(status => getTags(status))

val = hashTags M1nutes( v
Seconds( )). countByValue(

sliding window

window length sliding interval
operation

window length

\N\.\'\\/ %g&'-"

T T TIITTITTTS

T

DStream of data

1\

é\\)"'\ \ sliding interval
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Example 3 — Counting the hashtags over last 10 mins

val = hashTags.window(Minutes(10), Seconds(1l)).countByValue()

t-1\ t\ t+\'l JZ t+3
s [ G g b

> v,

countByValu
e

count over all
the data in the
window

tagCounts

Hot Data Analytics



Smart window-based countByValue

val tagCounts = hashtags.countByValueAndWindow(Minutes(10), Seconds(1l))

t-1 t t+1 t+2 t+3

hashTag ? ?
S countByVal

subtract the
__________ counts from
batch before
the window

add the counts

from the new
batch in the

window

tagCounts

__________

Hot Data Analytics



Smart window-based reduce

. Technique to incrementally compute count generalizes
to many reduce operations

. Need a function to “inverse reduce” (“subtract” for
counting)

. Could have implemented counting as:

hashTags.reduceByKeyAndWindow(_+ , -,
Minutes(1), ...)

Hot Data Analytics



Arbitrary Stateful Computations

Specify function to generate new state based on
previous state and new data

. Example: Maintain per-user mood as state, and update it
with their tweets

def updateMood(newTweets, lastMood) => newMood

moods = tweetsByUseP.updateStatjﬁyKey(updateMood )

Hot Data Analytics



Arbitrary Combinations of Batch and Streaming

Computatia

Inter-mix RDD and DStream operations!

. Example: Join incoming tweets with a spam HDFS file to
filter out bad tweets

tweets.transform(tweetsRDD => {
tweetsRDD. join(spamHDFSFile).filter(...)

1 L

Hot Data Analytics



Spark Streaming-Dstreams, Batches and RDDs
input / \/ -

Streaming rdd-3 @ time-3 rdd-2 @ time-2 rdd-1 @ time-1 Y il
data
Spark data flom data from data from il =
Streaming fime 2103, fime 1102, ime 0 - Engine
. N/ </ 4 __/  processed
batch
data

—

. These steps repeat for each batchyContinuoust v

Because we are dealing with Streaming data. Spark

Streaming has the ability to “remember” the previous

RDDs...to some extent.

Hot Data Analytics



DStreams + RDDs = Power

Online machine learning

. Continuously learn and update data models
(updateStateByKey and transform)

Combine live data streams with historical data
. Generate historical data models with Spark, etc.

. Use data models to process live data stream (transform)

CEP-style processing
. window-based operations (reduceByWindow, etc.)

Hot Data Analytics



From DStreams to Spark Jobs

Every interval, an RDD graph is computed from the DStream

graph
For each output operation, a Spar}é’;ion is created
For each action, a Spark job is created to compute it

J/

DStream Graph RDD Graph

Block RDDs
Block RDDs with data

. received from the last
Union batch interval

Transform

3 Spark JObS

Hot Data Analytics




. Out of the box, we provide

. Kafka, HDFS, Flume;Akka Actors, Raw TCP sockets,
etc.

S
. Very easy to write a receiver for your own data source

. Also, generate your own RDDs fr99n Spark, etc. and
push them in as a “stream”

Hot Data Analytics



Current Spark Streaming 1/0

* Input Sources J
» Kafka, Flume, Twitter, ZeroMQ, MQTT, TCP sockets
» Basic sources: sockets, files, Akka actors
« QOther sources require receiver threads /

* Qutput operations
« Print(), saveAsTextFiles(), saveAsObjectFiles(), saveAsHadoopFiles(), foreachRDD()
» foreachRDD can be used for message queues, DB operations and more

Y

Kafka "\Z [ - i]

Flume HDFS

HDFS/S3 Spr K ) >[ Databases |

Kinesis Stre Omlng | Dashboards |
_ Twitter .
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Dstream Classes

. Different classes for

different languages v

(Scala, Java)

. Dstream has 36 value
members v

. Multiple types of

Dstreams v/

. Separate Python API

(O PortableDataStream
hide focus

org.apache.spark serializer
(O DeserializationStream
hide focus
org.apache.spark streaming.api.java
JavaDStream
JavaDStreamLike

JavalnputDStream
JavaPairDStream
JavaPairlnputDStream
JavaPairReceiverinputDStream
JavaReceiverinputDStream

oJoJoJo o o)
P000000

hide focus
.apache.spark streaming.dstream
ConstantinputDStream

DStream

InputDStream
PairDStreamFunctions

GO ReceiverinputDStream

a

(0
0000
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Spark Streaming Operations

= All the Spark RDD operations
« Some available through the transform() operation v’

count countByValue reduceByKey

window operations

countByWindow reduceByWindow
reduceByKeyAndWindow countBy[%/alueAndWindow _

= Spark Streaming output operations

saveAsTextFiles saveAsObjectFiles

Ll
w»
g
QO
-
=~
n
—
—
D
QO
=
>
(@]

" avorsragoopies | owoiod ||
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Fault-tolerance

Batches of input data are replicated in memory for fault-
tolerance

Data lost due to worker failure, can be recomputed from

replicated input data tweets
P P RDD input data

JJJJJJJ- replicated

NU = in memory
/ flatMap

* All transformations are fault- -
tolerant, and exactly-once R0 Y I I
: lost partitions

transformations m m recomputed on
E , m . other workers
Hot Data Analytics




Fault-tolerance

» Received data is replicated among multiple * Must protect the driver program

Spark executors + If the driver node running the Spark
» Default factor: 2 Streaming application fails
* Driver must be restarted on another node.
+ Checkpointing / . Requirgs a checkpoint directory in the
S StreamingContext
» Saves state on regular basis, typically every
5-10 batches of data
* Afailure would have to replay the 5-10
previous batched to recreg}/ A ° Streaming Backpreggure
the appropriate RDDs

* spark.streaming.backpressure.enabled

» Checkpoint done to HDFS or equivalent » spark.streaming.receiver maxRate
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Performance

Can process 60M records/sec (6 GB/sec) on
100 nodes at sub-secoylxlatency

Cluster Thhroughput (GB/s)

O L N W & U1 O J

Grep N
.
/4
-o-1 sec
-2 sec
0 5IO 1(I)O

# Nodes in Cluster

Cluster Throughput (GB/s)

w

N

o = . .
o Uk, 1N L w »

WordCount

i

N

pd

g

-9-1 sec

2
4

-2 sec

o

50 100
# Nodes in Cluster
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Comparison with other systems

Higher throughput than Storm
. Spark Streaming: 670k records/sec/node

. Storm: 115k records/sec/node
. Commercial systems: 100-500k records/sec/node

o Grep v WordCount
o] ©
S 60 o 30
c c
S E —
§_ = 40 m Spark 2 220 W Spark
2 S 8 =
L~ 'Eo et
B 20 s 10 W Storm
o W Storm _g
-IE 0 - = 0 -
100 1000 100 1000
Record Size (bytes) Record Size (bytes)
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Fast Fault Recovery

Recovers from faults/stragglers within 1 sec

Failure Happens

||||||||| |||||||||||||||||||||||||||T|me(S)
0 15 30 45 60 75

Sliding WordCount on 10 nodes with 30s checkpoint interval

= N
o O

Interval Processing
Time (s)
o

o o
o O,
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Real time application: Mobile Millennium Project

Traffic transit time estimation using online machine
learning on GPS observatiyrs

. 2000
* Markov-chain Monte Carlo @ .
simulations on GPS g 1600 /

. (7))
observations S 1200
5
- | = 800
= Very CPU intensive, requires @
. o 400
dozens of machines for useful o
computation © 0 ——————
0 20 40 60 80
# Nodes in Cluster

= Scales linearly with cluster size
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Vision - one stack to rule them all

Stream / Ad-hoc

Processing Spark S Queries
==

Shark
+

Spark

\Streaming -
Batch /

Processify
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Spark program vs Spark Streaming program

Ve

Spark Streaming program on Twitter stream

val tweets = ssc.twitterStreag(<Twitter username>, <Twitter password>)

val hashTags = tweets.flatMap (status => getTags(status))
.saveAsHadoopFiles("hdfs://...")

Spark program on Twitter log file

val tweets = sc.hadoopFile("hdfs://...")
val hashTags = tweets.flatMap (status => getTags(status))
.saveAsHadoopFile("hdfs://...")
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Advantage of an unified stack

. Explore data
$ ./spark-shell
interaCtively to scala> val file = sc.hadoopFile(“smalllLogs”)
Ident|fy problems ;éz;lla> val filtered = file.filter(_.contains(“ERROR”))

scala> val mapped = filtered.map(...)

-1object ProcessProductionData {
def main(args: Array[String]) {

« Use same code in Tl val sc = new SparkContext(...)
val file = sc.hadoopFile(“productionLogs™)
Spa rk for proceSS|ng val filtered = file.filter(_.contains(“ERROR”))

val mapped = filtered.map(...)

large logs L

} lobject ProcessLiveStream {
™ def main(args: Array[String]) {
val sc = new StreamingContext(...)

1 1 H val stream = sc.kafkaStream(...)
¢ Use Slmllar COde In val filtered = stream.filter(_.contains(“ERROR”))
Spark Stream|ng for val mapped = filtered.map(...)

realtime processing }
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Spark 0.8.1
Marked alpha, but has been quite stable
Master fault tolerance — manual recovery
e Restart computation from a checkpoint file saved to HDFS

Spark 0.9 in Jan 2014 — out of alphal!
. Automated master fault recovery
Performance optimizations
. Web Ul, and better monitoring capabilities

Spark v2.4.0 released in November 2, 2018
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Sliding Window Analytics
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Spark Streaming Windowing Capabilities

Parameters / v

- Window length: duration of the window

. Sliding interval: interval at which the window operation is
performed

Both the parameters muEt/éa multiple of the batch interval
v

A window creates a new DStream with a larger batch size

\

L 'Y 4 |
/ time 1 time 2 time 3 time 4 time 5

orgrel [0 O N OO

> J window-based

operation

windowed 4
DStream D

window window windo
at time 1 at ti7€3 at ng’;‘)
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Spark Window Functions

Spark Window Functions for DataFramesyﬂd sSQL

Introduced in Spark 1.4, Spark window functions improved the expressiveness of
Spark DataFrames and Spark ‘S/Q( With window functigns, you can easily calculate a
moving average or cumulative sum, or reference a value in a previous row of a
table. Window functions allow vyou to do many common calculations with
DataFragfes, without havm\)o’resort to RDD manipulation. -

AggreJétes, UDFs vs. Window fufictions

Window functions are omplementary\/tG existing DataFrame operations:
aggregates, such as suméd avg, and UDFs. To review, aggregates calculate one
result, a sum or average, for each group of rows, whereas UDFs calculate one result
for each row based on only data in that row. In contrast, window functions calculate
one result for each row based on a window of rows. For example, in a moving
average, you calculate for each row the average of the rows surrounding the current
row; this can be done with window functions.
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Moving Average Example

Let us dive right into the moving average example. In this example
_dataset, there are two customers wha have spent different amounts

of money each day. -

// Building the customer DataFrame. All examples are written in
Scala with Spark 1.6.1, but the same can be done in Python or SQL.

val customers = sc.parallelize(List(("Alice, "2016-05-01", 50.00),”
("Alice", "2016-05-03", 45.00),~"
("Alice", "2016-05-04", 55.00),
("Bob”, "2016-05-01", 25.00), =7, -
("Bob", "2016-05-04", 29. OO

("Bob", "2016-05-06", 27.00)
toDF("name", " te" "amoun pent")
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Moving Average Example

// Import the window functions.
import org.apache.spark.sgl.expressions.Window
import org.apache.spark.sql.functions.

// Create a window spec. /

val wSpecl =
Window.partitionBy("name").orderBy("date").rowsBetween(-1, 1)

In this window spec, the data is partitioned by customer. Each

customer’s data is ordered by date. And, the window frame is
defined as starting from -1 (one row before the current row) and

ending at 1 (one row after the current row), for a total of 3 rows in
. . . / ~
the sliding window.
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Moving Average Example

// Calculate the moving average
customers.withColumn( "movingAvg",
avg(customers("amountSpent")).over(wSpecl) ).show()

This code adds a new column, “movingAvg”, by applying the avg
function on the sliding windovv;léfined in the window spec:

name date amountSpent | movingAvg
Alice j 5/1/12016 50 47.5 /
Alice L 5/3/2016 45 50
Alice J 5/4/2016 50 50
Bob 5/1/2016 29 27
Bob 5/4/2016 29 7.4 4
Bob 5/6/2016 27 28
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Window function and Window Spec definition

. Asshown in the above example, there are two parts to applying a window function: (1)
specifying the window functiy{such as avg in the Mmple, and (2) specifying the
window spec, or wSpecl in the eyfnple. For (1), you can find a full list of the window
functions here:

. https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.function
sS

You can use functions listed under “Aggregate Functions” and “Window Functions”.

For (2) specifying a window spec, there are three components: partition by, order by, and
frame.

1. “Partition by” defines how the data is grouped; in the above example, it was by
customer. You have to specify a reasonable grouping because all data within a group will
be collected to the same machine. Ideally, the DataFrame has already been partitioned by
the desired grouping.

2. “Order by” defines how rows are ordered within a group; in the above example, it
was by date.

3. “Frame” defines the boundaries of the window with respect to the current row; in the
above example, the window ranged between the previous row and the next row.
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Cumulative Sum

Next, let us calculate the cumulative sum of the amount spent per customer.

// Window spec: the frame ranges from the beginning (Long.MinValue) to
the current row (0).

val wSpec2 =
Window.partitionBy("name").orderBy("date").rowsBetween(Long.MinValue, 0)

// Create a new column which calculates the sum over the defined window

frame. / /

customers.withColumn( "cumSum",
sum(customers("amountSpent")).over(wSpec2) ).show()

name date amount3pent | cumSum
Alice 5/1/2016 | 50 50V
Alice 5/3/2016 | 45V 95 vV
Alice | 5/4/2016 |55 V 150 V'
Bob V' |5/1/2016 [25 YV 25

Bob 5/4/2016 | 29 54/
Bob 5/6/2016 | 27 g1 ¢
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Data from previous row

In the next example, we want to see the amount spefit by the customer
in their previous visit.

// Window spec. No need to specify a frame in this case.

val wSpec3 = Window.partitionBy("name").orderBy("date")

// Use the lag function to look backwards by one row.
customers.withColumn("prevAmountSpent",
lag(customers("amountSpent"), 1).over(wSpec3) ).show()

v4

name date amountSpent prevAmountSpent
Alice 5/1/2016 | 50 null ¥

Alice 5/3/2016 45 50 \/4

Alice 5/4/2016 55 45

Bob 5/1/2016 25 null

Bob 5/4/2016 29 29

Bob 5/6/2016 Zt 29
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e

. In this example, we want to know the order of a customer’s
visit (whether this is their first, second, or third visit).

// The rank function returns what we want.
customers.withColumn( "rank”, rank().over(wSP}e’f) ).show()

name date amountSpent | rank
Alice 5/1/2016 50 1
Alice 5/3/2016 45 2
Alice 5/4/2016 99 3
Bob 5/1/2016 25 1
Bob 5/4/2016 29 2
Bob 5/6/2016 27 3
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Case Study: Twitter Sentiment

Analysis with Spark Streaming

Hot Data Analytics



Case Study: Twitter Sentiment Analysis

. Trending Topics can be used to create campaigns and attract
larger audience. Sentiment Analytics helps in crisis management,
service adjusting and target marketing.

. Sentiment refers to the emotion b(?yﬁd a social media mention
online.

. Sentiment Analysis is categorising the tweets related to particular
topic and performing data mining using Sentiment Automation
Analytics Tools.

. We will be performing Twitter Sentiment Analysis as an Use Case
or Spark Streaming.

Figure: Facebook And Twitter Trending Topics
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Problem Statement

. To design a Twitter Sentiment Analysis System where we
populate real-time sentiments for crisis management, service
adjusting and target marketing.

Sentiment Analysis is used to:

. Predict the success of a movie /

. Predict political campaign success v
. Decide whether to invest in a certain company
. Targeted advertising

. Review products and services
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Importing Packages

//Import the necessary packages into the Spark Program

import
import
import
import
import
import
import
import
import
import
import
import
import
import
import

org.

org

org.
org.
.apache.
.apache.
apache.
.apache.
.apache.
.apache.
.apache.
.apache.

org
org

org.

org
org
org
org
org

apache.
.apache.
apache.

apache

spark.
spark.
spark.
.spark.
spark.
spark.
spark.
.rdd.

spark

spark.
spark.
spark.
spark.

scala.io.Source
scala.collection
java.lo.File

streaming. {Seconds,
SparkContext.
streaming.twitter.
SparkConf
SparkContext
SparkContext.

rdd.RDD
SparkContext.

sql
storage.StoragelLevel

.mutable.HashMap

StreamingContext}

Hot Data Analytics




Twitter Token Authorization

object mapr {

def main (args: Array[String]) {

if (args.length < 4) {

System.err.println("Usage: TwitterPopularTags <consumer key>
<consumer secret> " +

"<access token> <access token secret> [<filters>]")
System.exit (1)

}

StreamingExamples.setStreamingLogLevels ()

//Passing our Twitter keys and tokens as arguments for authorization

val Array(consumerKey, consumerSecret, accessToken,
accessTokenSecret) = args.take(4)

val filters = args.takeRight (args.length - 4)
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DStream Transformation

// Set the system properties so that Twitter4j library used by twitter stream

/] Use them to generate OAuth credentials
System.setProperty("twitter4dj.oauth.consumerKey", consumerKey)
System.setProperty("twitter4dj.oauth.consumerSecret", consumerSecret)
System.setProperty("twitter4dj.oauth.accessToken", accessToken)
System.setProperty("twitterdj.oauth.accessTokenSecret",
accessTokenSecret)

val sparkConf = new

SparkConf () .setAppName ("Sentiments") .setMaster ("local [2]")
val ssc = new StreamingContext (sparkConf, Seconds(5))

val stream = TwitterUtils.createStream(ssc, None, filters)

//Input DStream transformation using flatMap
val tags = stream.flatMap { status =>
status.getHashtagEntities.map( .getText) }
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(¥ Markers (] Properties 4 Servers Y& Data Source Explorer & Snippets & Console 5 | Scala Interpreter (TwitterStreaming) axX% AEEE vy

<terminated>mapr$ [Scala Application] /usr/lib/jvmyjava-8-openjdk-i386/bin/java (09-Feb-2017, 11:56:26 AM)
debug: weighted: 1.0

(RS, ¥WEFREEI-XT!-H8. 18EFTMA https://t.co/DUSQoZAp25 #REIE #1R| #7%— &1 #7f #1LM NEGATIVE, [Ljava.lang.String;@la25ec3)
(RT @bts_bighit: [SE] 0. FHefA= ¥ XHCH
ool ForR~ Waith!s & M2R! »fYEtAUCH SRSHE A 420}

PI2HMENRIE https://t.co/OHDWR2sMt4

#ShortyAwards https://t..., NEGATIVE, [Ljava.lang.String;@121986a)

(RT @MukePL: Jezeli na tym zdjeciu widzisz swdj $wiat to daj RT. © #oneDbestfans & #550Sbestfans © https://t.co/rn2EmNvjFp NEGATIVE, [Ljava.lang.String;@1c3681d)

(RT @Horocasts: #Cancer most enduring quality is an unexpected silly sense of humor.,POSITIVE, [Ljava.lang.String;@174ela2)

(I'm listening to "A Song For Mama" by @BoyzIIMen on @PandoraMusic. #pandora https://t.co/71n5Rw3CY0,NEUTRAL, [Ljava.lang.String;@95f6d4)

(‘Greenwashing’ Costing Walmart $1 Million https://t.co/D8X02RZMP #Biodegradability #Compostability #biobased NEGATIVE, [Ljava.lang.String;@1511e25)

(RT @camilasxdinah: Serayah representando a las camilizers cuando un hombre se le acerca a Camila #CamilaBestFans https://t.co/8IggLo3RGn NEGATIVE, [Ljava.lang.String;@78¢835)
(RT @CamilaVoteStats: #CamilaBestFans https://t.co/qsLxPQpD1n,NEUTRAL, [Ljava.lang.String;@16e7255)

(@tos APER https://t.co/0rK18r1Sb3 #TFB,NEGATIVE, [Ljava.lang.String;@la3fe)

(Ilmar pro Marcos: "Vai dormir puta.. Bebe e fica ai com o cu quente." KKKKKKKKKKKKKKKKKKKKKKKKK #BBB17,NEGATIVE, [Ljava.lang.String;@1516ece)

Adding annotator tokenize

Positive

Neutral

Negative
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Sentiment for Trump

s mapr.scala £2 5| earth.scala ) " 0

A o = 'a? °
v
62 val tweets = stream.filter {t => » import ¢
' val tags = t.getText.split(" *).filter(_.startsWith{“Trump"}).map( .toLowerCase) B

tags.exists { x => true } “Jalnanr
} v @ main(a
¢ const
val data = tweets.map { status => ¢ const

val sentiment = SentimentAnalysisUtils.detectSentiment(status.getText) 7 acces

(*) Markers 7] Properties % Servers ¥ Data Source Explorer & Snippets & Console 2 (%] Scala Interpreter (Twitt = O

!xbx % &8 Sl 2B+~

<terminated> mapr$ [Scala Application] /usr/lib/jvm/java-8-open;jdk-i386/bin/java (09-Feb-2017, 6:06:24 PM)
uevuy: welgnieu: 3.v

(#USA Trump Suggests That Supreme Court Nominee's Criticism of Him Misrepresented: Trump questioned whether..
https://t.co/1ZCtok4P43 #News,NEGATIVE, [Ljava.lang.String;@10f96b1)

(RT @WorIdStarLaugh: Compilation of Donald Trump's greatest accomplishments as president https://t.co/
Got6efwiMH, POSITIVE, [Ljava.lang.String;@e5adfe)

(BBCNewsnight: Should the UK roll out the red carpet for President Trump? Here's what Hillary Clinton's
campaign ma.. https://t.co/hjKNulJu3s |NEUTRAL, [Ljava.lang.String;@146dc81)

(RT @dxthompson: Ellen DeGeneres response to Donald Trump screening "Finding Dory" at The White House is
everything %@ https://t.co/koQcPuH.., NEGATIVE, [Ljava.lang.String;@116c5fd)

(RT @calilelia: Trump: Ivanka "always pushing me to do the right thing." He needs a push to do the right
thing? @ananavarro @VanJones68 @Ch..,NEUTRAL, [Ljava.lang.String;@129dc11)

Hot Data Analytics
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Applying Sentiment Analysis

As we have seen from our Sentiment Analysis demonstration,
we can extract sentiments of particular topics just like we did
for “Trump’. Similarly, Sentiment Analytics can be used in crisis
management, service adjusting and target marketing by
companies around the world.

Companies using Spark Streaming for Sentiment Analysis have
applied the same approach to achieve the following:

1. Enhancing the customer experience
2. Gaining competitive advantage

3. Gaining Business Intelligence

2. Revitalizing a losing brand
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References

https://spark.apache.org/streaming/

Streaming programming guide —

spark.incubator.apache.org/docs/latest/streaming-
programming-guide.html

https://databricks.com/speaker/tathagata-das
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Conclusion

Stream processing framework thatis ... _ \nob JOJ‘“\P"’L"
A

- Scalable to large clusters i (MW )

- Achieves second-scale latencies — 9‘@91- pote

Has simple programming model
Integrates with batch & interactive workloads

Ensures efficient fault-tolerance in stateful
computations
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Content of this Lecture:

o Define MQTT and Kafka

e Integration of MQTT and Kafka

¢ Describe the Kafka data model

e Describe Kafka architecture

e List the types of messaging systems

¢ Explain the importance of brokers
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Introduction: Internet of Things with MQTT

MQTT (Message Queuing Tele?etry Transport): / NQO‘/
ML\‘( \ﬁ‘k'x
MQTT is a widely used I1SO standard (ISO/IEC PRF 20922) client-

————

server messaging protocol.

The protocol is Iightweigh/t and implements a@lish/subsir%
communication pattern.

MQTT is stable in unreliable environments of high latency and
low network bandwidth which makes it a perfect match for

Internet of Things s ios like connec\tﬁd cars or smart homes.

MQTT has many implementations of client libraries and brokers
like Mosquitto, HiveMQ, JoramMQ, etc and its primary purpose
is to connect millions of devices — especially in the loT context.

T—
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Introduction: Internet of Things with MQTT
MQTT (Message Queuing Telemetry Transport):

CE D—-v= - [

NG
s 0«“\'\' J N4
/ \\‘)& b / Publish . / Subscribe s
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Introduction: Internet of Things Streaming using Kafka

e Kafka was initially created by LinkedIn and later distributed on the
Apache License. Kafka is still open-source. Additionally, a company
named Confluent is offering Confluent Platform with Kafka as a
managed service providing several additional features around like
Schema Registry, REST & MQTT Proxies, and specific connectors.

v

e Kafka implements an own protocol under the hood, following a

puinsh/subscribe pattern which structures communication into

topics — similar to W However, that's the only thing both have
in common.
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Introduction: Internet of Things Streaming using Kafka

lAO* ) ff\ Sh/TI\ »
e Kafka is designed to be deployable?s a cluster of mﬁ\ltiple

nodes which makes it excellent for scaling. Additionally\,it
Bﬁ_rs\b,ersistent s:c}ﬁage of messages and integration to
business on-premise or cloud dyfacanters and
applications.

* |ts main use cases are distributed event streaming and
storage/consumption of massive amounts of data as

MESSAgeSs.
\/

* It makes Kafka a perfect match for scg;uarios that require
high-performance, scalable data\pjpelines, or data
integration across multiple systems.
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Introduction: Internet of Things Streaming using Kafka

$ cat in.txt | grep “apache” | tr a-z A-Z out.txt

/

J

is the distributed, durable equivalent of Unix pipes. Use it to connect and
compose your large-scale data applications.
j commands of your Unix pipelines. Use it to transform data
stored in Kafka.
Kafka Connect is the ly/redirection in your Unix pipelines. Use it to get your data into
and out of Kafka.
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Introduction: Internet of Things Streaming using Kafka

e Kafka is a high-performance, real-time messaging
system. It is an open sour\C}tool and is a part of Apache
projects. e

e The characteristics of Kafka are:

J

It is a distributed and partitioned messaging system.

It is highly fault-tolerant v

It is highly scalable. / /

W NR

It can process and send millions of messages per second
to several receivers.
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Kafka Use Cases

e Kafka can be used for various purposes in an organization,
such as:

Messaging service  Millions of messages can be sent and received in real-time, using Kafka. S o

(B ._._.t:,} 5
Real-time stream™  Kafka can be used to process a contipuous strearﬁé information in real-time and passit . C%gfj E> &
processing to stream processing systems such as Storm, Red-Time

: ' - i aad
P — ?/ Kafka can be used to collect physical log files from multiple systems and store themin a 8- T

: §_ s
central location such as HDFS, a
Commit log service  Kafka can be used as an external commit log for distributed systems. | mfﬂj?
=/ %
Event sourcing A time ordered sequence of events can be maintained through Kafka, 12E2() T mE-e

eeeeeeee
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Apache Kafka: a Streaming Data Platform

> Most of what a business does can be thought as eyént
streams. They are in a
* Retail systélz orders, shipments, returns, ...
* Financial systerﬁ: stock ticks, orders, ...
 Web site: page views, clicks, searches, ...
* loT: sensor readings, .
and so on. f

Rﬂmxts

ﬂLES J}m«tm@

ﬁ

TINVENTO R/
ADSUSTMENTS /@p
A< Q‘/«'
%V\

PRcE
ADIUSTMENTS

)

O
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Why using both MQTT and Kafka?

If you need to build performant data pipe%es, store massive amounts
of messages, or integrate different business applications or data
centers in real—tiryé — use Kafka.

ey

S

If you have lots of small applications or devices, running in unwired or
unstable environments, exchanging messages in real-time on
numerous different channels/topics — use MQXT.

There are two things that make it quite obvious to combine the two
technologies: S

« the communication structure in toei}s and
 the publish/subscribe message exchange pattern.

But in which scenarios would you use both Kafka and MQTT together?
Lets see in further slides.
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Use Case: Why using both MQTT and Kafka?

The most popular use case is probably the integration of MQTT devices with backend
applications for monitoring, control, or analytics running in the companies’ data centers
or the cloud. -

%

Imagine you want to send data from different loT devices to a backend application for
machine learning based pattern recognition or analytics. At the same time, the backend
application should send back messages to control the 10T device based on the central
insights (e.g. send control messages to avoid a device from overheating, ...).

J / ~
Consequently, MQTT and Kafka are a perfect combination fof end-td-end loT
S : DN
mte\gra/ﬁon from the edge to the businéss applications’and data centers.
J v -

The loT/edge devices can connect to the MQTT broker via MQTT protocol (with all the
advantages it has in these environments).

J

The messages are then forwarded to Kafka to distribute them into the subscribing
business applications and the other way around.
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Integration between MQTT and Kafka

va

loT device to publish two messages

Build an MQTT Bridge to Kafka

Connect to Kafka via MQTT proxy

Connect MQTT Broker to Kafka via Kafka Connect

Connect MQTT Broker to Kafka via MQTT Broker extension

kWK
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Integration between MQTT and Kafka

loT device to publish two messages:

Devices

MQTT Broker

Topic

]

Kafka Broker

Topic

]

Kafka Consumer

1l
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Integration between MQTT and Kafka

loT device to publish two messages:

The loT device can publish two messages — one to the topic of the MQTT
broker and a second one to the topic of the Kafka broker. This has several
drawbacks:

 The loT device needs to check the delivery guarantees of both protocols and
it must be ensured that the message is received by both or not at all. A lot
of investment in error handling must be done.

e Additionally, most IoT devices are lightweight. Sending two messages with
two different protocols is a huge overhead. Most loT devices might have not
even the possibility to connect to Kafka natively.

* Kafka is not designed to handle a massive amount of different topics with
millions of different devices. A full-blown loT scenario with this integration
option could lead to issues on the Kafka broker side.

Introduction to MQTT and Kafka



Integration between MQTT and Kafka

Scenario 1: Build an MQTT Bridge to Kafka Ve Lyd Ao0ug /7Taﬂ>¢~l"‘

Another alternative of connecting Kaftka and MQTT is building a custom application as a

bridge be n the MQTT and Kafka broker. This application needs to use an MQTT client
library to connect to the MQTT broker and a Kafka client library to connect to the Kafka broker
and consequently subscribe to the relevant to\p/fE and publish the messages in the desired

direction.
¥

In this context resilience and fault tolerance are very important, but hard to reach, especially
if an end-to-end guaranty of at least once or exactly once message de‘h(éry is required. The
custom bridge application can only acknowledge the MQTT receipt if it successfully forwarded
the message to the Kafka broker or need to buffer the messages in case something goes
wrong. A significant development effort in error handling and functionality similar to
technology aIreJ_y found in Kafka an/or MQTT broker is necessary.

Devices \ / Kafka Broker Kafka Consumer

MQTT Broker

Topic

]

v

il

\ 4

n” ] F




Integration between MQTT and Kafka

/7

Scenario 2: Connect to Kafka @ia MQTT proxy)

If the only requirement is to persist MQTT message\s/or integrate them with legacy
systems, this option could be a good fit. In this case, th Kafka MQTT
proxy can be used by the loT devicesLt/O‘directIy publish the messages to Kafka. An
MQTT broker would be additional overhead and would be simply removed from the
picture.

Devices Kafka Broker Kafka Consumer
o e -
: —_—
g Y Topic V] =
©)- cxam
’ (N > [« o ]
o=
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Integration between MQTT and Kafka

Scenario 3: Connect MQTT Broker to Kafka via Kafka Connect

Kafka Connect is an extension framework providing different connectors for data
ingestion to or data query from Kafka for multiple technologies or software vendors.
Kafka Connect provides an MQTT™connector out of the box which represents an
MQTT client that can subscribe to the MQTT brokers topics.

Devices Kafka Consumer

MQTT Broker

g o i Topic
®

MR

Kafka Broker

Topic

D_.

Kafka
Connect

\ 4

il
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Integration between MQTT and Kafka

Scenario4 : Connect MQTT Broker to Kafka via MQTT Broker extension

Another approach is to implement a Kafka client as an extension on the MQTT brqker.
This allows the MQTT broker to ingest the loT device messages to the Kafka

broker/cluster.

Some MQTT providers like EMQ or HiveMQ have already implemented the bridging of
MQTT broker and Kaf\k;a/by extending their brokers with a native Kafka protocol.

7

Devices e
/]

JS

MQTT Broker

Topic

e \4‘*)/;;5* e

Kafka Broker Kafka Consumer

Topic
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Aggregating User Activity Using Kafka-Example

e Kafka can be used to aggregate user activity data such as clicks,
navigation, and searches from different websites of an
organization; such user activities can be sent to a real-time
monitoring system and hadoop system for offline processing.

Customer
portal 1
Real-time |
/ monitoring
Customer . system
Kafka Cluster Y
portal 2
Hadoop
/ offline
Customer processing
L portal 3 . “

J
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Kafka Data Model

The Kafka data model consists ofmessages g .@

« Messages represent information such as, lines in a log file, a row of stock
market data, or an error message from a system.
'\/————

« Messages are groyd into categories called topic/s./

Example: LogMessage and Stock Méssage.

o The processeyat publish mes&(ges into a topic in Kafka are known as
producers.

« The processes that receive the messages from a topic in Kafka are known as
consumers.

« The processes or servers within Kafka that process the messages are known as

brokers. /

« A Kafka cluster consists of a set of bro}ers that process the messages.

/ Kafka CI\lfster ‘/

Messages

Messages Va
Producer 1 . > Broker 4 Consumer 1
To
essages Broker Messages ——
Producer 2 ,,"( = /« ns e>\2
@Y opic 1
Q\f\" 3T P Hrelar Topic 1 ‘




A topic is a category of messages in Kafka.

The producers publish the messages into thich
The consumers read the messages from topics. \/
A topic is divided into one or more partitions.t”

A partition is also known as a comﬁﬁ\log.

Each partition contains an ordered set of messages:/

Each message is identified t\)}its oﬁﬁet in the ph{tition.

——

—

L

oot

L

Messages are added at one’end of the partition and consumed

at the other. /—;w)w

\ / \ Partition O (/\/«
J T>[¢[s]a[3]2]1 — v
Writes Reads
| 5(4(3|2|1 ‘
Partition 1

|
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e Topics are divided into partitions, which are the unit of

parallelism iny'rka.

« Partitions allow messages in a topic to be distributed to
multiple servers. ./ Y

A topic can have any number of partitions.

Vel

« Each partition should fit in a single Kafkaserver.
o The number of @artitions decide the paralleljiﬁffof the topic.

Topic: simple

Partition O
61514131211

P
\54321

Partition 1

Writes » Reads
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Partition Distribution

e Partitions can be distributed across the Kafka%ter.
o Each Kafka server may-hand|e one or more partitions.
e A partition can be replicated across several servers fro fault-tolerance.

e One serveris marked as a Ieeﬁ’e\r for the partition and the others are
marked as followers.

e The leader controls the read and write for the partition, whereas, the
followers replicate the data.

o If ails, one of the followers automatically be\c/or{é the leader.

ookeepler/is used for the leader selection.
Partition O
6/5/4(3(2]1

Writes Server 1 Reads

SI4131211
Partition 1
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Producers

The producer is the creator of the message in Kafka.

e The producers place the message to a p}articular topic. v

"

e The producers also decide which part?{iczn/t'd place the message into.
e Topics should already exis\}fefore message is placed by the producer.
e Messages are added at one end o e partltlon

essagel
L - ¢ 654321

Y 7 Topic test
| Message 2

Producer] »> 413121
7 Topic test 2, Partition O
Message 3
s(a(3([2]1 v
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Consumers

The consumer is the receiver of the n\y&é:\ge in Kafka.

e Each consumer belongs to a consumeypgroup.

e A consumer group may have one or more consumers. /
e The consumers specify what topics they want to listen to.

e A message is sent to all the consumers in a consumer group.‘/
ol :
e The consumer groups are used to control the messaging system.

J V o

Consumer Groupl Consumer Group2 Consumer Group3
Consumer 1 \/ Consumer 4 Consumer 6
Consumer 2 / Consumer 5

Consumer 3 ‘/
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Kafka Architecture

Kafka architecture consists of brokers that take messages from the
producers and add to a partition of a topic. Brokers provide the
messages to the consumers from the part|t|ons /

* Atopicis divided into multipleartitions.

* The messages are added to t@/f)artltlons at one end and consumed in
the same order.
N4

* Each partition acts as a message queue.

* Consumers are divided into (i()/msumer groups.(pr /

w}}/ ’ VOUK N ‘
: Zookeeper )

U ity e
Kafka Cluster ‘ o

/] Broker f |
Consumer
Producer g artition 1 b’" \\ P

group 1 =
: 6|s|al3]|2|1F—— |
Producer — 6/5/4|3|2]1 Consumer
artition 2 group 2
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Types of Messaging Systems

Kafka architecture supports the publish-subscribe and queue system.

=

Types of Messaging System
\
{ Y
)R d( m
!
/ .
Publish- ./ Q e /
_ Subscribe System ) i |
| Each message is received by all the J ‘ Each message has to be consumed by
subscribers | only one consumer "
‘” Each subscriber receives all the / Each message is consumed by any one |
messages ' 1 of the available consumers —"
Messages are received in the same \/ Messages are consumed in the same

order that thev are nroduced order that they are received |
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Example: Queue System

\/‘
" Broker </ S Broker Consumer Group
Topic: simple ~
Partition 0 | (onsumg( |
Y V] 1,4
Producer R
}6[5 !

Consumer ?

Consumer 3
13,6}
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Example: Publish-Subscribe System

Consumer Group 1 J3

Consumer 1
(1,2,3,4,5,6)

Consumer Group 2 . ~

Broker Broker » Consumer 2

Topic: simple /* 1,2,3,4,5,6)

Partition (

Producer Consumer Group 3

6[s[4[3]2]1 /
)kl U o] L] I Consumer 3
(1,2 3,4,5,6)
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Brokers are the Kafka processes that process the messzyz{in Kafka.
* Each machine in the cluster can%one broker.

* They coordinate among each other using Zoy«éeper.
J

* One broker acts as a leader for a partition and handles the
delivery and persistence, where asJKe others act as followers.
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Kafka Guarantees

e Kafka guarantees the following:

1. Messages sent by a producer to a topic and a partition
are appended in the same order

2. A consumer instance gets the messages in the same
order as they are produced.

3. A topic with replication factor N, tolerates upto N-1
server failures.
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Replication in Kafka

Kafka uses the primary-backup method of replication.

e One machine (one replica) is called a leader and is chosen
as the primary; the remaining machines (replicas} are
chosen as the followers and act as backups.

e The leader propagates the Wt(es to the followers.

e The leader waits until the vyﬁes are completed on all the
replicas.

e If areplicais down, itis skipped for the write until it
comes back. S

e If the leader fails, one of the followers will be chosen as
the new leader; this mechanism can tolerate n-1 failures if
the replication factor is ‘n’
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Persistence in Kafka

Kafka uses the Linux file system for persistence of r(\}ssages
e Persistence ensures no messages are lost.

e Kafka relies on the file sys\’yfn page cache for fast reads
and writes.

v 4
e All the data is immediately written to a file in file system.
e Messages are grouped as mes?ge sets for more efficient

writes. J
e Message sets can be compressed to reduce network
bandwidth. /

¢ A standardized binary message format is used among
producers, brokers, and consumers to minimize data

modification.
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Apache Kafka: a Streaming Data Platform

> Apache Kafka is an open source streaming data platform (a new
category of software!) with 3 major components: — y
gory ) j p o ek P

. A central h&E to transport and store\tvent
streams in rej}-jfme. V4
2. Kafka Connect: A framework to import event streams from

other source data systems into Kafka and export event
streams from Kafka to destination data systems.

: A Java liprary to process event streams live as

they occur. Ak SIeans ,,,// 90 0 —
\DTA‘J’ —> Jdveu m y
Karka Connect —+— StreEARS

o fra
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Further Learning

- Kafka Streams code examples
o Apache Kafka

https://github.com/apache/kafka/tree/trunk/streams/examples/src/main/java/org/apache/kafka/
streams/examples

o Confluent https://qithub.com/confluentinc/examples/tree/master/kafka-streams

o Source Code https://github.com/apache/kafka/tree/trunk/streams

- Kafka Streams Java docs
http://docs.confluent.io/current/streams/javadocs/index.html

- First book on Kafka Streams (MEAP)
o Kafka Streams in Action https://www.manning.com/books/kafka-streams-in-action

- Kafka Streams download
o Apache Kafka https:/kafka.apache.org/downloads
o Confluent Platform http://www.confluent.io/download
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https://github.com/confluentinc/examples/tree/master/kafka-streams
https://github.com/apache/kafka/tree/trunk/streams
http://docs.confluent.io/current/streams/javadocs/index.html
https://www.manning.com/books/kafka-streams-in-action
https://kafka.apache.org/downloads
http://www.confluent.io/download

KoXen ' LA
e Kafka is a high-performance, real-time messaging system.'@ﬂﬂ/ )

65— hat Ao
e Kafka can be used as an eyérnal commit log for distributed
systems.

e Kafka data model consists o}tﬁessages and topics.

e Kafka architecture consists of brobers that take messages from the
producers and add tO}partition of a topics.

e Kafka architecture supports two types of messaging system called
publish-subscribe and queue system.

e Brokers are the Kafka processes that process the messages in Kafka.
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Content of this Lecture:
e Current demand of Data centers
¢ Why to move Data centers to Edge?

e In this lecture, we will discuss a brief introduction to Cloud
Computing and also focus on the aspects i.e. Why Clouds,
What is a Cloud, Whats new in todays Clouds and also
distinguish Cloud Computing from the previous generation
of distributed systems
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Waves of Innovation: Cloud loT Edge ML

Cloud

(the waves of innovation started with cloud)
Globally available, unlimited compute resources

loT J

(loT-as-SaaS platform is key drivers of public cloud)
Harnessing signals from sensors and devices, managed
centrally by the cloud

Edge \/

(loT realize not everything needs to be in the cloud)
Intelligence offloaded from the cloud to 10T devices

« Highly centralized set of resources,

ML { . Resembles Client/Server computing
(rise of Al, ML models aretfned in cloud are deployed

at the edge to make inferericing for predictjve analyticsq ¢
% J \ .sﬂq

) 1 L.Q
— Storage is complemented by CDN is
Breakthrough intelligence capabilities, in the cloud and replicated and cached at ed_%)cations

on the edge

Compute ,is going beyond VMs as
Contaipgrs becoming mainstream

« Network stack is programmable SDN
enabling hybrid scenarios



Edge Computing

Edge computing makes the cloud truly distributed v
Moves core cloud servicez/closer to the origin of data
Edge Mimics public cloud platform capabilities ./
Delivers storage, compute, and network services locally.

Reduces the latency byyoiding the roundtrip to the cloud

Brings in data sovereig\ryy by keeping data where it actually
belon‘g/sz,‘ savings on cloud and bandwidth usages

I e



Functionality of Edge Computing for IOT

. Data Ingestion and M2M Brokers

. Object Storage ./

. Functions as a Service /

. Containers @

. Distributed Computing

. NoSQL/Time-Series Databage | “""‘A)"L; <

. Stream Processing S —

) ) ['U“lg
. odels " lowd ~Tewtw oo "
ML Models o/ QYJMQ J o %
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Cloud Data Center: Current Demand

¢ Inthe next decade, we will continue to see
skyrocketing growth jh the number of IP-
connected mobile and machine-to-machine
(M2M) devices, which will handle significant
amounts of IP traffic.

e Tomorrow’s conpsumers will demand faster Wi-Fi VM-WH -
service and a‘£li tion delivery from online
providers. Also, some M2M device;,_sm
autonomous vehicles, will require real-time

communications with Tocal processiyresources

to guarantee safety.

e Today’s IP networks cannot handle the high-speed datatransmissions that
tomorrow’s connected devices will require. In a traditional IP architecturgA{ata
must often travel hundreds oi‘}?iles over a network between end users or devices

and cloud resources. This results inXIatency, or slow\djﬁ\v}fy of time—We
data.

Devices
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Cloud Data Center: Current Demand

i

Only a few large centralized Thousands of new micro data centers

data centers

=/,

MORE THAN 5;MILES

AWAY

CLOUD DATA CENTER

CELL TOWER

CELL TOWER

ol . (( @ )

> 80 ms Latency < 5 ms Latency
The vehicle moved over four feet by The vehicle moved less than four inches by
the time it received a response due to the time it received a response, thanks to the
the large distance from the data center. close distance to the micro data center.
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Edge Data Center: Solution

The solution to reducing latency lies in edge computing. By establishing IT deployments for

cloud-based services in edge data centers in localized areas, we effectively bring IT resetrces
cIoser\’;?*end users and devices. This helps us achieve efficient, high-speed delivery of

applications and data. Edgevw;t?centers are typically located on the edge of a network, with
connections back to a centralized cloud core.

\

Instead of bringingé-'?é users and devices to the data center, we bring the power of the data

center to the usefs and devices. Edge computing relies on a distributed data center

architecture, in X/hz’gh IT cloud servers housed in edgedata centers are deployed on the outer
s

edges of a netwaqrk. By ringing IT resources.closer to the end users and/or devices they serve,
we can achieve high-speed, Iow-Iatency\nge:ssing of applications and data. ¢ .
[— The Edge —mw

Edge Data Centers
Wired Connection

s Customer Premises
Edge Data Center

Central Office Re-Architected

Data Center (C.O.R.D.) —

BACKHAUL FIBER

Cell Tower Edge
Data Center
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Ecige Data Center: Solution

‘/High latency

CORE / %ﬁgh-capacity fib
Long-term data analysi
Archivin

S Colo/metro/
local
datacenters \

Low latenc
( Microdatacenters —»  Medium latenc
——/? Fiber & some wireless

(cellular, microwave, etc.)

Enterprise application

NEAR-EPGE /

7

EDGE — Ultra-low/low latenc

Telecom Telecom Wired and wirele
gateways gateways (cellular, Wi-Fi, Bluetooth)
T RF, etc.
OCAL DATA ANALYSIS AND ACTION
THINGS loT GATEWAYS
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Why Move Data Centers to the Edge?

ti . Locating compute“and storage functions closer to end uservéduces the

physical distance that data packets need to traverse, as well as the number of

network “*hops” invol\@ﬁ, which lowers the probability of hitting a transmission path
here data flow is impaired — N

2. YBandwidth: edge data centeri};rocess data Io‘célly, reducing the volume of traffic
flowing to and from central servers. In turn, greater bandwidth across the user’s
\/ﬂoade ork b vailable, which improves ov performance
3. /O

perating Cost: becausg-edge data centers reduce the volume of traffic flowing to
and from central server§, they inherently reduce thg}@ﬁt of data transmission and
routing, which is important for high-bandwidth applications. More specifically, edge

data centers |essen the number of necessary high-cost circuits and i terconnectiom
hubs leading back Eo/(egio | or cloud’data centers, by moving cgy/plute and SW

oser to end users

4.‘/Zecurity: edge data centers enhance security by: i) reducing the amount of sensitive
data transmitted, ii) limiting the amount of-data stored in any individual location,
given their decentralized architeécure, and iii) decreasing broadgx/network
vulnerabilities, because breaches can be ring-fenced to the portion of the network that
they compromise
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Edge Data Center: Introduction

Edge data centers are small_data centers thaf are located close to
the edge of a network. They provide the same devices found in
traditional data centers, but are contiiy'{ﬂn a smaller footprint,
closer to end users and devices.

Edge data centers can dellveéj(ﬁe/content and cloud

computing resources t these devices concept works off \/
edge computing, whi¢h is a distributed IT architecture where

client data is processed asi?[to the originating source as Public cloud Centrallzed
possible. Because the smaller-édta centers are positioned close to ~Uata cente

the end users, they are used to deliver fast s?y'és with minimal
latency.

Edge data center

In an edge computing architectgre, time-sensitive data may be
processed at the point of orig'm/t::/ an mediary server that is
located in close geographical proximity‘l{)e;he client. The point is
to provide the quickest content delivery to an end device that may
need it, with as little latency as possible. Data that is less time-
sensitive can be sent to a larger data center for historical analysis,
big data analytics and long-term storage. Edge data centers work

off of the same concept, except instead of j having one
intermediary server in close geographical pr ity to the client, IOW

it's a small data center -- that can be as smaII as a box. Even
though it is not a new concept, edge data center is still a relatively
new term.
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Edge Data Center: Introduction

The major benefit of an edge data center is the quick delivery of services with minimal
latency, thanks to the use of edge caching. Latency may be a big issue for organizatiens
that have to work with the internet of things (loT), big data, cloud and streaming 3&2.
Edge data centers can be used to provide high performanceg with low levels of latency to
end users, making for a better user experience. Typically, edge data centers will connect
to a larger, central data center or multiple other edge data centers.

Data is processed as closey/the end user as possible, while less inte or time-centric

data can be sent to a central data center fo‘r/processmg This allows an organization to
reduce latency.

\/Oms 1-5ms >
ms
Regional Edge ata(/@»\
oud Data
\/(Center Data Center Centers /
v
v
5 B £

End user

Computation and storage closer to end users

(3
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Edge Data Center: Use Cases

1. 5G”Where a decentralized network made of edge data centers can help provide low
latency for 5G in use cases wigh high device density.

Telecommunications companies. With cell-tger edge data centers, telecom companies can
get better;r;x‘rmity to end users by connecting mobile phones and wireless sensors.

2. loF—£dge’ data centers can be used for data generated by IgT devices. An edge data center
woe used if data generated by devices needs more processing but is also too time-
sen

e to be sent to :qz?«alized server.
3. Healthcare: Some ical equipment, such as those used for robotic surgeries, would
require extremql;fqlow latency and network consistency, of which, edge data centers can
provide.

4. Autonomous vehicleg: Edge data centers (c,aﬂﬁ used to help collect, process and share
data between vehicles/and other networks, which also relies on low latency. A network of
edge data centers can be used to collect data for auto manufacturers and emergency response
services.

5. Smart factories: Edge data centers can be used for machine Predictive maintenance, as well
as predictive quality management. It can also be used for efficiency regarding robotics used
within inventory management.
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Scalable Computing at network edge

e Evolutionary changes that have occurred in distributed edge and
cloud computing over the past 30 years, driven by applications with
variable woﬂ(faads, low-latency usecase and large data sets .

/Evolutionary changes in machinz/mhitecture, operating system

platform, network connectivity, an applicatworkload.

\/Edge comjrdt}ng uses multiple computers at network edge to solve
large-scale problems locally and over the Internet. Thus, distributed
edge computing becgrz:s data-intensive and nekt}(ork-centric.

e The emergence of distributed /edge computing clouds instead
demands high-throughput computing (HTC) systems built with
distributedcomputingtechnologies./ -

e High-throughput computing (HTC) appearing as comput/chIus ers,
service-oriented, computational grids, peer-to-peer networks,
Internet clouds and edge, and the future Internet of Things.
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The Hype of Cloud: Forecasting

/

¢ Gartnerin 2009 — Cloud computing revenue will soar
faster than expected and will exceed $150 billion by
2013. It will represent 19% of IT spending by 2015.

e IDCin 2009: “Spending on IT cloud services will triple
in the next 5 years, reaching $42 billion.”

S

e Forresterin 2010 — Cloud computing will go from
$40.7 billion in 2040 to $241 billion in 2020.

e Companies and even federal/state governments using
cloud computing now: fbo.gov
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Many Cloud Providers
S
AWSC:?mazon Web Servi\ys

— EC2: Elastic Compute Cloud&&\
— S3: Simple Storage Service

— EBS: Elastic Block Storage‘/

ORACLE

amazon
mb ™

Py P
5] vimware

\

RIGHT SCaLe”
B Microsoft Azure e

« Microsoft Azure E

« Google Compute Engine/AppEngine Googte

- P VirtualBox
nghtsca{e/SaIesforce EMC, VA A )} 0006

Glgaspfes 10gen Da/astax Oracle,
VMWare, Yahoo Cloudera rackspace(f) 1 gen

- And 100\5/more... Y

service cloud

Cloud ify n

Introduction to Edge Data Center



Categories of Clouds
J

e Can be either a (i) public cloud, or (ii) private cloud
Jo Private clouds are accessible only to company employees o
/ Public clouds provide servj;ﬁo any paying customer:

\/ Amazon S3 (Simple Storage Service): store arbitrary
datasets, pay per GB-ryﬁ%h store\d/v

NN
/Amazon EC2 (Elastic Compute Cloud): upload and run
arbitrary OS\iya/ges, pay psr}lfu hour used

v

Google App Engine/Compute Engine: elop applications
within their App Engine framfework, upload da at wilibe
imported into their format, and run
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Customers Save: Time and Money

e “With AWS, a new server ‘can be up and running in three minutes
compared to seven and a half weeks to deploy a server internally and a

64-node Linux cluster can be online in five minutes (compared with three
months internally.”

e “With Online Services, reduce the IT operational costs by roughly 30% of
spending”

e “A private cloud of virtual servers inside its datacenter has saved nearly

crores of rupees annually, becausg”the company can share computing
power and storage resources across servers.”

e 100s of startups.can harness large computing resources without buying
their own machines.
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What is a Cloud?

e Advances in virtualization make it possible to see the growth of
Internet clouds as a new computlr;}éradigm.
ével

e i.e. dramatic differences b{t(e oping software for millions
to use as a service versus distributing software to rU)Prthelr PCs.”
History: /
e In 1984, John Gage Sun Mlcrosyst))s gave the slogan,
“The network is the computer.”

e In 2008, David Patterson UC BerkeIeV
“The data center is the co/uter

e Recently, Rajkumar Buyyaof Melbourne University simply said:
“The cloud is the computer.”

e Some people view clouds as griés/or clusters with changes through
virtualization, since clouds are anticjpated to process huge data sets generated
by the traditional Internet, social networks, and the futuré |oT.
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What is a Cloud?

e A single-sitg clou (as known as #Datacenter W POL‘?T .
consists of ' 3

/ Comput fode groupeeinto racks l:!“/CoreSWltch

% Switches, connecting the racks TopofRac =

« A network topology, e.g., h|erarch|cal

» Storage bac\/e’nd) nodes connected to the
network

client requests

« (Often called “three-tier a\ryﬁitecture”)
« Software Services

e A geographically distribved cloud consists of
« Multiple such sites

« Each site perhaps with a different structure and
services
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Computing Paradigm Distinctions

e Cloud computing overlaps with distributed computing.

e Distributed computing: A distributed sys/tem consists of
multiple autonomous computers, having its own memory,
communicating through messdge passing.

DisTibuted
=]~
=3 g
A
e Cloud computing: Clouds can be built with physical or
virtualized resources over large data centers that are distributed
systems. Cloud computing is also considered to be a form of

utility computing or service computing.
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“A Cloudy History of Time™

The first datacenters'/—\/ / \/

Timesharing Companies Clouds and datacenters

& Data Processing Industry
Clusters \

1980

PCs 1990 |
tdistributed!) — ——u_
(not distributed!) 5000
Peer to peer syste 2012

1940
\/ 1950
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“A Cloudy History of Time™

First large datacenters- ENIAC, ORDVAC ILLIAC

_ Berkeley NOW Project
Supercomputers
'§Server Farms (e.g., Oceano)

1960 Honeywell
1920

— o +Many GB pér day
= T80t

Data Processing Industry <=\ FrEe4 : = ; ;lee( /

- 1968: $70 M. 1978: $3:45 Billion " OpenSeience Gid ey

1990
Timesharing Industry (1975

= = Y‘ - P2P Systems (90s-00s)

THE SUPERCOMPUTER COMPANV .Many MI”]‘OI']S Of users

i 2000 ka 203
eMarket Share: Honeywell 34%, IBM 15%, QBltTor(rte%] 201'2
eXerox 10%, CDC 10%, DEC 10%, UNIVAC 10% ¢
eHoneywell 6000 & 635, IBM 370/168,

Xerox 940 & Sigma 9, DEC PDP-10, UNIVAC 1108
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Scalable Computing Trends: Technology
S S e

e Doubling Periods — st\c?e: 12 months, bandwidth: 9 months,

and CPU compute capagity: 18 months (what law is this?)

e Moore’s law indicates that processor speed doubles every 18

months. f

e Gilder’s law indicates that network bandwidth has doubled each

year in the pasL/

e Then and Now

o Bandwidth {/

e 1985: mostly 56Kbps links nationwide
e 2015: Tbps links widespread

« Disk capacity
* Today’s PCs have TBs, far more than a 1990 supercomputer U
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The Trend toward Utility Computing

e Aiming towards autonomic operations that can be self-
orgaﬂed to support dynamic discovery. Major
computing paradigms are composable with QoS and

SLAs (service-level agreements). -
e In 1965, MIT's Fernando Corbato of the Multics operating

system envisioned a computer facility operating “like a
power company or water company”.

e Plug your thin client into the computing Utility and Play
Intensive Compute & Communicate Application

e Utility computing focuses on a business model in which
customers receive computing resources from a paid
service provider.

e All grid/cloud platforms are regarded as utility service providers.
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Features of Today’s Cleuds

@ Massive scale: Very large data\yé’;ers, contain tens of thodsands

sometimes hundreds of thousands of servers and you can run your

computation across as many servers as you want and as many servers
as your application will scale.

@ s/On-demand access: Pay—as—yo\ygo, no upfront commitment.

— And anyone can access it

@/gatﬁntensive Nature: What V\yfés has now become TBs, PBs and

Xs.

Daily logs, forensics, Web data, etc. S S
@/‘ﬂewgoud Programmvi;éParadigms: MapReduce/Hadoop,
NoﬂL/CassaWa/Mongo\D/B’and many others.
S

— Combination of one or more of these gives rise to novel and
unsolved distributed computing problems in cloud computing.
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. Massive Scale

Facebcyk [GigaOm,?ﬂlZ] / n

- 30K in 2009 -> 60K in 2010 -> 180K in 2012

Microsoft [NYTimes, 2008] /

- 150K machines / m .
ms Microsoft
- Growth rate of 10K per month

- 80K total running Bing
- In 2013, Microsoft Cosmos had 110K machines (4 sites)

Yahoo! [2009]:
0 0|<[ ] / Y AFHOO!
- Split into clusters of 4000
AWS EC2 [Randy Bias, 2009] amazon |EC 2
- 40K machines
8 cores/machine eb \/ .in

eBay [2012]: 50K machines @

HP [2012]: 380K in 180 DCs
Google: A lot C,O' )8IL
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What does a datacenter look like from inside?
\ 2 -
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Power and Energy

*WUE = Annual Water llsage / IT Equipment Energy (L/kWh)
— low is good
' 5ePUE = Total facility Power / IT Equipment Power

-
- - -
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Cooling

*Air sucked in
*Combined with purified water

*Moves cool air through system
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Il. On-demand access: *AAS Classification

@4 o Servitt

® On-demand: renting vs.T)u/yi one. E.g.:

« AWS Elastic Compute Clouid (EC2): a few cents to a few S
per CPU hdur

« AWS Simple Storage/{.mvice (S3): a few cents pe}G'B;month
e HaaS: Hardware as a Service

« Get access to barebones hardware machines, do whatever
you want with them, Ex: Your own cluster

« Not always a good idea because of security risks \J ("\
:/ka/aS:Jnfrastructure as a Service

« Get access to flexible computing and storage infrastructure.
Virtualization is one way of achieving this. subsume HaaS.

« Ex: Amazon Web Services (AWS: EC2 and S3), OpenSftack,
Eucalyptus, Rightscale, Microsoft Azure, Google Cloud.
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Il. On-demand access: *AAS Classification

4

e PaaS: Platform as a Service A

« Get access to flexible computing and storage
infrastructure, coupled with a sc\)ﬁ;xfare platform
(often tightly coupled)

« Ex: Google’s Aeyfngine(Pytflga,Ja@, GoY /

o/SaaS: Software as a Service /

« Get access to software services, when you need
them. subsume SOA (Service Oriented

Architectures).
o Ex: Googﬁocs, MS Office’'on demand
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lll. Data-intensive Computing

o Computation- Intensivg}Z@mputing
« Example areas: MPI-based, High- performance

computing, Grids
o Typically run on supercomp)yter/s(e.g., NCSA Blue
Waters)

o Data-Intensive <
« Typically store data at datacenters

« Use compute nodes nearby S
« Compute nodes run computation services

¢ In data-intensive computipg=tie focus shifts
from computatior to

e CPU utilization no longer the most important
resource metric, instead |/O is (disk and/or network)
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IV. New Cloud Programming Paradigms

e Easy to write and run highly parallel programs in new cloud programming

paradigms: / GO Ogle

« Google: MapReduce and Sawzall

« Amazon: Elastic MapReduce service (pay-as-you-go) amazon |E02
. Google (MapReduce) websenvces”

* Indexing: a chain of 24 MapReduce jobs

« ~200K jobs yéces ihg SOPB/month (in 2006) v
. Yahoo! (Hadoop + Pig) YAHOO!

 WebMap: a chain of several MapReduce jobs
* 300 TB of data, 10K ggpe’w, many tens of hours (~2008)

» 3K jobs procesging 55TB/day
NoSQL: MySQL is an industry standard, but Cassandra is 2400 times faster

Introduction to Edge Data Center
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Two Categories of Clouds

e Can be either a (i) public cloud, or (ii) private
cloud

e Private clouds are accessible only to company
employees

e Example of popular vendors for creating private
clouds are VMware, Microsoft Azure, Eucalyptus etc.

]

¢ Public clouds provide service to any paying ’ﬂ'] T

customer VVY/ o

o Examples of large public cloud services include oy
Amazon EC2, Google AppEngine, Gmail, Office365 e -

and Dropbox etc. ¥y

Enterprise

q SME

e You're starting a new service/company: sho\fd/
you use a public cloud or purchase your own
private cloud?
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Single site Cloud: to Outsource or Own?

Medium-sized organizatio\ryri'shes to run a service for M months\/
Service requires 128 sérvers (1024 cores) and 524 TQ/

-\ﬁ:tsource (e.g., via AWS): monthly cost
~ S3 costs: $0.12 per GB month. EC2 costs: $0.10 per CPU hour (costs
from 2009) Storage =5 0.12 X 524 X 1000 ~ $62 K

- Total = Storage + CPUs = $62 K + $0.10 X 1024 X 24 X 30 ~ $136 K

e

.\/o(f/n: monthly cost /
~ Storage ~S$349 K/ M Total ~ §1555 K/ M + 7.5)K (includes 1

sysadmin / 100 nodes)

* using 0.45:0.4:0.15 split for hardware:power: network and
3 year lifetime of hardware

o Breakeven analysis: more preferable to own if:

-5349K/ M<$62 K
P349K/ M <562 K {storage) Y4 -Startups use clouds a lot
- S 1555K/ M+ 7.5K< 5136 K (overall) . .
Breakeven points /" -Cloud providers benefit
\\ M>5.55 mo@((storage) monetarily most from storage
M > 12 months (overall)
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Conclusion

® Limitations of current cloud data center.

® Understanding the concept of edge data center.

® Clouds build on many previous generations of distributed
systems

® Characteristics of cloud computing problem

- Scale, On-demand access, data-intensive,
new programming

Introduction to Edge Data Center
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Content of this Lecture:
e Design of datastore for loT applications.

¢ In this lecture, we will discuss the design and insight of
Key-value/NoSQL stores for today’s Edge storage
systemes.

e We will also discuss one of the most popular cloud
storage system i.e. Apache Cassandra and different
consistency solutions.
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loT Edge: Data Flow

Initially the data collected from the azure 10T sensor is
passed through the IOT-Edge gateway and then we need to
pull the data from |IOT-Edge using stream analytics and
then stream that data then to from the |IOT Edge to the
data-store/database

o 0 —. > "2 t_ >
é% It

Azure IoT Hub Azure
Azure IoT DevKit (Gateway) Stream Analytics
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loT Edge: Data Flow

Messaging & Services,
e.g. Kafka, MQTT, REST

Cloud-Native Services, e.g.

IoT Core, IoT Hub

Unified Multi-Cloud
Platform

| Do,
|

T

Embedded & Edge

Realm
Database &
Sync

$10409UU0D B SMAS

On-Premises
& Gateway

Time-Series

Analytical
Data

Hot Data
High Availability
& Horizontal
Scaling

Data Locality

$J0403UU0) ¥ sHAS ‘©bonbup Atend a|buls

Hot Data
High Availability &
Horizontal Scaling

Analytical Data
Real-Time, ETL free
Isolated Workloads

Data Locality
Global Clusters

Automated Tiering
Atlas Online Archive

Cold Data
Atlas Data Lake

Full Text Search
Real-Time Search Index

salIaNYd pajpIapa4 » abonbup Atand a|buls

Visualization &
Connectors

MongoDB Charts
MongoDB Drivers
BI Connector

Kafka Connector

Spark Connector

Mobile Data &
Synchronization

Mobile Database

Mobile Sync

Serverless Services

GraphQL RESTful

Triggers & Events

Scheduled Work
Functions

Static Hosting

Public Cloud

Applications &
Microservices

Real-Time Analytics & Data

Science Platforms

Offline-First
Mobile Applications

Cloud-Native &
3rd Party Services

3rd Party BI & Reporting
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loT Edge: Databases

The most popular databases for 1oT apps are InfluxDB, CrateDB, Riak TS,
MongoDB, RethinkDB, SQLite, Apache Cassandra.

To select the right storage for Time Series and loT domain use case, it

depends upon the data-access methods, you may require the following
database:

Hot database:

These are typically used for data that is frequently being queried or
updated. They are often a good choice for storing data as they provide read
and write capabilities with little latency at the lowest cost. When choosing
a hot database you can consider the following features — flexibility in data
formats, querying abilities, messaging/ queueing capability, and tiered
memory models.

Cold Database:

They store information in their original state with little to no changes made
thereafter. In contrast with real-time data collection, storing huge volumes

Ozsiger: 9 Xey-Value Stores



loT Edge: Databases

NoSQL with Built-In Sorting
BigTable, HBase, Cassandra, DynamoDB, Accumulo are often used to store time-series data.
Strong Sides: Extremely well scaled for writes. Performing the basic level of analytics extremely efficient.

Weak Sides: All other kinds of analytics are not supported and not efficient
NoSQL Purpose-Built Time Series DB

There are engines that have been designed from the ground up as Time Series databases. In the majority of
cases, they are NoSQL.

NewSQL In-Memory Databases

The in-memory nature of SQL databases increases their ability to handle fast data ingestion. SQL interface
enriched by the time buckets normalization support

Strong Sides: Provide the reach analytics capabilities.

Weak Sides: The scalability for writes and reads are usually limited or is very expensive
Cloud Time-Series Platforms
Azure and AWS released recently their time series data services/platforms:

Azure Time Series Insights

Amazon Timestream

The platforms cover many aspects of the time series data storing, visualizing, and really reach capabilities in
qguerying. They have built-in separation of data between hot, warm, and cold storage to make the data
storing and retrieval well balances from the cost of ownership perspective.
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loT Edge Database: Example

As a continuation of the series of lecture about IoT Data Analytics, let’s
use the Fitness Tracker use case which represents well a typical loT
use case. A dataset (as it is also described here and here) consists of a
set of observation, and each observation contains:

A metric name generating by a sensor/edge, i.e.: heart rate,
elevation, steps

A metric value generated by the sensor bound to the point in time,
i.e.: (2020-11-12 17:14:07, 71bpm), (2020-11-12 17:14:32, 93bpm),
etc

Tags or Context description in which a given sensor is generating data,
i.e.: device model, geography location, user, activity type, etc.
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loT Edge Database: Functional Requirement

Basic Level: Simple Data Retrieval

e Random data access: for the particular point in
time return the proper metric value

¢ Small range scans: for the particular time range
(reasonably small, within minutes or hours
depending on the frequency of data generation)
return the sequential metric values (i.e.: to draw a
standard chart on it)
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loT Edge Database: Functional Requirement

Middle Level: Time Window Normalization

The measurement events usually supposed to be triggered on a
predefined recurrence basis, but there are always deviations in data
points timing. That is why it is highly desirable to have capabilities
around building predefined time windows to normalize the time series
data.

To the mid-level capacities it is worth to add more sophisticated
diagnostic analytics/ad-hoc queries:

e Flexible Filtering: filter data points based on predicate on
tags/context attributes, i.e.: filtering data points by some region, user,
or activity type

e Flexible Aggregations: grouping and aggregations on tags/context
attributes or their combinations, i.e.: max hearth rate by region by
activity type.
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loT Edge Database: Functional Requirement

Advance Level: Sequential Row Pattern Matching

The most advanced level would include checking if
the sequence of events matches the

particular pattern to perform introspection and
advanced diagnosis:

e Did similar patterns of measurements precede
specific events?;

e What measurements might indicate the cause of
some event, such as a failure?
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loT Edge Database: Non Functional Requirement

Besides the functional requirements, it’s really crucial to consider
non-functional requirements which often are the main drivers for
the selection:

e Scalable storage: ability to handle big data volumes

e Scalable writes: the ability to handle a big amount of
simultaneous writes. This is closely related to the real-time data
access — the ability to have the minimum possible lag between
when the data point is generated and when it’s available for
reading.

e Scalable reads: the ability to handle a big amount of
simultaneous reads

¢ High Maturity: presence on the market and community
support.
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The Key-value Abstraction

¢ (Business) Key = Value
e (flipkart.com) item number = information about it

¢ (easemytrip.com) Flight number = information about
flight, e.g., availability

e (twitter.com) tweet id = information about tweet

¢ (mybank.com) Account number = information about it

Design of Key-Value Stores



The Key-value Abstraction (2)

e It’s a dictionary datastructure.
« Insert, lookup, and delete by key
« Example: hash table, binary tree

e But distributed.

e Seems familiar? Remember Distributed Hash tables (DHT)
in P2P systems?

e Key-value stores reuse many techniques from DHTSs.
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Is it a kind of database ?

e Yes, kind of

¢ Relational Database Management Systems (RDBMSs)
have been around for ages

e MySQL is the most popular among them
e Data stored in tables
e Schema-based, i.e., structured tables

e Each row (data item) in a table has a primary key that is
unique within that table

¢ Queried using SQL (Structured Query Language)
e Supports joins
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Relational Database Example

users table
user_id | name zipcode blog_url blog_id Example SQL queries
110 Smith | 98765 | smith.com |11 1. SELECT zipcode
331 Antony | 54321 antony.in 12 FROM users “ ”
WHERE name = "John
767 John 75676 john.net 13
1 1‘ 2. SELECT url
Primary keys Foreign keys ::I\I;I-OII?I,IR: :gi 11
l blog table
Id url last_updated num_posts 3. SELECT users.zipcode,
11 | smith.com | 9/7/17 991 blog.num_posts
13 | johnnet 4/2/18 - FROM users JOIN blog
ON users.blog_url =
12 | antony.in 15/6/16 1090 blog.url
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Mismatch with today’s workloads

e Data: Large and unstructured: Difficult to come out with
schemas where the data can fit

e Lots of random reads and writes: Coming from millions of
clients.

e Sometimes write-heavy: Lot more writes compare to read
e Foreign keys rarely needed

¢ Joins infrequent
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Needs of Today’s Workloads

e Speed
¢ Avoid Single point of Failure (SPoF)

e Low TCO (Total cost of operation and Total cost of
ownership)

e Fewer system administrators
¢ Incremental Scalability

e Scale out, not scale up
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Scale out, not Scale up

e Scale up = grow your cluster capacity by replacing with more
powerful machines

* Traditional approach

* Not cost-effective, as you’re buying above the sweet spot on the
price curve

* And you need to replace machines often

e Scale out = incrementally grow your cluster capacity by
adding more COTS machines (Components Off the Shelf)
* Cheaper

e Over a long duration, phase in a few newer (faster) machines as
you phase out a few older machines

* Used by most companies who run datacenters and clouds today
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Key-value/NoSQL Data Model

e NoSQL = “Not Only SQL”

e Necessary APl operations: get(key) and put(key, value)

« And some extended operations, e.g., “CQL" in Cassandra
key-value store

e Tables

o “Column families” in Cassandra, “Table” in HBase,
“Collection” in MongoDB

Like RDBMS tables, but ...

« May be unstructured: May not have schemas
* Some columns may be missing from some rows

Don’t always support joins or have foreign keys
Can have index tables, just like RDBMSs
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Key-value/NoSQL Data Model

Key Vajue
¢ Unstructured { \
\L users table
user_id | name zipcode blog_url
¢ No schema 110 Smith | 98765 | smith.com
imposed 331 mt ) antony.in
767 '

e Columns missing
from some Rows

[
blog table

last_updated num_posts

d rl
o No foreign keys, 11 m

9/7/17 991

joinsmaynotbe 13 jomnnetNC S 57

Supported 12 antony.in

15/6/16
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Column-Oriented Storage

NoSQL systems often use column-oriented storage

e RDBMSs store an entire row together (on disk or at a server)

e NoSQL systems typically store a column together (or a group of
columns).

* Entries within a column are indexed and easy to locate, given a key
(and vice-versa)

e Why useful?

« Range searches within a column are fast since you don’t
need to fetch the entire database

« E.g., Get me all the blog_ids from the blog table that were
updated within the past month

— Search in the the last_updated column, fetch corresponding
blog_id column

— Don’t need to fetch the other columns
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Design of Apache Cassandra
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Cassandra

e A distributed key-value store

e Intended to runin a datacenter (and also across DCs)
e Originally designed at Facebook

e Open-sourced later, today an Apache project

e Some of the companies that use Cassandra in their production
clusters

« Blue chip companies: IBM, Adobe, HP, eBay, Ericsson
« Newer companies: Twitter
« Nonprofit companies: PBS Kids

« Netflix: uses Cassandra to keep track of positions in the
video.
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Inside Cassandra: Key -> Server Mapping

¢ How do you decide which server(s) a key-value resides
on?
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One ring per DC

Say m=7

N1

Primary replica for
key K13

N32

NSON T 2AN4s

Client Coordinator Backup replicas for
key K13

Cassandra uses a Ring-based DHT but without
finger tables or routing
Key =server mapping is the “Partitioner”
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Data Placement Strategies

e Replication Strategy:

1. SimpleStrategy
2. NetworkTopologyStrategy
1. SimpleStrategy: uses the Partitioner, of which there are two kinds
1. RandomPartitioner: Chord-like hash partitioning
2. ByteOrderedPartitioner: Assigns ranges of keys to servers.

* Easier for range queries (e.g., Get me all twitter users starting
with [a-b])

2. NetworkTopologyStrategy: for multi-DC deployments
« Two replicas per DC
« Three replicas per DC
o PerDC
* First replica placed according to Partitioner
* Then go clockwise around ring until you hit a different rack
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e Maps: IPs to racks and DCs. Configured in cassandra.yaml
config file

e Some options:
« SimpleSnitch: Unaware of Topology (Rack-unaware)

« RackiInferring: Assumes topology of network by octet of
server’s IP address

* 101.102.103.104 = x.<DC octet>.<rack octet>.<node octet>
« PropertyFileSnitch: uses a config file
« EC2Snitch: uses EC2.
* EC2 Region =DC
* Availability zone = rack
e Other snitch options available
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¢ Need to be lock-free and fast (no reads or disk seeks)

e Client sends write to one coordinator node in Cassandra
cluster

« Coordinator may be per-key, or per-client, or per-query

+ Per-key Coordinator ensures writes for the key are
serialized

e Coordinator uses Partitioner to send query to all replica
nodes responsible for key

e When X replicas respond, coordinator returns an
acknowledgement to the client

. X?

Design of Apache Cassandra



¢ Always writable: Hinted Handoff mechanism

« If any replica is down, the coordinator writes to all
other replicas, and keeps the write locally until down
replica comes back up.

« When all replicas are down, the Coordinator (front end)
buffers writes (for up to a few hours).

¢ Onering per datacenter
« Per-DC coordinator elected to coordinate with other
DCs

« Election done via Zookeeper, which runs a Paxos
(consensus) variant
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Writes at a replica node

On receiving a write
1. Log it in disk commit log (for failure recovery)
2. Make changes to appropriate memtables
« Memtable = In-memory representation of multiple key-value pairs
« Typically append-only datastructure (fast)
« Cache that can be searched by key
« Write-back aas opposed to write-through

Later, when memtable is full or old, flush to disk

» Data File: An SSTable (Sorted String Table) — list of key-value pairs,
sorted by key

« SSTables are immutable (once created, they don’t change)
» Index file: An SSTable of (key, position in data sstable) pairs
« And a Bloom filter (for efficient search)
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Bloom Filter

Compact way of representing a set of items
Checking for existence in set is cheap
Some probability of false positives: an item not in set may

check true as being in set Large Bit Map

Never false negatives On insert, set all hashed

0
1
2 bits.
3

Hash On check-if-present,

return true if all hashed bits

69 set.
* False positives

Key-K

111

False positive rate low
* m=4 hash functions
127 + 100 items

* 3200 bits

* FPrate=0.02%
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Data updates accumulate over time and SStables and logs
need to be compacted

« The process of compaction merges SSTables, i.e., by
merging updates for a key

« Run periodically and locally at each server
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Delete: don’t delete item right away

« Add a tombstone to the log

« Eventually, when compaction encounters tombstone it
will delete item
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Read: Similar to writes, except
« Coordinator can contact X replicas (e.g., in same rack)

e Coordinator sends read to replicas that have responded quickest in
past

* When X replicas respond, coordinator returns the latest-
timestamped value from among those X

e (X? We will check it later. )

« Coordinator also fetches value from other replicas

* Checks consistency in the background, initiating a read repair if
any two values are different

* This mechanism seeks to eventually bring all replicas up to date

« At areplica

* A row may be split across multiple SSTables => reads need to touch
multiple SSTables => reads slower than writes (but still fast)
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Membership

e Any server in cluster could be the coordinator

e SO every server needs to maintain a list of all the other
servers that are currently in the server

e List needs to be updated automatically as servers join,
leave, and fail
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Cluster Membership — Gossip-Style

‘ Cassandra uses gossip-based cluster membership

1 | 10120 | 66
2 | 10103 | 62
3 | 10098 | 63
4 | 10111 65%_
Aoﬁ;ress Time
(local)

Heartbeat Counter

Protocol:

eNodes periodically gossip their

membership list

*On receipt, the local membership

list is updated, as shown

o|f any heartbeat older than Tfail,

node ic marked as failed

1 10118 64
2 | 10110 64
3 | 10090 58
4 1 10111 65
1 10120 70
2 10110 64
3 10098 70
4 10111 65

(asynchronous clocks)

(Remember this?)

Current time : 70 at node 2

Design of Apache Cassandra




Suspicion Mechanisms in Cassandra

Design of Apache Cassandra

Suspicion mechanisms to adaptively set the timeout based on
underlying network and failure behavior

Accrual detector: Failure Detector outputs a value (PHI)
representing suspicion

Applications set an appropriate threshold
PHI calculation for a member
« Inter-arrival times for gossip messages
o PHI(t) =
— log(CDF or Probability(t_now —t_last))/log 10

o PHI basically determines the detection timeout, but takes
into account historical inter-arrival time variations for
gossiped heartbeats

In practice, PHI =5 => 10-15 sec detection time



Cassandra Vs. RDBMS

e MySQL is one of the most popular (and has been for a
while)

e On>50GB data
e MySQL
o Writes 300 ms avg
« Reads 350 ms avg
e Cassandra
o Writes 0.12 ms avg
+ Reads 15 ms avg
e Orders of magnitude faster
e What's the catch? What did we lose?
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CAP Theorem
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CAP Theorem

¢ Proposed by Eric Brewer (Berkeley)
e Subsequently proved by Gilbert and Lynch (NUS and MIT)

e In adistributed system you can satisfy atmost 2 out of the
3 guarantees:

1. Consistency: all nodes see same data at any time, or
reads return latest written value by any client

2. Availability: the system allows operations all the time,
and operations return quickly

3. Partition-tolerance: the system continues to work in
spite of network partitions
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Why is Availability Important?

Availability = Reads/writes complete reliably and quickly.

Measurements have shown that a 500 ms increase in
latency for operations at Amazon.com or at Google.com
can cause a 20% drop in revenue.

At Amazon, each added millisecond of latency implies a
S6M yearly loss.

User cognitive drift: If more than a second elapses between
clicking and material appearing, the user’s mind is already
somewhere else

SLAs (Service Level Agreements) written by providers
predominantly deal with latencies faced by clients.
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Why is Consistency Important?

® Consistency = all nodes see same data at any time, or
reads return latest written value by any client.

e When you access your bank or investment account via
multiple clients (laptop, workstation, phone, tablet), you
want the updates done from one client to be visible to
other clients.

¢ When thousands of customers are looking to book a flight,
all updates from any client (e.g., book a flight) should be
accessible by other clients.
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Why is Partition-Tolerance Important?

« Partitions can happen across datacenters when the
Internet gets disconnected

* Internet router outages
e Under-sea cables cut
* DNS not working

« Partitions can also occur within a datacenter, e.g., a rack
switch outage

« Still desire system to continue functioning normally
under this scenario

CAP Theorem



CAP Theorem Fallout

e Since partition-tolerance is essential in today’s cloud
computing systems, CAP theorem implies that a system
has to choose between consistency and availability

e Cassandra

« Eventual (weak) consistency, Availability, Partition-
tolerance

¢ Traditional RDBMSs
« Strong consistency over availability under a partition

CAP Theorem



CAP Tradeoff

e Starting point for NoSQL Consistency
Revolution

e A distributed storage
system can achieve at

most two of C, A, and P. HBase, HyperTable,
BigTable, Spanner,

RDBMSs
e When partition- (non-replicated)
tolerance is important,
you have to choose
between consistency and
availability Partition-tolerance  Availability

Cassandra, RIAK,
Dynamo, Voldemort

CAP Theorem




Eventual Consistency

o If all writes stop (to a key), then all its values (replicas) will
converge eventually.
e If writes continue, then system always tries to keep

converging.

 Moving “wave” of updated values lagging behind the latest
values sent by clients, but always trying to catch up.

e May still return stale values to clients (e.g., if many back-
to-back writes).

¢ But works well when there a few periods of low writes —
system converges quickly.

CAP Theorem



RDBMS vs. Key-value stores

e While RDBMS provide ACID
o Atomicity
» Consistency
« Isolation

o Durability
e Key-value stores like Cassandra provide BASE

» Basically Available Soft-state Eventual Consistency
« Prefers Availability over Consistency

CAP Theorem



Consistency in Cassandra

e Cassandra has consistency levels

e Clientis allowed to choose a consistency level for each
operation (read/write)

« ANY: any server (may not be replica)

* Fastest: coordinator caches write and replies quickly to
client

o ALL: all replicas
* Ensures strong consistency, but slowest
o ONE: at least one replica
e Faster than ALL, but cannot tolerate a failure

« QUORUM: quorum across all replicas in all datacenters
(DCs)

e What?

CAP Theorem



Quorums for Consistency

In a nutshell:

e Quorum = majority PN A second
e >50% Aquoru , \‘ quorum
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e At least one server in blue Y

quorum returns |atest Five replicas of a key-value pair
write
e Quorums faster than ALL,
but still ensure strong
consistency

CAP Theorem



Quorums in Detail

e Several key-value/NoSQL stores (e.g., Riak and Cassandra)
use quorums.

e Reads

+ Client specifies value of R (< N = total number of
replicas of that key).

« R =read consistency level.

« Coordinator waits for R replicas to respond before
sending result to client.

« In background, coordinator checks for consistency of
remaining (N-R) replicas, and initiates read repair if
needed.

CAP Theorem



Quorums in Detail (Contd..)

¢ Writes come in two flavors
+ Client specifies W (< N)
« W = write consistency level.

+ Client writes new value to W replicas and returns. Two
flavors:

* Coordinator blocks until guorum is reached.

e Asynchronous: Just write and return.

CAP Theorem



Quorums in Detail (Contd.)

e R =read replica count, W = write replica count
e Two necessary conditions:
1. W+R>N
2. W>N/2
e Select values based on application
« (W=1, R=1): very few writes and reads
+ (W=N, R=1): great for read-heavy workloads
« (W=N/2+1, R=N/2+1): great for write-heavy workloads

« (W=1, R=N): great for write-heavy workloads with
mostly one client writing per key

CAP Theorem



Cassandra Consistency Levels (Contd.)

e Clientis allowed to choose a consistency level for each operation
(read/write)

« ANY: any server (may not be replica)
e Fastest: coordinator may cache write and reply quickly to client

ALL: all replicas

* Slowest, but ensures strong consistency
« ONE: at least one replica

e Faster than ALL, and ensures durability without failures
QUORUM: quorum across all replicas in all datacenters (DCs)

* Global consistency, but still fast
LOCAL_QUORUM: quorum in coordinator’s DC

* Faster: only waits for quorum in first DC client contacts
EACH_QUORUM: quorum in every DC

* Lets each DC do its own quorum: supports hierarchical replies

CAP Theorem



Types of Consistency

e Cassandra offers Eventual Consistency

e Are there other types of weak consistency models?

CAP Theorem



Consistency Solutions

Consistency Solutions



Consistency Solutions

<€

Faster reads and writes

More consistency Strong
> (e.g., Sequential)

Eventual

Consistency Solutions



Eventual Consistency

e Cassandra offers Eventual Consistency
o If writes to a key stop, all replicas of key will converge

« Originally from Amazon’s Dynamo and LinkedIn’s
Voldemort systems

<€

Faster reads and writes
More consistency Strong
> (e.g., Sequential)

Eventual

Consistency Solutions



Newer Consistency Models

e Striving towards strong consistency

e While still trying to maintain high availability and
partition-tolerance

Red-Blue
Causal Probabilistic
Per-key sequential Strong .
Eventual CRDTs (e.g., Sequential)

Consistency Solutions



Newer Consistency Models (Contd.)

e Per-key sequential: Per key, all operations have a global
order

¢ CRDTs (Commutative Replicated Data Types): Data
structures for which commutated writes give same result
[INRIA, France]

« E.g., value ==int, and only op allowed is +1

+ Effectively, servers don’t need to worry about

consistency

Red-Blue
Causal Probabilistic

Per-key sequential Strong
Eventual CRDTs (e.g., Sequential)

Consistency Solutions



Newer Consistency Models (Contd.)

¢ Red-blue Consistency: Rewrite client transactions to
separate operations into red operations vs. blue
operations [MPI-SWS Germany]
+ Blue operations can be executed (commutated) in any
order across DCs

« Red operations need to be executed in the same order
at each DC
Red-Blue
Causal Probabilistic
Per-key sequential Strong
Eventual CRDTs (e.g., Sequential)

Consistency Solutions



Newer Consistency Models (Contd.)

Causal Consistency: Reads must respect partial order based
on information flow [Princeton, CMU]

W(K1, 33)
Client A__| —
N W(K2, 55)
Client B E{ 3‘“' >  Time
R(K1)'returns 33 »»
i ‘ SN
Client C_| \ L -~ >
\ ¥ P I\\
\ \
W(K1, 22) R&K1) may return N
?‘ // 22 or 33 . R\K1) must return 33
v’ R(K2) returns 55

Causality, not messages

Red-Blue
Causal Probabilistic
Per-key sequential Strong
Eventual CRDTs (e.g., Sequential)

Consistency Solutions



Which Consistency Model should you use?

e Use the lowest consistency (to the left) consistency model
that is “correct” for your application

» Gets you fastest availability

Red-Blue
Causal Probabilistic
Per-key sequential Strong
Eventual CRDTs (e.g., Sequential)

Consistency Solutions



Strong Consistency Models

e Linearizability: Each operation by a client is visible (or available)
instantaneously to all other clients

« Instantaneously in real time
¢ Sequential Consistency [Lamport]:

« ... the result of any execution is the same as if the operations of all the
processors were executed in some sequential order, and the operations of

each individual processor appear in this sequence in the order specified
by its program.

« After the fact, find a “reasonable” ordering of the operations (can re-

order operations) that obeys sanity (consistency) at all clients, and across
clients.

e Transaction ACID properties, example: newer key-value/NoSQL stores
(sometimes called “NewSQL”)

« Hyperdex [Cornell]
« Spanner [Google]
« Transaction chains [Microsoft Research]

Consistency Solutions



Conclusion

e Traditional Databases (RDBMSs) work with strong
consistency, and offer ACID

e Modern workloads don’t need such strong guarantees, but
do need fast response times (availability)

e Unfortunately, CAP theorem
o Key-value/NoSQL systems offer BASE
[Basically Available Soft-state Eventual Consistency]

« Eventual consistency, and a variety of other consistency
models striving towards strong consistency

e We have also discussed the design of Cassandra and
different consistency solutions.

Consistency Solutions
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After Completion of this lecture you will knowing the following:

Introduction to AWS loT platform

Layered architecture of AWS loT

Concepts of AWS loT Core

Understanding of AWS greengrass

Event-Driven architecture with sensor data in AWS loT



Recapitulate: Traditional lIoT platform

Cloud
Globally available, unlimited compute resources

loT
Harnessing signals from sensors and devices,
managed centrally by the cloud

Edge
Intelligence offloaded from the cloud to IOT

devices

loT

ML
Breakthrough intelligence capabilities, in the cloud
and on the edge



AWS loT: Introduction

AWS loT started in 2015 with Amazon acquiring a
company called telemetry.

It started with several cloud services with a very

simple loT device management and M2M. @
Now it has been expanded significantly. I :E % d L) O
[W— [ —]
AWS loT architecture consists of three different =
layers:
¢ Thlngs Devices Cloud Intelligence
L C|0Ud Sense & Act Storage & Compute Insights & Logic — Action

e Intelligence



AWS loT Architecture: Services Suite

Things
@ Sense & Act

L

Endpoints Gateway
Amazon AWS Greengrass
FreeRTOS

Cloud

Intelligence

! Storage & Compute & Learn Business Logic & Analytics

AWS loT Core

AWS loT Device
Management

AWS loT Device AWS loT
Defender Analytics

\ 4

AWS loT 1-Click



AWS loT Architecture: Things

Things comprises of components which are on
premises at the field and on the devices side,
which actually sense data and act.

Amazon offers a couple of products for this layer.
First one is Amazon FreeRTOS which is a real-
time operating system that can run on top of a
microcontroller with 64 KB of memory or more
Then AWS greengrass which is the edge
computing software act as a interfacing with the
local devices running either Amazon FreeRTOS
or the AWS loT devices SDK

Things
/f;-\\\ Sense & Act
IL<L
Endpoints Gateway
Amazon AWS Greengrass

FreeRTOS



AWS loT Architecture: Cloud

When it comes to cloud there are two important aspects:

The first one is AWS loT core and as the name suggests it is the core
building block of the AWS loT platform and is responsible for registering
the devices, so it acts as the device registry.

It also exposes endpoints for MQTT WebSockets and HTTP for the
devices to talk to each other and to talk to the cloud and it is also the

touch point for applications that want to control the devices running in
the field.

AWS loT core acts as an interface between the applications for example
a mobile app that is talking to a device and similarly a device that is
sending sensor data to the cloud.

Second one is loT device management which supports bulk
onboarding of devices because registering one device at a time in
industrial use cases is not feasible, so it supports bulk onboarding and
also has properties like over-the-air software updates, maintenance and
performing bulk jobs, operations and so on.

Cloud

.l Storage & Compute & Learn

AWS loT Core

AWS loT Device
Management

J



AWS loT Architecture: Intelligence

Intelligence
AWS IOT device defender is all about security and if there is

a drift between the preferred configuration and the policy and Business Logic & Analytics
what is currently running and it automatically raises alerts.

It also maintains a highly secure footprint of all the devices
and if there is any anomaly it raise an alert so that is the fleet
audit or protection service.

Finally, AWS loT analytics which is an analytic solution and

this service is responsible for analyzing the trends, visualizing

and from there feeding to more powerful systems like quick @ @
site or redshift and so on.

AWS loT Device AWS loT
Defender Analytics



AWS loT Core: Building Blocks ) AWS IoT Core

x

AWS IOT core is all about connecting devices
to the cloud, the moment you bring in your
first device that is going to become available
you need to talk to AWS loT core.

AWS loT Core is @ managed cloud that lets connected devices easily and

securely interact with cloud applications and other devices.
The workflow is very straightforward you need
to register your device with AWS loT core and

& Y
é@@ Q Ce i
that is going to act as the digital identity of

your deV|Ce_ Custom Authentication Device Gateway Message Broker Rules Engine Device Shadow Device Registry
& Credentials Provider

The moment you register a device you receive a set of credentials for the device and you're going to
embed those credentials in the device and once the device has those credentials and it connects to
the cloud it gets authenticated, authorized and it shows up in the device registry.

The device could be running a microcontroller, a single board computer, a slightly more powerful
machine that can talk to an Modbus or canvas internally or, even an automobile device like a car.

After that it can send messages to the cloud and it can receive commands from the cloud.



AWS loT Core: Building Blocks @) AWS IoT Core

Y

When you zoom into AWS loT core, the first one is all about
authentication and authorization and the second one is device AWS loT Core is @ managed cloud that lets connected devices easily and
gateway which is the cloud endpoint for talking to the IoT core. securely interact with cloud applications and other devices.

Message broker which is based on MQTT WebSockets and
HTTP for publishing and subscribing messages or feeding data g

from the device to the cloud but it is predominantly uses it for a

&e
&
communication between devices at the cloud to send some

metadata or telemetry and to receive some settings or

commands. Custom Authentication Device Gateway Message Broker Rules Engine Device Shadow Device Registry
& Credentials Provider

There is a rules engine which decides how the messages will flow into rest of the system and the rules engine is ANSI SQL compliant that
writes simple select statements that will filter the messages and apply a rule and the outcome of this rule can be hooked to a lambda
function to take further action.

The device shadow is the digital twin or digital identity of the physical device and all the changes that are made to the device will first get
applied to the device shadow and then it gets propagated all the way to the device. When the device state changes it automatically gets
synchronized with the device shadow. It acts as the buffer between the desired state and the current state.

The job of the AWS IoT core is to make sure that the desired configuration is matching with the current configuration or not.

Device registry is a huge database repository but meant for the devices or things that you connect to AWS IloT.



AWS loT Core: Summary

AWS loT
To put things in perspective, for using multiple 7~
building blocks of AWS loT, the device SDK which U

is supported in variety of languages like node.js, i\é&}?ﬁ%@ A
Python, C, Java where SDK is used to connect e
your device to the cloud. 4 il d @1

o T D
The first touch point is authentication and . & :
authorization and then the device gateway for (DEVICE SDK iniastin A
communication and further it goes to a rules e el o
engine and device shadow which maintains a
replica of this state
The rules engine is responsible for extending the o
loT platform to rest of AWS services like dynamo A
DB, Neptune, redshift, AWS sage maker and to MU

third-party services.

;ﬁ‘w if
(LJ Q@l ) “

Ny | AWS Services
RULES ENGINE S5 e
Transform messages
based on rules and
route to AWS Services
3]
APPLICATIONS

DEVICE SHADOW
Persistent thing state
during intermittent
connections




AWS Greengrass: Building Blocks

AWS Greengrass extends AWS IOT to your devices
so they can act locally and the data that they generate
or filter is filtered before it is sent to the cloud. AWS Greangress Sxtends AN 01 Gnta YOur

devices, so that they can act locally on the data they generate, while still
taking advantage of the cloud

V\ AWS Greengrass

Like AWS loT core there is a message broker built into

green grass so devices can continue to talk to each

other, there is a compute layer which is based on Q [ @ Q
lambda to write functions that are running locally and 27\ e -
triggered when a specific condition is met and these o Lo Dato an sty Localresource  Local b
triggers will actually fire lambda functions that perform REHEAE A . hmciadie  BRES e
an action.

updates

Greengrass also have the data and state synchronized with the cloud with the help of local device
shadows and the cloud device shadow. If something updated locally, it first gets written to the device
shadow running on the edge and then it eventually gets synchronized with the cloud.

Greengrass provides local resource access. For example, you want to talk to a local database which
already has some metadata or material asset tracking information you can you can query that directly, talk
to the file system, databases or anything that is accessible within the network.



AWS Greengrass: Building Blocks

[42) AWS Greengrass

\

The most recent feature of greengrass is the ability to run
machine learning inferencing on the edge and this is one

L]

of the key drivers because there are three aspects when it AWS Greengrass extends AWS loT onto your
devices, so that they can act locally on the data they generate, while still
comes to IOT. taking advantage of the cloud

First one is the learning part which is happening in the

cloud, where you train machine learning models then you Q é@ @ Q
A g =

have decision-making that takes place at the edge and

where fully trained machine learning models are used and
.. . Local Local Data and Security. Local resource Local ML
they make decisions on behalf of the cloud and the action actions triggers statesync.  Protocol adapter  access inferencing

Over the air for OPC-UA
phase that is directly done by the devices.

updates

For example, a machine learning model trained in the cloud to find an anomaly is deployed on the edge and because
an anomaly is found with a very critical device, the machine learning model decides that one of the other equipments
need to be shut down and that decision will result in an action where an actuator or a relay or another interface
physically shuts down a malicious or a vulnerable machine to avoid any eventuality or any fatalities.

Thus the learn, decide and act cycle that happens with the cloud, edge and devices and performing the decision part
run locally by ML inferencing.



AWS Greengrass Group: Cloud Capabilities to the Edge

AWS loT Greengrass Group: An AWS loT Greengrass

group is a collection of settings and components, such as

an AWS loT Greengrass core, devices, and subscriptions.

Groups are used to define a scope of interaction. For

example, a group might represent one floor of a building,

one truck, or an entire mining site. Since the group acts as Ao
the logical boundary for all the devices, it enforces i
consistent configuration and policies to all the entities.

AWS loT Greengrass Core: This is just a device in AWS )
loT Core registry that doubles up as an edge device. Itis = Greengmss | .5 | oo @]
an x86 and ARM computing device running the

Greengrass runtime. Local devices talk to the Core similar
to the way they interact with AWS loT Core.

AWS loT Devices: These are the devices that are a part R B | f
of the Greengrass group. Once devices become a part of

the group, they automatically discover the Core to continue

the communication. Each device has a unique identity and

runs AWS loT Device SDK. Existing devices can be added

to a Greengrass Group.

Group Definition

Subscriptions

A" List of
7 J Devices



AWS Greengrass Group: Cloud Capabilities to the Edge

Group Definition

Lambda Functions: As discussed earlier, Lambda provides

the local compute capabilities for AWS loT Greengrass. Each o e
function running within the Core uses Greengrass SDK to awsior | &> | : 4®mzz;,
interact with the resources and devices. Lambda functions '

can be customized to run within the Greengrass sandbox

container or directly as a process within the device OS. A O < E
T ORE) 002

Subscriptions: AWS loT Greengrass subscriptions connect . Settings Core Subscriptions
the resources declaratively. It maintains a list of publishers :
and subscribers that exchange messages. For another N .
scenario, a Lambda function may publish messages to a topic

to which the device is subscribed. Subscriptions eliminate the

strong dependency between publishers and consumers by

effectively decoupling them.

Connectors: AWS loT Greengrass Connectors allows developers to easily build complex workflows on AWS IoT Greengrass
without having to worry about understanding device protocols, managing credentials, or interacting with external APls. Based
on a declarative mechanism, Connects extend the edge computing scenarios to 3rd party environments and services.
Connectors rely on Secrets for maintaining the API keys, passwords, and credentials needed by external services.

A" ) List of
B Devices

ML Inferencing: This is one of the recent additions to AWS loT Greengrass. The trained model is first uploaded to an Amazon
S3 bucket that gets downloaded locally. A Lambda function responsible for inferencing inbound data stream publishes the
predictions to a MQTT topic after loading the local model. Since Python is a first-class citizen in Lambda, many existing
modules and libraries can be used to perform ML inferencing at the edge.



AWS loT: Event-driven architecture with sensor data
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AWS loT: Event-driven architecture with sensor data
Phase 1:

Data originates in loT devices such as medical devices, car sensors, industrial lIoT sensors.

This telemetry data is collected using AWS loT Greengrass, an open-source |oT edge runtime and

cloud service that helps your devices collect and analyze data closer to where the data is generated.
e When an event arrives, AWS loT Greengrass reacts autonomously to local events, filters and

aggregates device data, then communicates securely with the cloud and other local devices in your

network to send the data.

Phase 2:

e Eventdata is ingested into the cloud using edge-to-cloud interface services such as AWS loT Core,
a managed cloud platform that connects, manages, and scales devices easily and securely.

e AWS loT Core interacts with cloud applications and other devices.

e You can also use AWS loT SiteWise, a managed service that helps you collect, model, analyze, and

visualize data from industrial equipment at scale.



AWS loT: Event-driven architecture with sensor data
Phase 3:

AWS loT Core can directly stream ingested data into Amazon Kinesis Data Streams.
The ingested data gets transformed and analyzed in near real time using Amazon
Kinesis Data Analytics with Apache Flink and Apache Beam frameworks.

Stream data can further be enriched using lookup data hosted in a data warehouse such
as Amazon Redshift.

Phase 4:

Amazon Kinesis Data Analytics can persist SQL results to Amazon Redshift after the

customer’s integration and stream aggregation (for example, one minute or five
minutes).

The results in Amazon Redshift can be used for further downstream business
intelligence (BI) reporting services, such as Amazon QuickSight.

Amazon Kinesis Data Analytics can also write to an AWS Lambda function, which can
invoke Amazon SageMaker models.

Amazon SageMaker is a the most complete, end-to-end service for machine learning.



AWS loT: Event-driven architecture with sensor data
Phase 5:

Once the ML model is trained and deployed in SageMaker, inferences are invoked in a
micro batch using AWS Lambda.

Inferenced data is sent to Amazon OpenSearch Service to create personalized
monitoring dashboards using Amazon OpenSearch Service dashboards.

The transformed loT sensor data can be stored in Amazon DynamoDB.

Customers can use AWS AppSync to provide near real-time data queries to API
services for downstream applications.

These enterprise applications can be mobile apps or business applications to track and
monitor the loT sensor data in near real-time.

Amazon Kinesis Data Analytics can write to an Amazon Kinesis Data Firehose stream,
which is a fully managed service for delivering near real-time streaming data to
destinations like Amazon Simple Storage Service (Amazon S3), Amazon Redshift,
Amazon OpenSearch Service, Splunk, and any custom HTTP endpoints or endpoints
owned by supported third-party service providers, including Datadog, Dynatrace,
LogicMonitor, MongoDB, New Relic, and Sumo Logic.



Use Case: Greengrass Machine Learning Inference

This use case describe the steps in setting up Greengrass Machine Learning Inference, using Greengrass Image
Classification ML Connector with model trained with Amazon SageMaker, and Greengrass ML Feedback
connector to send data back to AWS for model retraining or prediction performance analysis.

AWS Greengrass Core AWS Cloud
H Feedback
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Use Case: Greengrass Machine Learning Inference

The common design patterns of using Greengrass Connectors:

1. Creates a Amazon SageMaker training job to create the model. When the Greengrass configuration is being
deployed, the Greengrass Core will download the model from the Amazon SageMaker training job as a local
machine learning resource.

2. Data acquisition - This function periodically acquire the raw data inputs from a image source. In this example, we
are using static images to simulate image sources.

3. Data preprocessor - This function pre-process the image by resize to the images used to train the model.

4. Estimator - This function predict the data input with the connector via IPC

5. Greengrass ML Image Classification Connector - The Connector loads the model from local Greengrass
resource and invoke the model.

6. The process will handle the prediction result, with object detected and confidence level.

7. The result can be used to trigger an action, or send it back to the cloud for further processing.

8. Greengrass ML Feedback Connector - Greengrass ML Feedback Connector sends field data back to AWS
according to the sampling strategy configured

9. Greengrass ML Feedback Connector sends unlabeled data to AWS

10. Unlabled data can be labeled using Amazon Ground Truth, and the labeled data can be used to retrain the model

11. Greengrass ML Feedback Connector sends prediction performance which can be used for realtime performance
analysis.



Use Case Greengrass ML Inference: Deployment

The main steps for deployment are:

1.

Prerequisites. Ensure there is an AWS loT certificate and private key created and accessible
locally for use.

Train the ML model. We will use an example notebook from Amazon SageMaker to train the
model with the Image Classification Algorithm provided by Amazon SageMaker.

Generate and launch the CloudFormation stack. This will create the Lambda functions, the
Greengrass resources, and an AWS loT thing to be used as the Greengrass Core. The
certificate will be associated with the newly created Thing. At the end, a Greengrass
deployment will be created and ready to be pushed to the Greengrass core hardware.
Create the config.json file, using the outputs from the CloudFormation. Then place all files into
the /greengrass/certs and /greengrass/config directories.

Deploy to Greengrass. From the AWS Console, perform a Greengrass deployment that will
push all resources to the Greengrass Core and start the MLI operations.


https://github.com/awslabs/aws-iot-greengrass-accelerators/blob/master/accelerators/machine_learning_inference/Greengrass_Connectors.md
https://github.com/awslabs/aws-iot-greengrass-accelerators/blob/master/accelerators/machine_learning_inference/Greengrass_Connectors.md
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https://github.com/awslabs/aws-iot-greengrass-accelerators/blob/master/accelerators/machine_learning_inference/Greengrass_Connectors.md
https://github.com/awslabs/aws-iot-greengrass-accelerators/blob/master/accelerators/machine_learning_inference/Greengrass_Connectors.md

Use Case Greengrass ML Inference: Deployment

Prerequisites:
e AWS Cloud.

Ensure you have an AWS user account with permissions to manage iot, greengrass, lambda,
cloudwatch, and other services during the deployment of the CloudFormation stack.

e Local Environment

Ensure a recent version of the AWS CLI is installed and a user profile with permissions mentioned above is
available for use.

e Greengrass Core AWS loT

Greengrass Core SDK Software which can be installed using pip command sudo pip3.7 install
greengrasssdk


https://github.com/awslabs/aws-iot-greengrass-accelerators/blob/master/accelerators/machine_learning_inference/Greengrass_Connectors.md

Use Case Greengrass ML Inference: Deployment

Train the model with Amazon SageMaker:

We will train the model using algorithm provided by Amazon SageMaker, Amazon SageMaker Image Classification Algorithm and
Caltech-256 dataset.

e |ogin to Amazon SageMaker Notebook Instances console https://console.aws.amazon.com/sagemaker/home?#/notebook-
instances

Select create notebook instance

Enter a name in Notebook instance name, Such as greengrass-connector-training

Use the default m1.t2.medium instance type

Leave all default options and select create notebook instance

Wait for the instance status to be 1nservice, and select Open Jupyter
Select SageMaker Example tab, expand Sagemaker Neo Compilation Jobs, Image-classification-fulltraining-highlevel-

neo.ipynb, select use
e Keep default option for the file name and select create copy


https://docs.aws.amazon.com/en_pv/sagemaker/latest/dg/image-classification.html
http://www.vision.caltech.edu/Image_Datasets/Caltech256/
https://console.aws.amazon.com/sagemaker/home?
https://console.aws.amazon.com/sagemaker/home?

Use Case Greengrass ML Inference: Deployment

Train the model with Amazon SageMaker:

We are to use transfer learning approach with use pretrained model=1. Locate the cell that
configure the hyper-parameters and add the additional use pretrained model=1. Details of the
hyperparameters can be found in Amazon SageMaker Developer Guide - Image Classification
Hyperparameters

We will also be setting the prefix for our training job so that the Cloudformation Custom Resources is
able to get the latest training job. Configure a base job name in the sagemaker.estimator. Locate
the cell that initialize the sagemaker.estimator and add the base job name, for example, using
greengrass-connector as the prefix. You will need this name prefix when creating the stack.

Add a cell below the cell that do the training ic.fit () and the command

ic.latest training job.name in the empty cell. This will give you the name of the training job that
you can verify to make sure the Cloudformation stack picks up the correct job.

Select the ce11 from thet notebook menu and run 211


https://docs.aws.amazon.com/en_pv/sagemaker/latest/dg/IC-Hyperparameter.html
https://docs.aws.amazon.com/en_pv/sagemaker/latest/dg/IC-Hyperparameter.html
https://github.com/awslabs/aws-iot-greengrass-accelerators/blob/master/accelerators/machine_learning_inference/cfn/lambda_functions/cfn_custom_resources/get_latest_sagemaker_trainingjobs.py

Use Case Greengrass ML Inference: Deployment

Launch the CloudFormation Stack:

Prior to launching the accelerator locally, a CloudFormation package needs to be created,
and then the CloudFormation stack launched from the Template. Follow the steps below to
create the package via the command line, and then launch the stack via the CLI or AWS
Console.

The CloudFormation template does most of the heavy lifting. Prior to running, each input
template needs to be processed to an output template that is actually used. The package
process uploads the Lambda functions to the S3 bucket and creates the output template
with unique references to the uploaded assets.



Use Case Greengrass ML Inference: Deployment

Configure the Greengrass Core:

With the stack deployed, we use one output from the CloudFormation stack, the
GreengrassConfig value, along with the certificate and private key to complete the config.json
so that Greengrass Core can connect and authenticate.

Starts the Greengrass Core:

With the Greengrass configuration config.json in place, start the Greengrass Core.



Use Case Greengrass ML Inference: Deployment

Deploy Cloud Configurations to the Greengrass Core:

From the AWS Console of AWS loT Greengrass, navigate to the Greengrass Group you
created with the Cloudformation, and perform Actions->Deploy to deploy to the Greengrass

Core machine.



Use Case Greengrass ML Inference: Testing

To test out this accelerator without any hardware, you can install the Greengrass on
an EC2 to simulate as a Greengrass Core

1. Create a EC2 running Greengrass, using the Cloudformation template in

cfn/greengrass core on ec2-s3 models.cfn.yml
2. Once the instance is created, copy the greengrass-setup.zip to the EC2
3. Inthe EC2, extract greengrass-setup.zip into /greengrass folder using
command sudo unzip -o greengrass-setup.zip -d /greengrass

4. Restart the Greengrass daemon using the command sudo systemctl restart
greengrass



Lecture Summary

Introduction to AWS loT platform

Layered architecture of AWS loT

Concepts of AWS loT Core

Understanding of AWS greengrass

Event-Driven architecture with sensor data in AWS loT
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After Completion of this lecture you will knowing the following:

e Current loT scenarios
Why there is a need to shift from centralized ML training to decentralized ML
training of data?

e Concepts of Federated Learning ( ie Distributed ML)

e Several challenges of federated learning

Federated Learning



Current loT Scenario

20%

Explosion of loT Market B Global loT Market Size
e McKinsey reported $11.1 Trillion market value by 2025 500 —gp— Y Growth = - 50%
e 14 billion connected devices - Bosch 400 40%
e 5 billion connected devices - Cisco 300 ~ 2% - Sll%
[ J

309 billion loT supplier revenue - Gartner w4 2402

e 7.1 trillion loT solutions revenue - IDC Q] 157-0. 1946'
A “deluge of data” is observed in 2020 ' 2016 2017 2018 2019 2020
1.5 GB of traffic per day from average internet user
3000 GB per day - Smart Hospitals
4000 GB data per day - self driving cars EACH
Radars ~ 10-100 kb per sec
40,000 GB per day - connected aircrafts
1,000,000 GB per day - connected factories

Growth Rate (%)

10%

Market Size (in Billions US $)

[Sources: GrowthEnabler Analysis/MarketsandMarkets]

Global loT Market Share by Sub-Sector

4% 2%

3%

. Smart Cities

- Industrial loT

M Global Industry 4.0 Market Size 2017-2023 Connected Health

Global 14.0 Market Size in $B

350 B Smart Homes
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310 M 14.0 Supporting : -
i Technologies g
o 24% Connected Cars
| 2] Ind o
250 Connected Industry
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CAGR Wearables

200 37

: 163 -
1501 /m = [l Smart Utilities
i A = I [l Others

0 e l [Source: GrowthEnabler Analysi
| : ysis]
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Shift from Centralized to Decentralized data

e The standard setting in Machine Learning (ML) considers a centralized dataset
processed in a tightly integrated system
e Butin the real world data is often decentralized across many IOT devices
e Sending the data tpo Cloud for centralized ML may be too costly
o Self-driving cars are expected to generate several TBs of data a day
o Some wireless devices have limited bandwidth/power
e Data may be considered too sensitive sometimes such as medical reports
o \We see a growing public awareness and regulations on data privacy
o Keeping control of data can give a competitive advantage in business and

research
data center
—— - O
. o #
- (o]
| | | |
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Federated Learning: Distributed ML

e 2016: the term FL is first coined by Google researchers; 2020: more
than 1,000 papers on FL in the first half of the year (compared to just
180 in 2018)1

e \We have already seen some real-world deployments by companies and
researchers for large scale IOT devices

e Several open-source libraries are under development: PySyft,
TensorFlow Federated, FATE, Flower, Substra...

e FL is highly multidisciplinary: it involves machine learning, numerical
optimization, privacy & security, networks, systems, hardware...

Federated Learning



Federated Learning: Decentralised data

e Federated Learning (FL) aims to collaboratively train a ML model while
keeping the data decentralized

e Enabling devices to learn from each other (ML training is brought close

e A network of nodes and all nodes with their own central server but
instead of sharing data with the central server, we share model we
don't send data from node to server instead send our model to server

e

Federated SERVER

Learning /

Deriving Intelligence from device data
.
v
. .
- .‘.
loT

Connected Edge devices NODE

u

NODE

NODE NODE
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Gradient Descent Procedure

The procedure starts off with initial values for the coefficient or coefficients for the
function. These could be 0.0 or a small random value.
coefficient = 0.0

The cost of the coefficients is evaluated by plugging them into the function and
calculating the cost.
cost = f(coefficient) or cost = evaluate(f(coefficient))

We need to know the slope so that we know the direction (sign) to move the
coefficient values in order to get a lower cost on the next iteration.

delta = derivative(cost)
we can now update the coefficient values.

A learning rate parameter (alpha) must be specified that controls how much the
coefficients can change on each update.
coefficient = coefficient — (alpha * delta)

This process is repeated until the cost of the coefficients (cost) is 0.0 or close to 0
It does require you to know the gradient of your cost function or the function you
are optimizing

Federated Learning



Gradient Descent Algorithm

Gradient Descent
Gradient Descent is the most basic but most used optimization algorithm. It’s
used heavily in linear regression and classification algorithms. Backpropagation
in neural networks, Federated Learning also uses a gradient descent algorithm.
Gradient descent is a first-order optimization algorithm which is dependent on
the first order derivative of a loss function. It calculates that which way the
weights should be altered so that the function can reach a minima. Through
backpropagation, the loss is transferred from one layer to another and the
model’s parameters also known as weights are modified depending on the
losses so that the loss can be minimized.
algorithm: 9=9-a-VJ(8)
Advantages:
Easy computation
Easy to implement
Easy to understand
The devices train the generic neural network model using the gradient descen
algorithm, and the trained weights are sent back to the server. The server the
takes the average of all such updates to return the final weights.

Federated Learning




Edge Computing ML: FL

FL is category of machine learning (ML) , which
moves the processing over the edge nodes so
that the clients’ data can be maintained. This
approach is not only a precise algorithm but
also a design framework for edge computing.

FL Server

Federated learning is a method of ML that

trains an ML algorithm with the local data |——>
samples distributed over multiple edge devices ‘ot

or servers without any exchange of data. This AW’ i . Sy
term was first introduced in 2016 by McMahan. | Aw! |

| |
Federated learning distributes deep learning by ~‘ 1o Jo o o
eliminating the necessity of pooling the data - '
into a single place.

In FL, the model is trained at different sites in ﬁ' D A
numerous iterations. This method stands in

contrary to other conventional techniques of

ML, where the datasets are transferred to a

single server and to more traditional

decentralized techniques that undertake that

local datasets
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Edge Computing ML: FL

Finding the function: model training

e Given a training dataset containing n input-output pairs (x;,y;),i € [1,n], the
goal of deep learning model training is to find a set of parameters w, such that
the average of p(y;) is maximized given x;.

 That is,

n
1
maximize = E rilx;, w)
i=1

Which is equivalent to

1w A basic component for loss function

—log@Oilxi, w)) L(x;i, ¥i, w) given sample (x;, y;):

minimize

=1
Let f;(w) = I(x;, yi, w) denote the

Deep Learning model training loss function.

* Given one input sample pair (xg, ¥o), the goal of deep learning model training
is to find a set of parameters w, to maximize the probability of outputting y,
given xg.

For a training dataset containing n samples (x;,y;), 1 < i < n, the training
objective is:

min, f (w) where f(w) & =3, f(w)

filw) = l(x;, y;, w) is the loss of the prediction on example (x;, y;)
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Edge Computing ML: FL

Finding the function: model training

* Given one input sample pair (xg, ¥o), the goal of deep learning model training
is to find a set of parameters w, to maximize the probability of outputting y,
given xg.

label = 5 label = 0 label = 4 label =1 label =9

\
=
L
~
=

Cae
N
3
S
O 0O N O U B W N — O

label = 2 label = 1 label = 3 label = 1 label = 4

Given input: n

label = 3 label = 5 label = 3 label = 6 label = 1

—
>

Output: —

label = 7 label = 2 label = 8 label = 6 label = 9

Federated Learning



How is this aggregation applied? FedAvg Algo

Federated learning — FederatedAveraging (FedAvg)

Algorithm 1 FederatedAveraging. The K clients are
indexed by k; B is the local minibatch size, £ is the number
of local epochs, and 7) is the learning rate.

Server executes:
initialize wy

m ma.\(_( 1\. 1)

S; + (random set of m clients)

for each client £ € S in parallel do
u,’ | C“Ll]lUpdd[L(l\'. wy)

ng .k
W1 <—ZL 1 g ¥ u

ClientUpdate(k,w): // Run on client k
B « (split Py, into batches of size B)
for each local epoch i from 1 to E do

for batch b € B do
w + w — nVEl(w;b)
return w to server

Federated Learning

1. At first, a model is randomly
initialized on the central server.

2. Foreachroundt:

i. Arandom set of clients are
chosen;

ii. Each client performs local
gradient descent steps;

iii. The server aggregates
model parameters
submitted by the clients.




Example: FL with i.i.d.

In FL, each client trains its model decentral. In other
words, the model training process is carried out

separately for each client. II “

Only learned rsodel pj:camde’iirs are sentt tczI a trustedd | n
ter t ' ' .

Then the trusted center sent back the aggregated main Il
del back to th lients, and thi '

Qz;u?ate?f o these clients, and this process is E g

A simple implementation with |ID (independent and 7 - 7

identically distrib.uted) data to show how the parameters m

of hundreds of different models that are running on ﬂ

different nodes can be combined with the FedAvg

method and whether this model will give a reasonable E E n

result.

Handwritten Digits from the MNIST datase

This implementation was carried out on the MNIST Data

set. The MNIST data set contains 28 * 28 pixel
grayscale images of numbers from 0 to 9.
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Image Classifier using FedAvg

The MNIST data set does not contain each label equally. Therefore, to fulfill the 11D
requirement, the dataset was grouped, shuffled, and then distributed so that each
node contains an equal number of each label.

A simple 2-layer model can be used for the classification process used FedAvg.
Since the parameters of the main model and parameters of all local models in the
nodes are randomly initialized, all these parameters will be different from each other,
so the main model sends its parameters to the nodes before the training of local
models in the nodes begins.

Nodes start to train their local models over their own data by using these parameters.
Each node updates its parameters while training its own model. After the training
process is completed, each node sends its parameters to the main model.

The main model takes the average of these parameters and sets them as its new
weight parameters and passes them back to the nodes for the next iteration.

The above flow is for one iteration. This iteration can be repeated over and over to
improve the performance of the main model.

The accuracy of the centralized model was calculated as approximately 98%. The
accuracy of the main model obtained by FedAvg method started from 85% and
improved to 94%.

Federated Learning



Apple personalizes Siri without hoovering up data

The tech giant is using privacy-preserving machine learning to
improve its voice assistant while keeping your data on your
phone.

It relies primarily on a technique called federated learning.
It allows Apple to train different copies of a speaker

recognition model across all its users’ devices, using only the
audio data available locally.

It then sends just the updated models back to a central server

to be combined into a master model. R
Siri is a perfect

In this way, raw audio of users’ Siri requests never leaves example of how Apple
their iPhones and iPads, but the assistant continuously gets runs on Al. The voice-
better at identifying the right speaker. In addition to federated powered assistant is
learning, Apple also uses something called differential privacy Fef¥lelal=loMiclgelelaldlsIVE-1H
to add a further layer of protection. The technique injects a at-the-edge
small amount of noise into any raw data before it is fed into a improvement

local machine-learning model. The additional step makes it
exceedingly difficult for malicious actors to reverse-engineer
the original audio files from the trained model.

Federated Learning




Federated Learning: Training

e There are connected devices let's say we have cluster of four IOT
Devices from four of the IOT devices and there is one central server
that has an untrained model.

e We will send a copy of the model to each of the node.

e Each node would receive a copy of that model.

Federated Learning



Federated Learning: Training

e Now all the nodes in the network has that untrained model that is

received from the server.
K
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Federated Learning: Training

e [n the next step, we are taking data from each node by taking data it
doesn't mean that we are sharing data.

e Every node has its own data based on which it is going to train a
model.

<

g Y odd
NODE ] NODE 4
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Federated Learning: Training

e Each node is training the model to fit the data that they have and it will
train the model accordingly to its data.

Federated Learning



Federated Learning: Training

e Now the server would combine all these model received from each node
by taking an average or it will aggregate all the models received from the

nodes.
e Then the server will train that a central model, this model which is now

trained by aggregating the models from each node. It captures the pattern
in the training data on all the nodes it is an aggregated one

—
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Federated Learning: Training

e Once the model is aggregated, the server will send the copy of the
updated model back to the nodes.
e Everything is being achieved at the edge so no data sharing is done

which means there is privacy preservation and also very less
communication overhead.

Z7\\
1 Lo
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Federated Learning: Challenges

Systems heterogeneity

Size of data
Computational power
Network stability
Local solver
Learning rate

Expensive Communication

e Communication in the
network can be slower
than local computation by
many order of magnitude.

Statistical Heterogeneity:

4 K (t-1)
)\/ o (’) ak'wk
k

il el R i ot
® 9 2 o 8

Fig. 1: Federated learning with non-iid data - The data has different distributions
among clients.
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Federated Learning: Challenges

Dealing with Non-L.I.D. data i.i.d (independent and identical distributed)
e Learning from non-i.i.d. data is difficult/slow because

e [f data distributions are very different, learning a single model which
performs well for all IOT devices may require a very large number of
parameters

e Another direction to deal with non-i.i.d. data is thus to

model sh
(“one size fits all”)
e Instead, we can allow each |OT k to learn a (potentially simpler)
_but des

When local datasets are non-i.i.d., FedAvg suffers from

To avoid this drift, one must use
, which hurts convergence

Federated Learning



Federated Learning: Challenges

Preserving Privacy
e ML models are susceptible to various attacks on data privacy

° try to infer the presence of a
known individual in the training set, e.g., by exploiting the
confidence in model predictions

° try to infer some of the points used to
train the model, e.g., by differencing attacks
° ‘ers al because

the server and/or other clients observe model updates (not only
the final model)

Federated Learning



Key differences with Distributed Learning

Data distribution
e |n distributed learning, data is centrally stored (e.g., in a data center)
o The main goal is just to train faster
o We control how data is distributed across workers: usually, it is
distributed uniformly at random across workers
e In FL, data is naturally distributed and generated locally
o Data is not independent and identically distributed (non-i.i.d.), and it
is imbalanced

Additional challenges that arise in FL
e Enforcing privacy constraints
e Dealing with the possibly limited reliability/availability of participants
e Achieving robustness against malicious parties

Cloud loT Edge ML



Federated Learning: Concerns

When to apply Federated Learning

e Data privacy needed

e Bandwidth and power consumptions are concerns
e High cost of data transfer

When NOT to apply Federated Learning

e \When more data won’t improve your model (construct a learning
cure)

e \When additional data is uncorrelated
e Performance is already at ceiling

Federated Learning



Federated Learning: Applications

e Predictive maintenance/industrial IOT
e Smartphones
e Healthcare (wearables, drug discovery, prognostics, etc.)

e Enterprise/corporate IT (chat, issue trackers, emails, etc.)

Federated Learning



Lecture Summary

e Market trend of loT platform

e \Why decentralized training is important?
e Understanding of Federated Learning

e Different issues with federated learning

Federated Learning
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After completion of this lecture you will know the following:

Understanding of Autonomous Vehicles

Role of Edge computing in Automotive Industry
How ML is trained in Self-driving cars?

Use Case of LSTM model for self-driving cars
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Autonomous Vehicles: Introduction

Autonomous vehicles (AVs) have attracted a
significant amount of interest in recent years.
According to a report released by the US state
Department of Transportation, “Self-Driving-Cars
can reduce 90% of Traffic Deaths”.

A big chunk of major Automobile companies is
trying to develop \)%elf-DriviQd-'Cars. Some\}aig
players are Tesla, Waymo, even Google is
developing Self Driving Cars which has no
presence in the automobile sector, have invested a
huge amount of money, manpower and
engineering capabilities in developing such
systems.

Designing policies for an autonomous driving
system is particularly challenging due to
demanding performance requirements in terms of
both making safe operational decisions and fast
processing in real-time.

ML for Autonomous Vehicles




Edge Computing in Automotive

Historically, the adoption of computing (be it cloud or edge) and software in automotive
has trailed the in-general adoption in other industries.

Cloud computing has been around for a while in many industries and many forms. But,
vehicle telematic ca @ E/Of the top use cases adopted in automotive somewhere

i 1058 (o™ ik 2O, TS

Il continue to evolve at an exponential rate with V2V and VZM
communication. This generates a large volum/e/o?data (every connected vehicle will
generate data up to 4TB/day). How to handle, process, a(\?byse the large amounts of
data and make critical decisions quickly and efficiently?

Automobile makers are focused on leveraging edge computing to address these ever-
evolving challenges. A group of cross-industry global players has formed the
Automotive Edge Computing Consortium (AECC) to drive bestpractices for tilE\

'.LM

When driving a vehicle, milljget
even though it may be you
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Edge Computing: Self-Driving Car Sensors

Given its real-time data processing capabilities, edge computing has naturally
established itself/as a pillar in autonomous vehicle technology. However, this data
isn't generated by the computer but rather by the multitude of sensors that
comprise an autonomous vehicle's peripheral "eyes" and "ears."

Sensor tkﬁél%@y can vary widely amon%utonomous vehicles, even within the
same sector. /

Most self-driving sensors are fundamentally similar - they collect data about the
world around tDém to ry{p pilot the vehicle. Fer/eXampIe, the Nuro vehicle
contains cameras, radar, Lidat, and thermal cameras to provide a

layered view of the vehicle's surroundings. /

Currently, a Tesla utilize ei ameyas,12 , and a forwa ly
much more heavily on camimthan Nuro vehicles. Google's Waywio Driver
primarily relies on Lidar and uses cameras and radar sensors to help map the
world around it. o o
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Self-Driving Car: Requirements

tonomous drivj hicles require two in-vehicle computing systems. One computer processes a large
ount of sensed data and images collected by camﬁaﬂ'ﬂﬁw And a second computer to analyze
pro image data and make intWt and quick dec@yé for the vehicle.

o/Pre-proces ng collected data. Autonomous vehicles have video eras and a variety of sensors

like a\syz, LIDAR, and ra% become aware of their surroundings and the internals of the

vgp)cfg This data coming from diﬁerent/\wrﬂcle sources must be.quickly processed through data
aggregation and compression processes. An in-vehicl?cor@gr needs to have multiple 1/0O ports for
eceiving and sending data.

e [Secure network connectivity. The in-vehicle computing;Oﬁtion must remain securely connected to
the Internet to upload the pre-processed data t¢g’the cloud. In this case, having multiple wireless
connections for redundancy and speed is crucial. High-speed connectivit)i/isélso vital for continuous
deployments of vehicle updates O\Vﬁush" updates like location, on-road conytl'ons, and vehicle

lematics.

o\/ljigh-performance computing. Autonomous‘y(cles may generate approximatelyj/G‘Bﬁ data
every second. Gathering and sending a fraction of thatQata (for instance, 5 minutes of datg) to a
cloud-based server for analysis is impractical and quite challenging due to limited bandwidth and
latency. Autonomous driving systqry&houldn’t always rely on ngiwork connectivity and cloud services
for their data processing. Self-driving vehicles need real-time@f processing to make crucial quick
decisions according to their surroundings. In-vehicle edge cowét’ing is essential for reducing the
need for network conngectivity (offline decision-making) and for increasing decision-making accuracy.a
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How Machine Learning Trains Al in Self-Driving Cars

The value of the sensor datacollected in all self-driving cars and vehicles depends on
the compute methodologies downstream of the sensors themselves. In many ways, the
most valuable intellectual property 6f companies like Tesla, Way\mo, Aurora
Innovations, and Nuro is the software and data infrastructure built to proeess and action
the sensor data.

Today, all autonompous vehicles on the road utilize edge computing Al programs, which
are often trained dsing data center chlne learning models. Autono/(;?car machine

learning models are only made po the incredible computing p r of modern
data centers capable of hundreds of p flop %

The computing requirements of these vast machine learning models well exceed the
computing power of edge computers. Given this information, data centers are often
used to form algorithms deployed for edg\(y

The problem of self-driving-car can b?}een as a Regression Problem.

Training an Al algorithm is similar; it takes hundreds of compute hours on a high-power
data center. Yet once that algorithm is learried, it can quickly and accurately utilize that
algorithm using much | computing power.
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Machine learning in autonomous driving

Kalman Filter, In real-life autonomous driving, the machine will deal with the
same information from different sensors, such as Lidar, Radar, MEC signals and
V2V Communications. This information will always have discrepancies with each
other, and Kalman filter can help us to get aTelatively reliable answer according to
these two sets of information.

Sensor Field A | ,
AV |M Ax TV Offse (x_ eeeeeee V_ (((((( )

of Veiw . AV : | J— Y near) ';;—"I
— |
e :'; ™ | : sprae | ; .
S =R IED
‘ =ns ) o _|. ‘—>.|
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Machine learning in autonomous driving

Lidar, Radar, and Cameras ML is an important part of autonomaus driving. A
self-driving vehicle usually has muItipIg/sensors, including camél;, lidar, and
radar sensors. The machine learning modtye/will tell the vehicle what to do with
different information. For example, the car needs to stop when there were
pedestrlz;?r and the mye must be a e to tell the dlffere}ce between actual
pedestri and pictures’of human. Additj onally; ; camera sets cannot precisely
measure distance or work at night. Lidarsensors usually emit high-frequency
signals, and those high-frequency signals could be used forpositioning and 3D
modelling, being able to tell the difference between actual human and pictures
of human. Radar is a low energy cost solution for positioning because the radio
wave it emits is usually with lowfrequency. Low-frequency wave cannot depict
the detailed 3D shape, but it is enough for positioning. However, camerps are
still needed because neltryrlldar nor radar can identify cotors. /1 -

Vehicle-to-Vehicle Communlc\}fon Communication (V2V) technology can
increase the accuracy of autonomous driving p(cyrﬂnently When multiple cars
are sharing their information, they can calibrate according to their relative

positions.
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Key component of ML for self driving cars
Perception: a ¢ore element of what the self-driving car needs to build an understanding of the
¥Qrid around \r?dnd it using two major inputs:

e Scene Prior, and
e Sensor Datjf /

Scene Prior, is prior on the scene. For example it would be a little silly to recompute the actual
location of the road, interconnectivity of the intersections o[;xéry intersection. Things you can pre-
compute in advance and save your onboard computing for all the tasks that aresmore critical which
is often re\f7n‘ed to as the mapping exercise.

Sensor, the signal that's going to tell you what is not like, what you mapped and the things like
traffic light right or green, where are the pedestrians and the cars wha¥are you doing.

Scene priors \/////’
(maps)

Scene
representation

AV N

Sensor data
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Key component of ML for self driving cars

Vision System + Radar
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Key component of ML for self driving cars

Scene Represe?tétion
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Key component of ML for self driving cars

Perform semantic o?/ect segmentation
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Key component of ML for self driving cars

Perform finer classification of objects
.

School Bus Police Car

Fire Truck
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Key component of ML for self driving cars

ime tracking using embedingsl5b(N J/

a‘(s of different -

owthe vector represent s )
. . . . . 4 ¥ Ay 35 4
objects will be tracked over/ftime. semantics o gy X Ny

{

Head network

A common technique that you can'use is a
recurrent neural networks that essentially are
networks that will build a state thq/tééts better ! .
and better as it gets more observation

RNN
sequential observations of for thé pattern. [ O

a state of a good understanding of what's going

- r 1 1 1

on in the scene. \/~
——

The vector representation combined with t
recurrent neural networks is a common
technique to achieve this.
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Data for training ML models in Self-Driving Cars

-. ./ -
Waymo Open Dataset is the Ial;gést richest anQ}(ost diverse AV datasets ever
published for academic res arch Sun et al. (2019). This dataset, collected from

Wa;yrfo level-5 })Anomo vehlc/e's in various traffic condltlor;(comprise radar,
lidar and camera data from 10003;6:second segments with labels. We will
introduce details about the Waymo dataset, as well as how the data is
preproc\:?/;ed before being fed into several machine learning models\/

Laser: SIDE_LEFT

Laser: REAR <— = 0 ) o| \—» Laser: FRONT
Vehicle
\/ Laser: TOP

J

SIDE_LEFT

‘ Laser: SIDE_RIGHT

—  x-axis
y-axis
FRONT

z-axis is positive upwards

p.. s @w‘“’"

Cameras

SS%RIGHT
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Data for training ML models in Self-Driving Cars

Labels refer to kinematics and spatial parameters of objects, \]vyc‘n are
represented s bounding bo xe . Specifically, one kind of labels, type, is classified
into pedestrian, vehflue unknown, sign and cychst categories. Detailed information
is provided for each label, amaong which we especially pay attention to the
coordinates of the bounding box/s/ veIocn;s“v and acceler)rons a in the
subsequent feature exiraction step.

Coo dinate Systems three coordyza/e systems are prov\@ed in this dataset: global
frame, vehicle frame, d sensor frame. Some raw features are represented in
unintended coordipate systems In order to maintain consistency, it is crucial to
transform da %to the correct coordinate system. The dataset also provides
vehicle pose VP, a 4 JIOW matrix, to transform variables from one coordinate

system to another. \/‘ /

Acceleration Computation Because oneis/instant acceleration of is not directly
available in the dataset, the “grounsl)luth” for training and evaluation needs to be
computed by velocity differences.
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Data for training ML models in Self-Driving Cars

Data Size: According to the data format, 1\_0)20 segments are packed into multiple
compressed files (tars) with a size of 25 GB each. In))ur experiments, 32 training
tars are used as the training set and 8 validation tars are used as the testing set.

The total number of yideos extracted from the segments is 45)060.

Image embeddirig there dre five camerfas installed on the AV, facing towards front,
front-left, frontright, side-left, and side-left respectively. These | images reflect the
time-series information of the moving vehicle with relatively smoother variation than
numerical data, which helps to prevent spiky prediction between consecutive

frames.

FRONT FRONT_LEFT
SIDE LEFT

FRONT_RIGHT

| SIDE_ RIGHT
“
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Use Case: LSTM model for self drivii -g cars

Basic Model with 12 Features, One ot the straightforward ways to build the acceleration
prediction model is to treat 12 basic features as the input of the model. The “encoder-
‘decoder” architecture proposed for trajectory prediction in SS-LSTM is a suitable
architecture for the_acceleration prediction problem as the accetération carve is a
trajectory based on pas\t/gferlences

Q»UQ)M docode—7 /]z(

dense Iayer
12 features
=
ai ) ) - e
stack
128 LSTMs cells 128 LSTMs cells \/
S

Figure 4: Given one video clip with a rame-length of 10, the input is the vector consisfs of 12 features from these 10 frames.
The output is the acceleration fodrfhe next 5 frames startingZfrom the end of the vidéo clip. The ”encoder” module contains
128 LSTM-cells and the ”decoder” module contains 128 L$T'M-cells
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Use case: LSTM model for self driving cars

Advanced Model with Image Inputs, The architecture of such an advanced model is
similar to the previous basic model. An "encoder-decoder” structure is maintained to
learn the information hidden in the input featares—The difference is that the front camera
images are treated as additional inputs.

— @Lg\\H\SQ\Iﬁ/

a@a@i Ol

dense layer

128 LSTMs cells 6‘ H
Qo _’U—’l cell }*’ —b [ ]Output

® O ®
@' = 128 LSTMs cells
y _.(f;.}[:..:q» o %ff

front camera image

Qe
L Q
X x @(
128 LSTMs cells st q '
Figure 5: Noticed that the ”imgge” input is actually a vector containing key inage content. The first channel input is the 12
features for the Zfrved 10 frAmes. The second channel input is the 1576-d#fmensional representationeffromt~Caqera images
from these 10 fr

es. Such representation is extracted from theys¢cond last output of a pre-trained R

is the acceferatiensforthe future 5 frames. The "encoder” module contains 128 LSTM-cells and the ”d2
128 LSTM-cells
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Use Case: LSTM model for self driving cars

Advanced Iyzlfguglesel W|th more Image Inputs 5 >
7 aé%é% @ . — @« @@«

128 LSTMs cells 128 LSTMs cells

front camera lmage side-left camera lmage \f
\ NG
aé%é)» -»@ co @« @@«

128 LSTMs cells 128 LSTMs cells
zV front-left camera image side-right camera image '>

a@»@ -»@»

128 LSTMs cells

)

Figure 6: The first channel input is the J2 =3 ; 7
representation of camera image from dfiferen¥ views i) tRe observed 10 frames. The output & the acceleNation for the future 5
frames. All ”encoder” modules containNl28 LSTM-cells and all "decoder” modules contain (128 LSTM-cells
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Use Case: LSTM model for self driving cars

Comparison of results with other state-of-the-art methods

 \ Ac/
Models Q\/IAE MAE Y

e ——adl
NN 0.4014 0.4312
CNN 0.3272 0.3123
NN+CNN 0.2985 0.2802
XGBoost 0.3502 0.3537

Light Gradient Boosting 0.3459 0.3444
Stacked Linear Regressor 0.3623 0.3222

\/ LSTM with 12 features 0.3179

STM with front camera @
ﬁJSTM with all cameras 0.1327

U <
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Future trend of autonomous driving

Like other intelligent industries of lloT, autonomous driving is also reducing the
total energy consumption. Gasoline ha;})éen the primary fuel for all kinds of
vehicles, and natural gas storage only fyas about 52 years left, with current
consumption levels. If the natural gas demands increased, natural gas could
run out faster. So, the energy crisis is existing all the time.

First of all, the rise of autonomous driving cars can improve the energy
efficiency of private-owned cars. Usually, an average family car can reach its
maximum speed at about 200 to 250 km/h, but the city’s usual speed limit is
usually about 60km/h. That means the engine displacement of nhowadays cars
are mostly excessive. However, high engine displacement is necessary
because faster cars are always safer because driver can overtake or change
lane faster. If autonomous vehicles took the places of private-owned vehicles.
In that case, it is pointless to use bigger and faster cars because autonomous
driving cars are much more reliable than human drivers.
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Future trend of autonomous driving

Secondly, auto-driving vehicles could reduce the natural gas dependency. As
this paper mentioned before, smaller cars do not need potent energy resource,
and electricity will be enough for most auto-driving vehicles. The popularization
of auto-Driving cars is also an excellent opportunity to accept renewable
energy over traditional energy sources, which will do good to the global climate

as well. /

Last but not least, when autonomous driving vehicles replaced private cars,
parking issues will be solvezyp/eople will have bigger house and living areas
because no garage is needed. There will be no traffic congestion as routes will
be pre-scheduled to ensure efficiency. Long-distance deliverance will be more
reliable because the auto-driving venhicle will never be tried.
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Lecture Summary

Different concepts of Autonomous Vehicles

How Edge computing is important in Automotive Industry?
How ML is trained in Self-driving cars?

Use Case of LSTM model for self-driving cars
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